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Software Suite for Gene and Protein Annotation
Prediction and Similarity Search

Davide Chicco, student member, IEEE, and Marco Masseroli

Abstract—In the computational biology community, machine learning algorithms are key instruments for many applications, including
the prediction of gene-functions based upon the available biomolecular annotations. Additionally, they may also be employed to
compute similarity between genes or proteins. Here, we describe and discuss a software suite we developed to implement and
make publicly available some of such prediction methods and a computational technique based upon Latent Semantic Indexing
(LSI), which leverages both inferred and available annotations to search for semantically similar genes. The suite consists of
three components. BioAnnotationPredictor is a computational software module to predict new gene-functions based upon Singular
Value Decomposition of available annotations. SimilBio is a Web module that leverages annotations available or predicted by
BioAnnotationPredictor to discover similarities between genes via LSI. The suite includes also SemSim, a new Web service built
upon these modules to allow accessing them programmatically. We integrated SemSim in the Bio Search Computing framework
(http://www.bioinformatics.deib.polimi.it/bio-seco/seco/), where users can exploit the Search Computing technology to run multi-topic
complex queries on multiple integrated Web services. Accordingly, researchers may obtain ranked answers involving the computation
of the functional similarity between genes in support of biomedical knowledge discovery.

Index terms— Latent Semantic Indexing, Singular Value Decomposition, gene similarity search,
biomolecular annotations, Gene Ontology, Web service, semantic similarity, Search Computing
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1 INTRODUCTION [4]); then, we extended it with gene clustering and term-

Controlled biomolecular annotations are paramount to de-
scribe biomolecular knowledge and support biomedical in-
vestigation. They consist of associations between biomolec-
ular entities (genes or proteins) and controlled terms that
describe the biomolecular entity features or functions; these
terms are often part of an ontology, i.e. they are related
through semantic relationships that allow their use for
inferential analyses. Despite their importance, available
controlled annotations suffer from incompleteness and the
presence of errors. In this context, computational methods
that apply efficient machine learning and data mining algo-
rithms to predict missing annotations, or suggest available
annotations to be revised (both ranked by their likelihood)
are of paramount importance in the field [1]. Additionally,
these methods leverage available and predicted annotations
to support semantic similarity search of biomolecular enti-
ties. Using advanced computational techniques, based upon
Singular Value Decomposition (SVD) [2], we developed
some software components to predict biomolecular anno-
tations and compute semantic similarity between biomolec-
ular entities; here, we illustrate and discuss them.

We started with the approach developed by Khatri and
colleagues [3], which is based upon truncated Singular
Value Decomposition (tSVD) [2]. In our previous work, we
enhanced it, by defining an automatic method to choose
the SVD truncation level built upon the evaluated data
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term similarity weights (SIM) to improve the correctness of
predicted annotations [5] [6]. We implemented these meth-
ods within the BioAnnotationPredictor software component
(Section , which is able to generate ranked lists of pre-
dicted annotations. It also saves the decomposed matrices
generated by the employed technique, which can then be
used for gene (or protein) semantic similarity computation.
For this purpose, we developed SimilBio and SemSim, two
novel software components.

We organize the rest of the paper as follows. After this
Introduction, in Section2]we discuss some related work and
available tools about semantic similarity of genes. Then,
in Section |3| we describe and discuss some main aspects
of the BioAnnotationPredictor software, which we previously
developed for the prediction of biomolecular annotations. It
and its predicted annotations are leveraged in the novel Sim-
ilBio Web application, which we developed to evaluate the
semantic similarity between genes, as described in Section
[l Programmatic access to the created functionalities for the
computation of gene semantic similarity is provided by our
newly developed Web service, called SemSim; we describe
and discuss it, together with the Latent Semantic Indexing
algorithm that it uses and some related use cases, in Section
Finally, we provide some interesting conclusions and
envisage future developments in Section [6}

2 RELATED WORK

Computing semantic similarity between two genes (or pro-
teins) is a key point to discover relationships between differ-
ent genes (or proteins). Semantically similar genes (proteins)
have many annotations in common and can have similar
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functions, or be involved in similar pathways. Several se-
mantic similarity measures, mainly based upon ontological
annotations, exist. Some of them consider only the onto-
logical topology of the controlled annotations upon which
the similarity measure is based, while others also consider
the corpus of available annotations. Numerous studies on
semantic similarity between ontological terms (features)
exist in literature: [7], [8], [9], [10]; some are regarding gene
or protein similarities. To the best of our knowledge, the
two most relevant tools that provide that functionality are
FastSemSim [11] and G-SESAME [12].

