
cODA: An Open-Source Framework to Easily
Design Context-Aware Android Apps

M. Ferroni, A. Damiani, A. A. Nacci, D. Sciuto, M. D. Santambrogio
Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)

Politecnico di Milano, Milano, Italy
{matteo.ferroni, alessandro.nacci, marco.santambrogio, donatella.sciuto}@polimi.it

{andrea3.damiani}@mail.polimi.it

Abstract—Mobile devices take an important part in everyday
life. They are now cheaper and widespread, but still a lot of
time is spent by the users to configure them: users adapt to their
own device, not vice versa. Can our smartphones do something
smarter? In this work, we propose a framework to support the
development of context aware applications for Android devices:
the goal of such applications is to reduce as much as possible the
interaction with the user, making use of automatic and intelligent
components. Moreover, these components should consume as less
power and computational resources as possible, being them part
of a mobile ecosystem whose battery and hardware are highly
constrained. The work implies the study of a methodology that
fits the Android framework and the design of a highly extensible
software architecture. An open source framework based on the
proposed methodology is then described. Some use cases are
finally presented, analyzing the performances and the limitations
of the proposed methodology.

I. INTRODUCTION

In the last few years, mobile devices completely changed
our lives, our social interactions and our culture: they became
the most used electronic devices, giving us the possibility to
be always fully connected with other people. In fact, a generic
mobile device (like a notebook, a smartphone, a tablet, a smart-
watch, or a smart-glass) has no reason to exist without its
connectivity capabilities: said in other words, mobile devices
are meant to let us reach the information we need while we
are in mobility.

Moreover, the evolution of these devices highly affected the
way in which we communicate and interact. At the beginning,
we were used to intend the communication as on-request and
synchronous: mobile devices were used to perform phone calls
from a caller to a receiver, as soon as the caller had the need
to start this interaction. At this stage, mobile devices were
just mobile phones, without any other remarkable capability.
A famous example is the Motorola StarTAC, the first clamshell
mobile device based on the TAC protocol [1].

Later, the introduction of the Short Message Service
(SMS) led to a on-request and asynchronous communication
paradigm: the caller did not expect to receive an immediate
answer to his/her interaction. Therefore, mobile devices gained
a more powerful screen and some limited computation ca-
pabilities. The Nokia 3210 and 3310 are probably the most
important pieces of this generation of mobile devices [2].

Then came the World Wide Web and the possibility for
everyone to be the author of Internet contents: suddenly,
mobile devices were pushed to become the main technology to

access the Internet, thanks to their portability and widespread
diffusion. Consequently, new communication paradigms like
Instant Messaging (IM) and social networking were introduced
along with phone calls and SMS, making mobile devices
the biggest and most important information hub for every
customer. Mobile devices had then a larger and powerful screen
and processor. Common examples are today’s Apple iPhone,
Samsung Galaxy and Google Nexus.

At this point, mobile phones started replacing laptops
and desktops in a variety of functionalities, since they were
cheaper and simpler to use: they became indispensable in our
everyday life, simplifying many daily operations. Moreover,
they moved from an on-request communication model to an
always-connected one: Internet information publishing and
retrieving became possible anytime and anywhere.

Up to now, the communication was only between the
mobile device and the Internet. In the last few years, a new
trend became clear: people are interested in making their own
mobile device a data collecting hub with respect to their
environment (Figure 1). As a consequence, mobile devices
started integrating more and more sensors (accelerometers,
gyros, etc.) or connecting with external ones (healthcare sen-
sors, sport sensors, etc.). This led to the definition of the so
called context aware mobile computing [3]. Context aware
mobile computing aims at using the information about the
user behavior and environment that is possible to retrieve
through mobile devices. Following the definition expressed in
[3], context aware systems can collect any information that can
be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to
the interaction between a user and an application, including
the user and applications themselves. In other words, context-
aware computing refers to a general class of mobile systems
that can sense their physical environment, and adapt their
behavior accordingly [4] [5]. Generally, the final goal of such
context aware computing systems is to create devices able to
anticipate the users needs, in order to simplify their life.

