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1. Introduction and motivation

Torque allocation for over-actuated electric vehicles (EVs) is a very interesting and challeng-
ing research topic in automotive systems. Such modern vehicle architectures, in fact, offer a
plurality of actuators that allow the designer to actively shape and adapt the vehicle dynamic
response. This can be performed by properly setting up hierarchical control problems that
regulate the vehicle motion by allocating the forces/torques at the wheels and solving con-
strained control allocation problems tailored to jointly optimise different cost functions that
can be either safety, or energy, or performance-oriented (or, most interestingly, combina-
tions of all these aspects).[1] Usually, the high-level motion objectives are expressed in
terms of imposing a desired yaw moment to the vehicle, which must then be transformed
into wheel torque reference signals. When the actuators are installed in the same axle, e.g.
with torque vectoring devices or with two in-wheel motors (IWMs), the allocation is easy
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to perform because there is a one-to-one mapping between the yaw moment and the torque
difference.[2–4] On the other hand, if four IWMs (4IWMs) are present there is redundancy
in the moment generation, which can be explored to minimise the energy consumption [1,5]
or other performance metrics. As a matter of fact, 4IWMs and four-wheel steer (4WS) EV
platforms represent the key enabling technology for the optimal management of the vehicle
motion and of its energy flows, as it allows a significant freedom in the generation of the
actual control commands, that can be selected in view of competing requirements. To start
with, note that this redundant actuation structure allows us to actively regulate the longitudi-
nal and lateral forces that each wheel produces.[6] This property paves the way for using the
centre of gravity (CoG) forces and moments as the pseudo-control variables, which in turn
introduces major simplifications to the motion controller’s design.[6,7] In addition, the high
degree of manoeuvrability introduced by the 4WS also facilitates the generation of feasible
paths for the vehicle, e.g. with this structure it is possible to impose zero side-slip motions or
perform parallel manoeuvres.[8]

Given the high degree of actuation redundancy present in the considered class of vehicles,
there are many allocation solutions that are able to fulfil the force and yaw-moment demands
determined by the high-level motion control system. In this work, the actuation redundancy
is explored by a control allocation technique that intends to enhance safety by minimising the
tyre friction use, while considering the actuation limits. To solve this problem, two techniques
are investigated. The first extends the cascading generalised inverse (CGI) technique,[9,10] a
well-known technique borrowed from aeronautical applications, to the force allocation prob-
lem in a vehicular context. More specifically, it is shown that, by fixing a priori the direction
of the force at each tyre (obtained from the pseudo-inverse solution of the unconstrained
optimisation problem), the allocation problem can be transformed into a practical quadratic-
programming (QP) problem. Simulation results demonstrate that, as long as the requested
forces are feasible, this approach is capable of generating accurate solutions in less than
400 µs (average values). However, for unfeasible force requests, the performance of this allo-
cation strategy significantly degrades. This issue led us to develop a second approach, based
on the linearisation of the tyre–road friction constraints. Albeit requiring a computational
time that is 2–3 times higher than the previous strategy, the linearisation-based approach
induces reduced allocation errors with respect to the extended CGI technique, particularly
for unfeasible force requests.

The contributions of this work are thus twofold:

• the high-level motion controller contains feedback (FB) mechanisms, based on generalised
speed loops, which are derived within a sliding mode framework and are endowed with
conditional integrators.[11,12] Besides its implementation and tuning simplicity, robust-
ness to disturbances and built-in anti-wind-up mechanisms, the conditional integrators
also offer a chattering-alleviated operation, thus mitigating one of the main issues in tradi-
tional sliding control laws. Further, the stability properties of the closed loop are formally
assessed.

• at the lower control layer, the motion controller needs to determine the wheel torques
and steer angles that are needed to apply the (CoG) forces and moments requested by
the motion controller to the vehicle. To do this, the two aforementioned force allocation
strategies are proposed and compared.

The effectiveness of the proposed controller is demonstrated with simulation tests, carried
out with the help of the full-vehicle CarSim simulator.

With respect to the conference paper,[13] this work presents extensions in several direc-
tions: first of all a closed-loop formulation of the motion control problem in terms of a
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Figure 1. Two-track vehicle model.

speed reference tracking is provided, and its stability properties analysed. Then, a new
safety-oriented objective is pursued (rather than the performance-only approach based on
minimum-time manoeuvre followed in [13]), and the related force allocation step is detailed
in two different algorithms that explore the computational complexity and the allocation error
issues. Further, a full-vehicle simulation environment is considered to assess the performance
of the approach in a more realistic setting.