FastSemSim [11] is an offline Python package which is
able to compute the similarity between Gene Ontology
feature terms and take advantage of this computation to
calculate the semantic similarity between pairs of genes.
The underlying idea of this approach is to first evaluate the
functional similarity between all pairs of terms that annotate
two genes and then combine these similarities in different
ways to compute the overall gene similarity. FastSemSim lets
the user choose among twenty similarity measures to use, all
based upon the Gene Ontology tree structure [13].

G-SESAME [12] is a Web tool that first enables the user
to upload a list of genes, then computes the functional
similarity between them, and finally returns a clustered tree
in which all genes with the same similarity value are located
at the same tree height. The system uses measures such as
the Resnik [7], Jiang [8] and Lin [9] ones to compute the
similarity score between each pair of input genes; then it
computes the weighted average of these scores.

The ontology structures of annotations may vary be-
tween ontology versions and many modifications may occur
from one version to another. This is different from and
more robust than both FastSemSim and G-SESAME. For the
analysis of ontological annotations, we decided to use an
information retrieval technique, which is independent from
the data ontological structure. We chose Latent Semantic
Indexing (LSI) [14], an algorithm able to take advantage of
the relationships between GO terms and the genes anno-
tated to them. LSI belongs to the category of the vector-based
approaches, which work on a n-dimensional vector space
where every considered entity identifies a dimension. We
leveraged it for the computation of gene semantic similari-
ties within two novel software components, named SimilBio
and SemSim; the latter one, is a new Web service, here
introduced for the first time, which we recently added to
the online Bio Search Computing platform (Bio-SeCo) [15].

In contrast to FastSemSim, our semantic similarity func-
tionalities are publicly available on the Internet, both
through a programmatic and a friendly Web user interface,
without the need of installing any additional software. Also
G-SESAME is an online tool, but, as FastSemSim, it requires
the user to input a specific list of genes to be compared
other. Accordingly, the user has to know all the genes
(and their IDs) for which he/she wants to compute the
functional semantic similarity a priori. Conversely, both our
online tools let the user input a single gene, compute the
semantic similarity score between it and each available gene
of the same organism and then return the list of all genes
found functionally similar to the input gene, sorted by their
similarity score to the input gene.

Thanks to its SemSim programmatic interface, another

TABLE 1

Comparison of the main features of the evaluated tools. The “Web”

column states if the tool is available online; “One vs. all” states if the
tool allows comparing a single gene with all the available genes of the
same organism; “One vs. some” states if the tool allows comparing a
single gene with some other input genes; “Corpus indep.” states if the
tool uses a semantic measure that is independent from the used data
corpus and its ontology structure; “Rank. outp.” states if the output list

of genes that the tool provides is ranked according to their similarity
score; “Poss. exp.” states if the tool offers the possibility of expanding
its output results by using them as input to other Web services or tools.

Tool Web | One | Onevs. | Corpus | Rank. | Poss.
vs. all some indep. | outp. | exp.
SemSim Vv VA Vi V4 V4
FastSemSim Vv
G-SESAME Vv Vv v

significant advantage of our software is the possibility to be
easily composed with other Web services, in order to expand
and enhance its results, as we did within the Bio-SeCo
platform. In fact, results from any Web service registered
within Bio-SeCo that is able to output gene IDs can be used
as inputs to SemSim; similarly, SemSim outputs can be used
as input data to other Bio-SeCo registered Web services that
require gene IDs as input. Expansion of search results is
one of the core features of Search Computing [16]; through
these expansions, it supports users in finding answers to
complex multi-topic biomedical queries by using a single
online platform and leveraging a collection of available Web
services. Furthermore, another important aspect of Search
Computing is its ability to compose partially-ranked results
and provide global-ranked expanded results [16]. We took
advantage of this feature, since SemSim provides intrinsi-
cally ordered results, i.e. genes (by their similarity score).