ENVIRONMENTINTERNET

Fig. 1. Internet and enviroment connected mobile device

Following this trend, many examples of context aware
applications for mobile devices have been developed: as shown



in [6], for instance, applications to assist users while shopping,
traveling or working have been proposed and implemented.
Despite these examples, there is still a lack of shared and well
defined design methodologies to create such applications in the
constrained environment of mobile devices. As a consequence,
the implementation of such systems is commonly performed
from scratch, with a high development cost [7]. This is the
reason why we propose here a methodology to enable a rapid
design and development of context aware applications.

II. CONTRIBUTION

The idea of creating a methodology that is shared among
different use cases came out from the observation that all
these applications have something in common. In order to
understand this concept, let us consider two examples: an
application that starts tracking the user performance while
making a sport (e.g., jogging) and another that automatically
suggests the user with the best time to wake up with respect
to the appointments on his/her schedule.

In the first case, we need to understand that the user is
actually jogging, in order to start tracking the user perfor-
mance. For such a purpose, we need to collect data from
motion sensors (e.g., the accelerometer); these data must be
then elaborated in other to find a pattern which is typical
for the current user behavior. Finally, when a jogging pattern
is recognized, the action of measuring the user performance
starts. In the second example, we need to collect data about the
user routine in order to identify his home and work locations;
as soon as the user will set the alarm clock for the following
morning, the system has to elaborate the time it takes to
reach the place of the first appointment of the day he/she
has in his/her schedule. Finally, the system has to perform an
action (i.e., warn the user) if the alarm time does not guarantee
him/her to reach the place of the appointment on time.

Some common aspects have been highlighted in both the
examples: a collecting phase, an elaboration (decision) phase
and an action phase are typical in context aware applications.
Generalizing the examples, we inferred that the idea of context
aware computing is strictly related with the so called Observe,
Decide and Act (ODA) loop [8]. In fact, everytime we want
to implement such a system, we need an observation phase
on the environment, a decision phase to analyze data gathered
in order to choose which are the actions to be performed, and
finally an action phase to actually perform those actions.

Within this paper, we want to answer a simple question:
how can context-aware concepts fit the current available mobile
devices technologies? We then propose a design methodology,
implemented in the lightweight context Observe Decide Act
(cODA) framework for Android devices1. We decided to work
on Android since it is the most widespread operating system
for mobile devices (79% of mobile devices market [9]). An
explanation of how the cODA methodology is implemented in
the Android SDK will be given: differently from all the state
of the art approaches, we present a ready-to-use open source
framework, meant for Android developers without requiring
any particular modification to the mobile device operating
system.

1The cODA framework is open source and can be downloaded from https:
//github.com/mattferroni/cODA

The paper is organized as follows: in Section III a state of
the art analysis of similar works is presented; then in Section
IV the implementation details are explained, while in Section
V we propose two case studies in order to show the potential
of the cODA framework. Finally some concluding remarks are
presented in Section VI.

III. RELATED WORKS

Many research groups explored the opportunities of
context-aware applications on mobile devices, since the first
vision of ubiquitous computing [10]. One of the foundational
work was an architecture proposed by Bill N. Schilit to support
context-aware computing [11], in which the user’s location,
nearby people, the presence of smart devices or other kinds of
objects could trigger applications adaptation over time.

That implementation made use of a blackboard pattern
to share context information; all the components of the in-
frastructure can read or write new data (i.e., sensor-based
or inferred context information) on a shared ”board”, thus
creating a loosely coupled extensible component interface.
The project was implemented on the Xerox PARCTab, whose
hardware was proprietary: as a consequence, this solution is not
available on other devices. The same blackboard approach has
been used in subsequent works [12] [13], while other works
implemented a widget based approach [14] [15]. However,
all those solutions had the strong limitation of running on
proprietary hardware or they affect solutions that are no more
supported (e.g., Symbian OS [16]).]