The structure of the paper is as follows. Section 2 introduces the vehicle dynamics of inter-
est, while Section 3 introduces the proposed controller architecture and defines the control
problem. Section 4 presents the motion controller, formally analysing the closed-loop stabil-
ity. Further, Section 5 addresses the force allocation problem, illustrating the two proposed
approaches. Finally, Section 6 illustrates the results of the tests performed with the CarSim
simulator.

2. Vehicle model

The vehicle under study is composed of four independent wheel drive commanded by the
four IWMs and four independent wheel steering. To make the mathematical model tractable,
the roll and pitch dynamics of the EV will be neglected, which is a typical assumption in the
development of control-oriented models for the vehicle dynamics.[2,7,14]

In what follows, front and rear tyres will be indicated with the subscript 1 and 2, left and
right with l and r. They will be compactly grouped in the set T = {1l, 1r, 2l, 2r}.

2.1. Preliminaries

Consider the vehicle represented in Figure 1 of mass m and yaw inertia Iz. The velocity of the
CoG in the xy frame (integral to the car) is given by

v = [vx vy ψ̇]T, (1)



where vx is the vehicle longitudinal speed, vy the lateral speed and ψ̇ the yaw rate. The
generalised forces/moments (F) applied to the CoG are represented as

F = [Fx Fy Mz]
T, (2)

where Fx and Fy are the longitudinal and lateral forces applied to the CoG, and Mz is the yaw
moment. This global force is the aggregated result of the individual friction forces generated
by each tyre and is given by

F = BFxy, B =
⎡
⎣Bx

By

Bψ

⎤
⎦ =

⎡
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2
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⎤
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where l1 and l2 are the distances between front and rear axle and the CoG, c the track width
and Fxy are the tyre friction in the xy frame (Figure 1), namely

Fxy = [Fx1l Fy1l Fx1r Fy1r Fx2l Fy2l Fx2r Fy2r]
T.

Finally, the frictional forces generated by each tyre are usually modelled in the local coordi-
nates LC, fixed with the wheel (see again Figure 1). The variables in the LC coordinates are
related to those in the xy frame as[

Fxi

Fyi

]
=

[
cos(δi) − sin(δi)

sin(δi) cos(δi)

]
︸ ︷︷ ︸

W(δi)

[
FLi

FCi

]
, i ∈ T, (3)

where FLi is the force generated along the tyre axis, FCi the cornering force (orthogonal to
the tyre axis) and δi is the steering angle of the ith wheel. Note that the inverse W−1(δi) is
well defined for all values of δi.

2.2. Equation of motion

By direct application of Newton’s law, the dynamic evolution of the vehicle velocity v is

M

⎡
⎣−vyψ̇

vxψ̇

0

⎤
⎦

︸ ︷︷ ︸
g(v)

+Mv̇ = F − R(v)+ D, (4)

where M = diag([m, m, Iz]), D ∈ R
3 a generalised bounded force due to the effect of

non-modelled dynamics and disturbances and R(v) ∈ R
3 represents the resistance forces

opposing the vehicle motion (see Appendix 1) for its description.

2.3. Friction forces

As already mentioned, the generalised force/moments F are a direct consequence of the
individual friction forces, FLi, FCi, generated by each tyre. To model these forces, a simplified
version of the well-known Pacejka magic formula will be employed.[15] The main inputs for
this model are (i) the longitudinal tyre slip κi, which is the normalised difference between the
wheel rotational speed (ωi) and the wheel linear speed (vLi); and (ii) the tyre side-slip angle



αi, which is the angle between the wheel axis (δi) and its velocity vector. Formally, these
variables are defined as

κi = ωiri − vLi

vLi
, tanαi = −vCi

vLi
, i ∈ T, (5)

where ri is the effective radius of the wheel and vLi, vCi are the tyre longitudinal and cornering
speeds. Such speeds can be also written as [16]

[
vLi

vCi

]
= W−1(δi)

[
1 0 χLi

0 1 χCi

]
v, i ∈ T, (6)

[χL1l χL1r χL2l χL2r] =
[
− c

2

c

2
− c

2

c

2

]
,

[χC1l χC1r χC2l χC2r] = [l1 l1 − l2 − l2].

To express the combined slip conditions, needed to model situations where traction and
steering are simultaneously applied, the so-called theoretical slips [15] are considered:

σLi = κi

1 + κi
, σCi = tanαi

1 + κi
, σi =

√
σ Li

2 + σCi
2, i ∈ T.