In Table |1} we report the main differences between Sem-
Sim, FastSemSim and G-SESAME.

3 BioAnnotationPredictor SOFTWARE

BioAnnotationPredictor is a stand-alone software component
that is able to efficiently run the SVD and SIM algorithms
described in [5] in order to predict gene or protein functional
annotations. It consists of two main modules: a C++ and a
Java module, which interact through the Java Native Inter-
face (JNI) programming framework. The C++ module is the
algorithmic core of our software, which takes advantage of
multiplatform and multithreading optimized mathematical
libraries (i.e. AMD Core Math Library (ACML) [17] and
SvdLibC [18]). The multithreading native part is devel-
oped using OpenMP (Open Multi-Processing) [19] compiler
directives, which are leveraged by the algorithmic core
independently from the operating system. The Java mod-
ule manages the user interface, production of ontological
graphs (using the Graphviz package [20]) and external data
connections to the Genomic and Proteomic Data Warehouse
(GPDW) [21]], [22], [23], from which the available biomolec-
ular annotations to be evaluated are extracted.

Besides producing ranked predicted annotations, the
BioAnnotationPredictor also runs a pre-processing phase that
generates serialized files of the gene matrix (Uj, in both the
SVD and SIM methods), the singular value matrix () and
the term matrix (V;]'), respectively. The gene matrix file is
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then used by the SimilBio and SemSim software components
to compute gene semantic similarities.

4 SimilBio WEB APPLICATION

SimilBio is a novel Web application developed using Java
and Java Server Pages (JSP). It computes the semantic sim-
ilarity between the genes of an organism, based upon their
Gene Ontology annotations, and provides answers to user
questions such as: “Which are the human genes having semantic
similarity level greater than 90% to the CHST14 human gene?”
SimilBio accomplishes this by running the LSI algorithm on
the U}, gene matrix file generated by the BioAnnotationPre-
dictor pre-processing phase, and providing the similar gene
list through a Web interface for user browsing. It can also
provide the list of Gene Ontology annotations predicted by
the BioAnnotationPredictor for a gene identified by a user
given Entrez Gene ID or gene symbol, together with the
gene’s additional details and GO annotations extracted from
the GPDW. Additionally, it offers the same functionalities
for proteins.

5 SemSim WEB SERVICE

SemSim is a new Representational State Transfer (REST)
[24] Web service that we developed in JSP to provide
programmatic access to the SimilBio functionalities. We reg-
istered and leveraged it within the Bio Search Computing
system (Bio-SeCo): http:/ /www.bioinformatics.deib.polimi.
it/bio-seco/seco/| [15], which uses the Search Computing
technology [16] to build answers to complex biomedical
search queries. It does so by interacting with a collection
of cooperating search services and using the ranking and
joining of results as the dominant factors for service com-
position [25]. Within Bio-SeCo, the SemSim Web service can
be queried individually, or together with the other Web
services registered in Bio-SeCo, to answer complex multi-
topic biomedical search questions such as: “Which are the top
ranked coexpressed human genes that are most significantly down
regulated in tumor among the genes most functionally similar (i.e.
with similarity greater than 95%) to the "carbonic anhydrase IV’
(CA4) gene and annotated to a known pathway?”

5.1 Usage example

To take advantage of SemSim, a user has to access the
Bio-SeCo website (http://www.bioinformatics.deib.polimi.
it/bio-seco/seco/), start a new query session and then click
on Select Source; this shows the list of topics addressed by the
Web services registered within Bio-SeCo (Figure [I), which
can be used to compose a search query. To use SemSim,
the user has to select the second item of the list: “"Func-
tional Similarity Search: Find genes with functional semantic
similarity”. Afterwards, the system asks the user to input
the query parameters: the ID value (Gene ID) and source
(Gene ID Name) of the input gene, the organism (Taxonomy
ID) to which it belongs and the lower bound 7 (Similarity
Threshold) of the similarity level between the input gene
and the compared genes of the same organism that the
system should return. As a default example, the system
proposes the Entrez Gene ID 368256 (which identifies the
paqr7b [progestin and adipoQ receptor family member VII, b]

gene) of the Danio rerio (zebrafish) organism and the 7 = 0.7
similarity threshold. By submitting these example values,
the system returns the ordered list of known zebrafish genes
most similar to the input gene, with a similarity score of
at least 0.7, sorted by similarity level. This gene semantic
similarity is computed through the LSI algorithm, which we
describe next.