Other remarkable implementations have brought a context-
aware approach inside the Operating System, with the main
focus of making the OS energy aware. Some notable examples
of such operating systems are CondOS [17], ErdOS [18], FAL-
CON [19], ContextOS [20]. Since customizing an operating
system or installing a custom OS is an operation affordable
only by power users, these solutions are not widespread and
cannot be adopted by common people.

We introduced the context awareness at the OS level in a
previous work, [8]. Anyway, nowadays, everyone has a mobile
device with a pre-loaded OS and generally applications can be
easily downloaded form a marketplace. As a consequence, a
developer who wants to develop context aware applications
needs an applicative framework that lets him/her to develop
such application since the current available operating system
does not support such capability. Being constrained by the
OS capability, we need to bring the context awareness into
the applications themselves to deliver the context awareness
to everyone. As a consequence, with this paper, we want to
propose a methodology and a framework able to work on the
largest amount of currently available mobile devices.

The information about the context are obviously made
available by the operating system but this information is too
raw to be directly used to build the context status. In order to
extract the needed degree of information, some computation
and aggregation need to be performed to create context-level
data. Many frameworks have been proposed in the past to
accomplish this task. For instance, the Java Context-Awareness
Framework (JCAF) is proposed in [21], SOLAR is proposed
in [22] and Context Toolkit is proposed in [14]. While the
first one is a Java-based context-awareness infrastructure and



programming APIs for creating context-aware computer appli-
cations, the second one is an open platform which employs
a graph-based abstraction for context aggregation and dis-
semination, the third introduced a structured design approach
that helps with identifying context abstractions and leads to
a software design. Anyway, all of them are generic and not
bound to the Android OS components, so, as a consequence,
they do not have to deal with such a constrained software and
operating system (in the case of mobile devices, for instance,
the energy consumption is a major deal).

In fact, the need of sensing the environment to understand
the context cannot disregards the power consumption, since we
have to sense while consuming the less energy possible and
saving only relevant data [23] [24]; more information on the
topic can be found in a survey [25].

IV. METHODS AND FRAMEWORK DESIGN

As stated in Section I, the cODA framework implements
and revises the concept of ODA Loop. An ODA Loop com-
prises three steps: the Observe phase, dedicated to raw data
acquisition about the environment and the system; the Decide
phase, that leverages the data retrieved in the previous step
to identify complex situations; the Act phase, that modifies
the system in order to respond to what has been previously
discovered.

The ODA Loop concept was originally introduced for
simple devices (e.g., embedded systems) to perform control
mechanisms on physical systems [26]. These electronic sys-
tems were generally based on serial processors without any
possibility to perform parallel tasks. On the contrary, today’s
mobile devices are far more powerful than the aforementioned
ones, being equipped with a full multi-tasking operating sys-
tem like Android OS [27].

In order to efficiently bring the ODA concepts on modern
Android devices, the features provided by the Android SDK
have to be taken into account. The proposed cODA methodol-
ogy affords this situation splitting the ODA Loop in all its steps
and implementing each one as a bunch of independent pieces
of software. These components communicate via an Event-
Based paradigm and exchange data using a shared blackboard
approach.

LOGGER

OBSERVER
DECIDER

ACTUATOR

Custom Intents
Environment
modifications

CENTRAL
LOG

LAUNCHER

START, DIM, STOP
Intents

Fig. 2. cODA Loop

Fig.2 shows the overall system architecture.
cODA.Observer components are mapped on Android
Broadcast Receivers and are used to monitor environmental
changes only when needed, so that they consume the least
energy possible. cODA.Loggers are components used by
cODA.Observers when we need to store and keep track of a
continuously evolving state. The shared blackboard approach
is mapped on the central cODA.Log component, that is
an Android Content Provider: it provides the connection
between the cODA.Observers and the cODA.Deciders,
that may implement different policies to recognize specific
patterns. As soon as a pattern is identified, a custom Android
Intent is fired, thus connecting the cODA.Deciders to any
listening cODA.Actuator component: these may even be
external Android apps, that make the framework easily
extendible. Finally, the feedback loop is implicitly obtained:
as a cODA.Actuator modifies the environment conditions, the
interested cODA.Observers will eventually sense the change.