They are responsible for the longitudinal (FLi) and cornering forces (FCi) of the tyre, namely

FLi = σLi

σi
Fi(σi, Fzi), FCi = σCi

σi
Fi(σi, Fzi)

Fi(σi, Fzi) = μmaxFzi sin (Catan(Bσi)) , i ∈ T,
(7)

where C and B are parameters of the friction model, μmax is the tyre–road friction peak and
Fzi the vertical force.

Remark 1 The longitudinal (FLi) and cornering (FCi) forces of the tyre must fulfil

F2
Li + F2

Ci = F2
i ≤ (μmaxFzi)

2, i ∈ T. (8)

This is known in the literature as the friction circle constraint. For simplicity, the above
representation of the tyre–road friction forces assumes an isotropic distribution, which leads
to the friction circle constraint.

Remark 2 The friction circle constraint also holds for the forces defined in the xy coordi-
nates, which are confined to the following set:

F2
xi + F2

yi =
∥∥∥∥W(δi)

[
FLi

FCi

]∥∥∥∥2

2

= F2
i ≤ (μmaxFzi)

2, i ∈ T.

This property results from the fact that the change of coordinates W(δi) does not affect the
magnitude of the tyre force.



2.4. Vertical forces

The tyre vertical forces Fzi are affected by the load transfer between front–rear axle and
left–right wheels, which the vehicle experiences when subject to longitudinal and lateral
accelerations. To model these factors, a quasi-static mapping is used,[16]

Fz = F0
z + 	xax + 	yay,

Fz = [Fz1l Fz1r Fz2l Fz2r]
T, F0

z = mg

2(l1 + l2)
[l2 l2 l1 l1]T,

	x = mh

2(l1 + l2)
[−1 − 1 1 1]T, 	y = mh

c(l1 + l2)
[−l2kf l2kf − l1kr l1kr]

T,

(9)

where F0
z is the static force distribution, h is the height of the CoG, kf and kr represent the

front and rear coefficients associated with the lateral load transfer approximated based on roll
stiffness distribution,[17] g is the gravitational acceleration and ax and ay the longitudinal and
lateral accelerations, respectively

2.5. Wheel dynamics and actuator limits

The rotational dynamics of each wheel in the vehicle is given by

Jω̇i = Ti − riFLi, i ∈ T,

where J is the wheel inertia and Ti the wheel torque. We assume that the wheel torque is
generated by a combination of IWMs (Tm,i) and brake-by-wire actuators (Tb,i), i.e. Ti =
Tm,i + Tb,i. The main limiting factors in these actuators are the acceleration power and
acceleration torque limits associated with the IWMs, which yield

T ≤ Ti ≤ T̄ , Tiωi ≤ P̄, i ∈ T, (10)

where T̄ ∈ R+ is the maximum acceleration torque that the motor can develop, T ∈ R− the
maximum braking torque of the brake-by-wire system and P̄ the maximum acceleration
power, which are equal for all wheels. The braking power limits are not explicitly consid-
ered here, since, due to safety issues, modern braking systems are generally able to overcome
the friction limits. In other words, the constraints introduced by the friction circle (8) will be
the dominant factor in the generation of the braking torque (and not the power limits of the
braking system).

As for the steering, it is assumed that each wheel has independent steer capabilities,
constrained to the following sets:

− δ̄ ≤ δi ≤ δ̄, i ∈ T, (11)

where δ̄ is the maximum steering range. The dynamics of all the actuators are neglected,
since, in practice, in the considered vehicle platform their bandwidth is significantly higher
than that of the vehicle dynamics of interest.



2.6. Compact representation

In summary, the vehicle model can be compactly represented as

Mv̇ = −Mg(v)+ F − R(v)+ D, (12a)

F = BFxy, (12b)

Fxy,i = W(δi)[FLi FCi]
T, i ∈ T, (12c)[

FLi

FCi

]
= F̃i(v,ωi, δi, Fzi, θT ), i ∈ T, (12d)

Fz = F0
z + 	x

m
eT

1 (F − R)+ 	y

m
eT

2 (F − R), (12e)

Jω̇i = Ti − riFLi, i ∈ T, (12f)

T ≤ Ti ≤ T̄ , Tiωi ≤ P̄, −δ̄ ≤ δi ≤ δ̄, i ∈ T, (12g)

where F̃i ∈ R
2 is the friction force, which groups Equations (5)–(7), θT represents the param-

eters of the friction model, Fxy,i refers to the x and y force components of the tyre i ∈ T and
eT

1 = [1 0 0]T, eT
2 = [0 1 0]T.