5.2 Latent Semantic Indexing (LSI)

Latent Semantic Indexing [14] is a Natural Language Pro-
cessing (NLP) technique first proposed to discover and
analyze relationships between sets of words and docu-
ments. Beyond NLP and document categorization, it has
been widely used in many informatics-related fields such
as search engine algorithms [26]], e-commerce analysis tech-
niques [27], image analyses [28] and programming code
analyses [29]. In the bioinformatics context, LSI has been
successfully used by Homayouni and colleagues in [30],
where they applied it to the categorization of words in
MEDLINE [31] paper abstracts. Its main principle is that
words used in the same documents tend to have similar
meaning. The LSI approach tries to find out the latent
semantic structure given by the presence of particular words
in certain documents, in order to categorize them and make
them available for search queries.

In contrast to corpus-related measures (such as the
Resnik [7], Jiang [8] and Lin [9] ones, all used by FastSemSim
and G-SESAME), LSI is independent from the data used,
and is not related to their ontological structure. This is why
we decided to apply the LSI method to our genomic and
proteomic scenario, where the structure of the ontologies
used for biomolecular annotations varies often. Instead of
words, we used genes, and instead of documents, we used
biomolecular function features, described through the GO
terms to which the genes are annotated.

After retrieving from GPDW [22] all the available genes
of an organism and their Gene Ontology annotations, we
first pre-process them through the BioAnnotationPredictor
software component (see Section [B). It builds a matrix
A, whose rows correspond to all genes of an organism

Source list

Biological Function Feature: Find biological function features
Functional Similarity Search: Find gen
Gene: Find genes

Gene Expression Search: Find gene
Genetic Disorder:

¢ similarity

sed in biological conditions or tissues

Protein: Find prote
Sequence Alignment Search: Find bio-sequences similar to a query sequence

®
@
@
L
®
®
®
®

Next

Fig. 1. Screenshot of the initial menu of the Bio-SeCo user interface. The
list of topics covered by the services registered in Bio-SeCo for search
computing is shown.
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(identified by their gene ID value and source) and columns
correspond to all their biomolecular function features (i.e.
all the Gene Ontology feature terms associated with those
genes). The A; ; element of the matrix is set to 1 if the gene
1 is annotated to the feature j, 0 otherwise. The resulting
matrix is very sparse and large; so we use the truncated
Singular Value Decomposition (tSVD) [2] to factor it and
model the latent information as follow:

A~ A =U, 2 ViE 1)

where k is the truncation level of the SVD of A (Figure
). Finally, the BioAnnotationPredictor generates and stores
a serialized file for each of the Uy, ¥ and VkT matrices.

Ay v

Uk Y

Y

Fig. 2. Truncated Singular Value Decomposition (tSVD) matrices.

The orthogonal truncated matrices obtained by tSVD get
precise names that are suggestive of their meaning;:

e Uy gene-vector matrix
e Y singular value matrix
o VI feature-vector matrix

These matrices can be used to measure the distances be-
tween objects (genes or features) in the k-dimensional space.
For example, it is possible to compute the distance between
two gene vectors to evaluate their similarity. This same com-
putation can be done also for biological function features.
In our implementation of the LSI, we chose to compute
the Cosine similarity as the measure of semantic similarity
between genes. The metric generally used for this vector
similarity is:
V1 * U2
[oall - {[o2l

where v; and vy are the two vectors containing the gene
feature sets, taken from the Uy, gene vector matrix.

After receiving the user input gene ID (Gene ID), source
(Gene ID Name) and organism (Taxonomy ID), and the thresh-
old 7 (Similarity Threshold), the implemented algorithm pro-
ceeds as follows:

@)

COSinesimilam’ty (’U1 ) U2)

1) retrieve the U}, serialized matrix that corresponds to
the input organism

2) extract the g single row of the Uy matrix that corre-
sponds to the input gene

3) for each u; row of the U matrix different from g,
compute: score; = Cosinesimilarity (9, Ui)

4) sort the score vector in decreasing order

5) return all the u; gene-vectors that have score >

The output of the algorithm is a table in which each row
corresponds to a gene and also each column corresponds to
a gene, with rows ranked by their similarity score.