The cODA framework itself needs to be aware of the state
of the system: for instance, as soon as the battery is low,
the cODA.Observers must limit their monitoring operations
in order to reduce the overall consumed power. For this
reason, we introduced the cODA.Launcher component: it is
an Android Broadcast Receiver that starts with the system
and sends commands to all the cODA.Observers via Android
Intents. A first START command is used to start all the
components. In order to make the framework power aware, the
cODA.Launcher intercepts also all the events related to battery
level changes. When the battery is low, the launcher sends
the DIM command to ask the cODA.Observers to activate
all the needed procedures to reduce their respective power
consumption. Finally, we defined a STOP command, that
pauses all the cODA.Observers: in this way, the flow of the
cODA Loop is cut and, thus, the overall process is suspended.

The cODA.Observers acquire the information from the
system and the environment, independently from how this will
be used. Each cODA.Observer is implemented as a Broadcast
Receiver that listens for the aforementioned START, DIM and
STOP commands. When the observation phase requires a long
running job, a cODA.Logger has to be used. A practical
example is when a hardware sensor (e.g., the accelerometer) is
involved in the observation: the incoming data must be sampled
for a long period of time and usually they are not stored
permanently till the end of the sampling period, mainly not to
stress the permanent memory but also to be able to accomplish
parsing and filtering that may be impossible to be carried out
at a single sample level. Such a logger is then implemented
as an Android Service that, as soon as it starts, begins to
sample the sensor data by registering a callback and storing
each sample into a local data structure. It guarantees that the
sampling rate is constant by discarding too fast samples and
using cache for too slow rates (this is necessary since Android
gives no guarantee on stability of a sensor’s output rate). This
component is optional, since it is just an utility to perform
the observation phase when a cache of the historical value
under observation is required: this kind of caching operation
cannot be performed directly by a cODA.Observer since it is
an Android Broadcast Receiver and its life-cycle ends in a very
short time (specifically when the onReceive method returns).

As said, cODA.Loggers are components used by



cODA.Observers when we need to store and keep track of a
continuously evolving state. The shared blackboard approach is
mapped on the central cODA.Log component, that is an An-
droid Content Provider: it provides the connection between the
cODA.Observers and the cODA.Deciders, that may implement
different policies to recognize specific patterns. In the present
implementation the data is persisted via a SQLite database
that consists of a single table with timestamp, observer name,
sampled values and expiry timestamp fields. The last field is
used by the Content Provider for garbage collection, in order
to avoid an uncontrollable growth of the database.

cODA.Deciders are in charge of finding patterns and
valuable complex information in the middle of the huge
amount of raw data recorded into the central cODA.Log.
A cODA.Decider is a component that either is triggered
by specific events occurrence - in this case it will be im-
plemented as an Android Broadcast Receiver - or, it per-
forms periodical checks on the data present in the central
cODA.Log - in this other case it will be implemented as
an Android Intent Service listening to the cODA.Launcher
commands (START, DIM, STOP), in a way that is similar
to cODA.Observer/cODA.Logger pattern but more compact,
since the cODA framework enforces no restriction on the
cODA.Deciders class type. cODA.Deciders signal potentially
interesting situation via Broadcast Intents. A cODA.Decider is
an Android Intent Service because it must execute periodical
checks; this repeating behavior is achieved by letting the
cODA.Decider listen to the cODA Launcher Intents (START,
DIM and STOP) and schedule a repeating Android Alarm
that triggers itself after constant delays. This pattern is very
similar to the Observer/Logger one, but, in this case, since the
framework do not impose any restriction on the cODA.Decider
class type, it is possible to collapse the Android Broadcast
Receiver and the Android Service parts into a single element:
the same Android Intent Service stated above. cODA.Deciders
signal potentially interesting situation via Broadcast Intents.