From a control perspective, Ti and δi are the model inputs, and v the system states. Note
that the motion controller will be designed under the assumption that the wheel torques Ti can
be individually regulated. Given that Ti is a result of both the IWM (Tm,i) and the brake-by-
wire system (Tb,i), it will be necessary to perform torque allocation among these actuators,
particularly for Ti < 0. In this work, we will assume that the torque allocation is performed
by the hybrid ABS algorithm presented by de Castro et al.[18]

3. Controller specification and architecture

The main goal of the motion controller is to determine the torque and steer values for each
wheel, Ti, δi, so that the vehicle follows a given (generalised) speed reference, while fulfilling
all existing constraints. As already mentioned, this work considers a by-wire powertrain con-
figuration, where the torque and steering angles applied to the wheels are imposed through
electric and electro-mechanical actuators. Since this configuration does not have a mechan-
ical connection between the driver and the actuators, the use of advanced human–machine
interfaces (HMIs) is necessary. The HMI block is normally responsible for (i) translating
the driver inputs (e.g. displacements of the throttle pedal, braking pedal, steering and other
inputs) into appropriate motion demands for the car, (ii) providing haptic FB to the driver
and (iii) incorporating desired reference models for the vehicle transient behaviour. In what
follows, we will assume that the HMI translates the driver requests into a (generalised) speed
reference of the form

vr = [vx,r vy,r ψ̇r.]
T (13)

It will be further assumed that this (generalised) speed reference is feasible and its first-order
time derivative v̇r is known.

In the light of the nonlinearities that affect the vehicle model, the design of a control law
for Ti, δi that will make v follow vr is not obvious nor trivial, mainly due to the friction
force generation mechanisms, specified by Equations (12b)–(12d). To cope with this issue,
a model inversion approach for the friction forces will be adopted. The idea is to design
the controller under the assumption that the CoG forces and moments F can be individually
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Figure 2. Block diagram of the proposed control algorithm.

regulated. Inspecting Equation (12), one can immediately conclude that using F as the virtual
control input (instead of the true inputs Ti and δi) enables us to decouple the generation of
the friction forces from the vehicle dynamics (v), bringing undeniable advantages for the
design of the motion controller. Accordingly, the controller proposed in this work will track
the vehicle speed v using F as the virtual control input (see block diagram in Figure 2). The
generation of the true inputs Ti and δi will be then performed by the force allocation block.
Another important aspect that deserves discussion is the availability of the FB signals. In this
work, it is assumed that the state v and the wheels rotational speed ωi are available for FB.
While some of these signals are easily measured, such as ψ̇ and ωi, others require dedicated
sensors and/or observers. Even if it is still not common to have all these signals available
in everyday cars, the trend in the automotive industry is towards the increased availability
of these signals,[7,19] which is made easier in the advanced vehicle platforms as the one
considered herein.

4. Motion controller

The main goal for the motion controller design (Figure 2) can be formulated as follows:
devise a law for F that will make the vehicle velocity v track the speed profile vr, in spite of
the disturbance D. In the ideal case (D ≡ 0), the control task can be accomplished by simply
using the feedforward (FF) term Fr

Fr = M(g(vr)+ v̇r)+ R(vr). (14)

Since, in practice, there are both unmodelled dynamics and disturbances, these cause non-
zero tracking errors ev = v − vr, with the following dynamics:

Mėv = F − Fr + M(g(vr)− g(v))+ R(vr)− R(v)+ D. (15)

Based on the input–output linearisation technique,[20] the most relevant nonlinearities in the
above model can be cancelled by selecting the CoG force as

F = M�a︸ ︷︷ ︸
�F

+Fr − M(g(vr)− g(v))− R(vr)+ R(v), (16)

where �a ∈ R
3 represents acceleration increments (a new virtual control variable) that will

be directly manipulated by the controller. This makes the error model be

ėv = �a + Da, (17)

where Da = M−1D ∈ R
3 are the equivalent accelerations due to D. Note that, albeit Equation

(16) assumes exact knowledge of some model parameters (e.g. M), in practice the influence



of these parametric errors can be effortlessly embedded in Da. To facilitate the design of the
controller, it is convenient to represent the above multiple input, multiple output system as a
set of three single input, single output ones:

ėvj = �aj + Daj, (18)

where j ∈ J = {x, y,ψ} represents the subscript associated with each degree of freedom in
the vehicle local coordinate system. The main challenge in the design of the speed tracking
controller lies in the effective attenuation of Daj. To cope with this difficulty, we explore
a sliding-mode formulation, endowed with conditional integrators.[11,12] The proposed
control law is given by

�aj = −kajsat

(
σj

εj

)
, (19a)

σj = evj + kηjηj, (19b)

η̇j = −kηjηj + εjsat

(
σj

εj

)
, j ∈ J, (19c)

where kaj, kηj, εj are the controller parameters, ηj the gain of the (conditional) integrator, σj

the sliding variable and sat(w) = sgn(w)min(1, |w|) the saturation function. The properties
of the resulting closed-loop system can be stated as follows.