Input parameters

SemSim Functional Semantic Similari rch by Gene ID
Gene ID
762

Gene ID Mame
entrez_gene

Taxonomy ID
9 Homo sapiens (Human)

Similarity Threshold

Fig. 3. User interface to set the input parameter values of the SemSim -
Functional Semantic Similarity Search by Gene ID service registered in
Bio-SeCo. Input values to search for human genes similar to the gene
with Entrez Gene ID 762 (i.e. the CA4 [carbonic anhydrase V] gene)
are shown as an example.

5.3 Case studies

Here we report two example case studies that take advan-
tage of the use of SemSim within the Bio-SeCo platform.

As first use case example, let us suppose that a scientist
needs to explore available gene data to find the metabolic
pathways (if they exist) in which the human genes most
functionally similar (i.e. with similarity score > 0.8) to
a given human gene X are involved. Using the resources
registered in Bio-SeCo (Figure [I), the scientist can, for ex-
ample, first run a functional similarity search by using
our SemSim service as described in Section he/she
can do so to look for genes similar to an input gene X
of the same organism (e.g. the gene with Entrez Gene ID
762 (http:/ /www.ncbinlm.nih.gov/gene/?term=762[uid]),
i.e. the human CA4 [carbonic anhydrase IV] gene). Figure
shows the Bio-SeCo interface where the user can specify and
submit the input parameter values for such a search.

Obtained search results, including the details of the
genes found to be most similar to the input gene, can be
visualized in Atom or Table view. Then, the scientist can
select all the most similar genes found, or only some of
them (e.g. the ten most similar genes), and, automatically
retrieve all the metabolic pathways associated with each of
them; he/she can do so by using the "GPDW - Pathway:
Gene associated pathways by Gene ID” query service, which is
registered in Bio-SeCo as connected to the SemSim service.
The top retrieved results are shown within the Table view in
Figure [ note that the left part of this table view contains
the genes returned by the SemSim service, which were used
as input for the ”Pathways by Gene” query. Taking further
advantage of the Search Computing principles implemented
in Bio-SeCo, the user can further expand the obtained results,
for example by checking if some of the genes found are
known to be associated with a genetic disorder.
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Goal Example Video Old version Visualization

' Bio Search Compuﬂnﬂ

Session 0 (@4 @

Access number: 9,723

GPDW Pathway by Gene ID (weight: 0.50)

Rafiwsavit s Pathway Name k3
[ 0.99828 0.49828 2328 enfrez_gene  FMO3 ?;;;sns 0.99657  0.50000 P0001 kegg Metabaolism
Homo Xenabiotics
[ 099828 049828 2328 entrez_gene FMO3 . 099657 050000 P0012 kegg Biodegradation and
sapiens Metabolism
Homao Drug metabolism -
[ 0.99828 0.49828 2328 enfrez_gene  FMO3 sapiens 0.99657  0.50000 00982 kegg cytochrome P450
71 0.99828 0.49828 2328 entrez_gene FMO3 SH;FTS”S 0.99657  0.50000 REACT_111217 reactome Metabolism
[ 0.99828 0.49828 2330 enfrez_gene  FMO5 ?;;I:Ti]gns 0.99657  0.50000 P0001 kegg Metabaolism
H Xenabiotics
[ 099828 0.49828 2330 entrez_gene FMO5 saori”;ns 099657  0.50000 P0012 kegg Biodegradation and
P Metabolism
Homa Drug metabolism -
] 0.99828 049828 2330 entrez_gene  FMO5 sapiens 099657  0.50000 00982 kegg cytochrome P450

Fig. 4. Bio-SeCo result Table View. The first seven results of the "Pathways by Gene” query expansion for the genes most similar to the CA4
[carbonic anhydrase IV] (Entrez Gene ID: 762) gene are shown.