The actions to be performed are finally executed by the
cODA.Actuators. These are only logical components from
the cODA prospecting and may represent totally independent
applications that are activated when an Android Intent from
a cODA.Decider is received. These applications are suited for
effectively acting on the user’s environment.

V. CASE STUDIES

We used the cODA framework to create different case
studies inspired to the examples cited in Section II: the jogging
and the wake up time detection. The goal of these case studies
is to demonstrate that, with the proposed framework, it is
possible to design complex context aware applicatiosn in an
easy way. In the next paragraph, the implementation details
of the developed case studies will be presented. The code
of these Apps is open source and can be download from
https://github.com/mattferroni/cODA.

A. I’m running

”I’m Running” is an Android App that automatically
silences the smartphone while the user is jogging. The App
pops-up (Fig. 3.a) when the cODA framework detects that
the user may be running and prompts him/her to confirm it

 Observer Logger Decider Actuator 

I’m  

running 

BROADCAST 

RECEIVER 

Schedules the 

repeated activation 

of the Logger. 

SERVICE 

Samples 

Accelerometer 

data at fixed rate. 

INTENT SERVICE 

Periodically joins and 

synchronizes data 

from the Loggers, 

filters and classifies 

them. 

BROADCAST 

RECEIVER AND 

ACTIVITY 

Silences phone 

and set a text 

auto-responder 

when running. 
BROADCAST 

RECEIVER 

Schedules the 

repeated activation 

of the Logger. 

SERVICE 

Samples 

Gyroscope data at 

fixed rate. 

You may 

be late 

BROADCAST 

RECEIVER 

Register the Logger 

to receive location 

updates from the 

system. 

INTENT SERVICE 

Parses location 

updates coming 

from the system. 

BROADCAST RECEIVER 

When an alarm clock 

is set, checks if the 

user has enough time 

to reach the successive 

appointment, based 

on past locations. 

BROADCAST 

RECEIVER AND 

NOTIFICATION 

Notifies if the 

user may be late 

for his/her next 

appointment. 

 
TABLE I. CASE STUDIES FRAMEWORK COMPONENT

IMPLEMENTATION

(Fig. 3.b). Since it is highly probable that the user will not
be able to see the dialog if he/she is really training, after a
timeout, the application automatically excludes the possibility
of a false positive and enables the silencer/auto-responder (Fig.
3.c). When ”I’m Running” is active, the smartphone is totally
silenced (no vibration, no ringer). Every incoming call will
be answered with a text message telling the caller that, at
the moment, the callee is in a training session and asking
him/her to recall later. When the user stops jogging, he/she
will have to disable the App (that in the meanwhile remained
on foreground) by simply tapping a button. All the missed calls
will be present in the telephone log as usual.

Fig. 3. I’m running GUI

To properly detect whether the user is running or not, it is
necessary to gather the data coming from both the accelerom-
eter and the gyroscope sensors available on the smartphone.
This is accomplished by two separate cODA.Observers, one
for each sensor. Both these components do not directly record
the sensors data, but they simply schedule the activation of
a cODA.Logger that executes it on their behalf, managing
all the related issues discussed further; this scheduling is
accomplished by means of repeating Android Alarms. In order
to perform jogging detection, some peculiar patterns have to
be recognized on the data coming from the sensors over a
temporal window. As a consequence, cODA.Loggers are used
in order to perform an efficient recording of the input data.

The applicative logic that detects whether the user is
running or not is encapsulated into a cODA.Decider, called



cODA.MotionDecider. When the cODA.MotionDecider starts,
it retrieves the sensors data from the central cODA.Log within
a definite temporal window (in the current implementation, the
last 3 minutes), synchronizes them (since there is no guarantee
that both the samples coming from the accelerometer and
the gyroscope have been acquired at the same time instant),
splits the entire temporal window into smaller and overlapping
time slices (in the current implementation, half-overlapped 2
seconds slices), extracts some features from each one of them
via a Principal Component Analysis and labels them via a 2-
nearest neighbors classifier trained with a static dataset; the
methodology that underlays this algorithm is fully analyzed in
[28]. If the number of slices labeled ”running” are enough to
exceed a threshold, that is currently statically defined after the
results of some experiments carried out without demanding
completeness, the user is considered to be running and the
RUNNING Intent is fired. For the entire process it was decided
not to imply any GPS data, because when a user is running the
smartphone is probably in his/her pocket and so the GPS fix
may become very difficult and power consuming. Accelerom-
eters and gyroscopes instead are less power demanding and
their effectiveness is not influenced by the position of the
device. The only factor that can affect power consumption is
the sampling rate, which in the present implementation is set
at 50Hz.

The only cODA.Actuator in this case is the ”I’m Run-
ning” App itself. It is made of an Android Broadcast Re-
ceiver that listens to the RUNNING Intent fired by the
cODA.MotionDecider and an Android Activity that is started
by the previous component and allows the user to see the state
of the silencer/auto-responder and to disable it.

The current demonstrative implementation is based on the
results stated in [28]. It is important to notice that the goal
of this case study is not to create the most precise application
for the jogging detection but to demonstrate that the proposed
framework allows any designer to create complex context
aware application in an easy way. The main limitation this
case study is affected by is related to the cODA.MotionDecider
algorithm. There is an important trade-off in designing it.
A more complex algorithm would be able to detect if the
user is running in a more precise way and would require
higher sampling rates, but the impact of this improvement
on resources utilization and power consumption is hard to be
modeled and is out of the scope of this work. A secondary
limitation is about the user interaction: Android OS no longer
exposes any API to hang up incoming calls directly. This
forced the decision to implement the ”I’m running” App as
a silencer and not as a proper text auto-responder.

B. You may be late

”You may be late” is an Android App that alerts the user
with a notification if he/she has set the alarm clock too late to
reach the subsequent appointment on his/her device calendar.
The app estimates and suggests the correct time to set the
alarm clock to be on time.

To be able to estimate how long it will take for the
user to get to his/her next appointment, it is necessary to
know where he/she may be at the time when the alarm
clock is set. This is accomplished by reading the user loca-
tion and comparing it with the location of the appointment.

Fig. 4. You may be late GUI

The cODA.LocationObserver is a standard cODA.Observer
that registers a cODA.LocationLogger for receiving Android
OS LOCATION STATUS CHANGED Intents at repeating
intervals in space and time. The cODA.LocationLogger is an
Android Intent Service that parses the information present in
the LOCATION STATUS CHANGED Intents broadcasted by
the system and records them into the central cODA.Log.

The cODA.LateDecider is a standard cODA.Decider in
charge of understanding whether the user may be late or not
when he/she sets a new alarm clock. Since this check is strictly
consequent to a user action that causes the system to broadcast
a SET ALARM Intent, this component is an Android Broad-
cast Receiver that listens only to this specific intent. When
triggered, this cODA.LateDecider retrieves the user location at
the new alarm clock time in a defined temporal window (in
the current implementation, the last 2 weeks), compares them
in order to detect how many conflicting locations have been
found and, if the number of conflicting records is less than the
maximum number of matching records, this last location is set
to be the start location to reach the subsequent appointment;
then, the cODA.LateDecider retrieves the first appointment
subsequent to the alarm-clock time and sets its location as the
end location, if any; finally, the cODA.LateDecider connects
to the Google Directions Web API to compute the journey
duration and compares it with the difference between the
appointment start time and the alarm clock time. If the journey
duration is greater than the difference, the cODA.Decider
computes the delay and minimum alarm-clock time and fires
a LATE Intent.