Goal Example Video Old version At Source
o Select

Visualization

" Bio Search Compuﬁrla_:) Table

XYplot

Menu Menu

SemSim Functional Semantic Similarity Search by Gene ID (weight: 0.50) GPDW Protein by Gene ID (weight: 0.50)

H GenelD % GenelDName ¢ Gene Symbol ¢ Similarity < Protein ID % Protein ID Name <
30369 entrez_gene fzd7a 1.0 [T 32996705 entrez_protein
30393 entrez_gene cryaba 1.0 [ 75570319 entrez_protein
30712 entrez_gene snap25a 1.0 [T 82136197 entrez_protein
266751 entrez_gene adrazb 1.0 [ 82173914 entrez_protein
266752 entrez_gene adraZc 1.0 [Tl 82237227 entrez_protein
321324 entrez_gene slc39a1 1.0 1 82240318 entrez_protein
368254 entrez_gene paqr8 1.0 1 ENSDARP00000106912 ensembl
373879 entrez_gene p2ri5 1.0 [T NP_571214 refseq
387298 entrez_gene p2r<7 1.0 1 QBNvV44 uniprot
555778 entrez_gene slc2at 1.0 [T Q7SZRT uniprot
557315 entrez_gene kirrel3 1.0 [ Q90448 uniprot
560426 entrez_gene celsr2 1.0 [T Q90ZT3 uniprot
565271 entrez_gene gper 1.0 [T QossI2 uniprot

Fig. 5. Bio-SeCo result Atom View. The first thirteen results of the ”Proteins by Gene: Get gene encoded proteins” service for the genes most similar
to the Danio rerio (zebrafish) gene paqr7b [progestin and adipoQ receptor family member VI, b] (http://www.ncbi.nIm.nih.gov/gene/?term=368256)
are shown.
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A second use case of interest concerns the answering the
following multi-topic complex query: "Which are the proteins
with the highest sequence similarity to the protein encoded by
the genes in a given organism X that have the highest functional
semantic similarity to a given gene Y?”

Once again, the user may start his/her query by using
our novel ”"SemSim - Gene Functional Semantic Similarity
Search by Gene ID” service registered in Bio-SeCo (Figure
and Figure [3) to get the genes of the given organism X
that are most functionally similar to a given input gene Y.
He/she may then select, for example, the top twenty rows of
the output table, i.e. the twenty most similar genes found,
and use them as input to the ”Proteins by Gene: Get gene
encoded proteins” service registered in Bio-SeCo. The user can
then explore the obtained search results visualized in Atom
view (e.g. see Figure [5), where he/she finds the details of
the genes found most similar to gene X in the left table of
the Atom view and the details of the proteins encoded by
such genes in the Atom view right table. To complete the
answer to the original multi-topic complex query, the user
has to search for the protein that has the highest sequence
similarity to the gene-encoded proteins found. Towards this
aim, the user can take advantage of one of the ”Sequence
Alignment Search” services in Bio-SeCo to further expand
the obtained results. By selecting the "NCBI Blast: Protein
sequence alignment search by Protein ID” service and inserting
all NCBI BLAST [32] parameters (as shown in Figure 3 of
[15]), or using their default values, the user can run a final
query that leads to a result table containing all proteins that
satisfy the original query. Accordingly, the original multi-
topic complex query is answered; then, the user may decide
to further expand the final results by using another service
in Bio-SeCo, or start a new query.

The possibility to easily construct in an explorative way
complex biomedical queries, such as those of these case
studies, and run them efficiently across multiple distributed
sources permits the global evaluation of available bio-data;
this can reveal unexpected results and lead to new discov-
eries of biomedical knowledge.

6 CONCLUSIONS

By using machine learning computational techniques, our
software suite can predict reliable gene or protein functional
annotations, as previously demonstrated. The new devel-
oped SimilBio Web application and SemSim Web service
provide easy and fast public access to the predicted annota-
tions, and allow them to be leveraged to compute semantic
similarities between genes or proteins. In particular, the use
of SemSim within our Bio-SeCo system allows for the support
of the answering of complex biomedical questions and of
biomedical knowledge discovery. In the future, we plan to
integrate new computational biology Web services into Bio-
SeCo, in order to provide new useful tools to scientists and
researchers to address relevant biological problems.
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