The cODA.Actuator is the couple Android Broadcast Re-
ceiver/Notification present in the ”You may be late” App.
The Android Broadcast Receiver, as imposed by the cODA
framework, listens to the LATE Intent and triggers the Android
Notification visualization (Fig. 4). Since the Android pre-
installed Alarm Clock App does not fires the SET ALARM
Intent when a new alarm clock is set, the ”You may be late”
App includes a simple Alarm Clock App that overcomes this
issue. This same App is started when the user taps the ”You
may be late” notification.

C. Further Examples

The cODA methodology is meant to propose a standard
design pattern to support any kind of application that in-
volves context awareness in a mobile environment. There are



numerous examples of application fields that have not been
explored in the case studies. If we think about sensors, one
interesting application field may be health care. Wearable
sensing elements with on board diagnostic capabilities, ECG
test units for example, and a wireless connection, can easily
become a point from where to start to build an ODA Loop
that can timely deliver life saving alerts, or compute calories
consumption to support users on diet, and so on. It is possible
to envision a single central Health Decider able to broadcast
sticky intents stating an abstraction of the user health state
in every moment, and a suite of apps implementing smart
behaviors, such as forbidding the user to open a navigator
app when the sensor have detected that the user is not able
of driving, or tuning the pacemaker parameter to react at a
sudden burst of stress.

VI. CONCLUSION AND FUTURE WORKS

We presented a methodology and a framework based on
it, namely cODA (context Observe Decide Act), targeting the
great variety of Android devices. The proposed methodology
aims at providing the guideline to develop context aware ap-
plications on the selected family of mobile devices, exploiting
the features of the selected platforms. An asynchronous com-
munication pattern among the Observe-Decide-Act loop com-
ponents, on which the context aware applications are based,
is presented by means of Android Broadcast Receivers and
Android Intent. The methodology has then been implemented
into the aforementioned open source cODA framework and all
the implementation details have been shown. We finally built
different case studies using the cODA framework, showing the
effectiveness of the proposed approach.

Some improvements for the cODA framework are left as
future works. At first, it is possible to introduce some artificial
intelligence libraries to provide a better decision phase. All the
cODA.Deciders may have an enormous advantage leveraging
on machine learning techniques for a better adaptation to the
user’s habits and needs. This could be partially implemented
on a remote server and integrated via periodical updates of
the parameters on the device. Secondly, in order to let the
user access a large variety of cODA.Actuators, a marketplace
could be implemented, from where the user could download
and install them. To do this in an optimized way and in order
to avoid code or functionality duplication, a packet manager
that keeps track of installed software and package dependences
should be deployed.

REFERENCES

[1] motorola.com, “Motorola startac3000,” http://www.motorola.com/
mdirect/manuals/StarTAC3000 User Manual E.pdf.

[2] nokia.com, “Nokia 3210,” http://nds1.nokia.com/phones/files/guides/
3210 usersguide it.pdf.

[3] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith, and
P. Steggles, “Towards a better understanding of context and context-
awareness,” in Handheld and ubiquitous computing. Springer, 1999,
pp. 304–307.

[4] R. J. Robles and T.-h. Kim, “Review: Context aware tools for smart
home development.” International Journal of Smart Home, vol. 4, no. 1,
2010.

[5] G. Thyagaraju and U. P. Kulkarni, “Design and implementation of
user context aware recommendation engine for mobile using bayesian
network, fuzzy logic and rule base,” International Journal of Pervasive
Computing and Communications, vol. 8, no. 2, pp. 133–157, 2012.

[6] G. Chen, D. Kotz et al., “A survey of context-aware mobile computing
research,” Technical Report TR2000-381, Dept. of Computer Science,
Dartmouth College, Tech. Rep., 2000.

[7] J. Pascoe, N. Ryan, and D. Morse, “Issues in developing context-aware
computing,” in Handheld and ubiquitous computing. Springer, 1999,
pp. 208–221.

[8] A. Nacci, M. Mazzucchelli, M. Maggio, A. Bonetto, D. Sciuto, and
M. Santambrogio, “Morphone.os: Context-awareness in everyday life,”
in Digital System Design (DSD), 2013 Euromicro Conference on, Sept
2013, pp. 779–786.

[9] canalys.com, “Android on 80http://www.canalys.com/newsroom/
android-80-smart-phones-shipped-2013.

[10] M. Weiser, “The Computer for the 21st Century,” Scientific American,
vol. 265, no. 3, pp. 94–104, Sep. 1991.

[11] W. N. Schilit, “A System Architecture for Context-Aware Mobile
Computing,” Ph.D. Thesis, Columbia University, 1995.

[12] I. MacColl et al., “Shared visiting in EQUATOR city,” in Proceedings of
the 4th international conference on Collaborative virtual environments
- CVE ’02. New York, New York, USA: ACM Press, 2002, pp. 88–94.

[13] P. Korpipää and J. Mäntyjärvi, “An ontology for mobile device sensor-
based context awareness,” Modeling and Using Context, pp. 451–458,
2003.

[14] A. Dey, G. Abowd, and D. Salber, “A Conceptual Framework and
a Toolkit for Supporting the Rapid Prototyping of Context-Aware
Applications,” Human-Computer Interaction, vol. 16, no. 2, pp. 97–
166, Dec. 2001.

[15] M. Raento, A. Oulasvirta, R. Petit, and H. Toivonen, “ContextPhone:
A Prototyping Platform for Context-Aware Mobile Applications,” IEEE
Pervasive Computing, vol. 4, no. 2, pp. 51–59, Apr. 2005.

[16] Techcrunch, “Nokia confirms the pureview was officially the last
symbian phone,” Nokia Corporation Q4 and full year 2012 Interim
Report, January 2013.

[17] D. Chu, A. Kansal, J. Liu, and F. Zhao, “Mobile apps: It’s time to
move up to condos,” in Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, ser. HotOS’13. Berkeley, CA,
USA: USENIX Association, 2011, pp. 16–16.

[18] N. Vallina-Rodriguez and J. Crowcroft, “Erdos: achieving energy sav-
ings in mobile os,” in Proceedings of the sixth international workshop
on MobiArch. ACM, 2011, pp. 37–42.

[19] T. Yan, D. Chu, D. Ganesan, A. Kansal, and J. Liu, “Fast app launching
for mobile devices using predictive user context,” Proceedings of the
10th international conference on Mobile systems, applications, and
services - MobiSys ’12, p. 113, 2012.

[20] K. Ariyapala, M. Conti, and C. Keppitiyagama, “ContextOS: A Context
Aware Operating System for Mobile Devices,” in IEEE GreenCom
2013. IEEE, Aug. 2013, pp. 976–984.

[21] J. Bardram, “The Java Context Awareness Framework (JCAF)a service
infrastructure and programming framework for context-aware applica-
tions,” Pervasive Computing, pp. 98–115, 2005.

[22] G. Chen and D. Kotz, “Solar: An open platform for context-aware
mobile applications,” DTIC Document, Tech. Rep., 2005.

[23] B. Priyantha, D. Lymberopoulos, and J. Liu, “Little Rock: Enabling En-
ergy Efficient Continuous Sensing on Mobile Phones,” IEEE Pervasive
Computing, vol. 10, no. 2, pp. 12–15, 2011.

[24] N. Xiong and P. Svensson, “Multi-sensor management for information
fusion: issues and approaches,” Information Fusion, vol. 3, no. 2, pp.
163–186, Jun. 2002.

[25] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury, and A. Camp-
bell, “A survey of mobile phone sensing,” IEEE Communications
Magazine, vol. 48, no. 9, pp. 140–150, Sep. 2010.

[26] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Engineering self-adaptive systems
through feedback loops,” in Software Engineering for Self-Adaptive
Systems. Springer, 2009, pp. 48–70.

[27] T. Wooley, “A comparative study of the android and iphone operating
systems,” University of central Florida, 2010.

[28] T. T. N. HO, “Activity recognition using smartphone based sensors,”
Master Thesis Politecnico di Milano, 2013.