Proposition 4.1 Consider system (18), controlled by Equation (19). It holds that

(1) if |ηj(0)| ≤ εj/kηj, then |ηj(t)| ≤ εj/kηj, for t ≥ 0;
(2) for an arbitrary bounded disturbance Daj ≤ D̄aj, and assuming

kaj > D̄aj + 2kηjεj, j ∈ J, (20)

then system state will reach in finite time the set

�j =
{
|evj| ≤ 2εj, |σj| ≤ εj

kηj

}
⊂ R

2, j ∈ J; (21)

(3) moreover, if (i) the disturbance is Lipschitz in the domain �j, i.e.

|Daj(ea)− Daj(eb)| ≤ Lj|ea − eb| ∀ea, eb ∈ {|x| ≤ 2εj},

where Lj is the Lipschitz constant, j ∈ J; and (ii) the controller parameters fulfil

kηj > 0, 0 < εj <
4kηjkaj

4kηjLj + (Ljkηj + 1)2
; (22)

then, the tracking error, besides reaching �j, will asymptotically converge to zero, i.e.
evj → 0.

Proof The proof is omitted for space limitations and can be found in [21]. �

The above results show that, for (general) bounded disturbances, the absolute value of the
tracking error evj will be ultimately bounded by 2εj. Asymptotic convergence to zero can
be ensured for the (particular) case where Daj is locally Lipschitz. For controller tuning, let



us first consider the operation in the linear range. In particular, for |σj| ≤ εj, the saturation
functions in Equation (19) become linear, resulting in the following control law:

�aj = −kaj

εj
evj − kaj

εj
kηjηj, (23)

η̇j = evj, |evj + kηjηj| ≤ εj. (24)

Thus, the proposed controller operates as a simple proportional/integral controller when the
sliding variable is small. In light of this interpretation, we can now appreciate the practical
benefits of the first claim in Proposition 4.1: the bound |ηj(t)| ≤ εj/kηj endows the con-
troller with an anti-wind-up mechanism that deals with the saturation of the integral action.
Moreover, when in a linear regime, the closed-loop dynamics can be expressed as[

η̇j

ėvj

]
=

[
0 1

− kaj

εj
kηj − kaj

εj

] [
ηj

evj

]
+

[
0
Daj

]
, (25)

which yields the following second-order characteristic polynomial:

λ2 + kaj

εj︸︷︷︸
2ζjωnj

λ+ kaj

εj
kηj︸ ︷︷ ︸

ω2
nj

= 0, j ∈ J, (26)

where ωnj, ζj are the natural frequency and damping, respectively, of the (undisturbed) closed-
loop dynamics.

5. Force allocation strategies

This section is devoted to the force allocation problem, which constitutes the final step for the
application of the motion control commands to the vehicle. First the ideal allocation problem
is discussed, and then its practical implementation is addressed, with two different approaches
that are proposed and compared.

5.1. Ideal allocation problem

Once the motion controller outputs the desired value of F∗ = Fr + M�a, it is necessary to
allocate the wheel torques Ti and steer angles δi capable of actually producing F∗. In this
work, the allocation is performed through the force allocation layer depicted in Figure 2.
Given the high level of redundancy in the vehicle, the allocation solution is, in general, not
unique, and this opens the door to pursue secondary goals, such as the minimisation of the
energy consumption of the actuators and/or friction utilisation of tyres. In the literature, this
type of problem is known as control allocation [22,23] and can be formulated as

min
Ti,δi,Fxy,FLi,FCi,Fz,ωi

L(·)+ ‖Qz‖p
p, (27a)

F∗ = BFxy + z, (27b)

Fxy,i = W(δi)[FLi FCi]
T, i ∈ T, (27c)[

FLi

FCi

]
= F̃i(v,ωi, δi, Fzi, θT ), i ∈ T, (27d)



Fz = F0
z +

(	x

m
eT

1 + 	y

m
eT

2

)
BFxy, (27e)

Fz > 0, (27f)

Ti = riFLi, i ∈ T, (27g)

T ≤ Ti ≤ T̄ , Tiωi ≤ P̄, −δ̄ ≤ δi ≤ δ̄, i ∈ T. (27h)

The function L(·) is a performance metric associated with the secondary goals of the allo-
cation (to be defined shortly), z ∈ R

3 is a slack variable that allows tolerating non-feasible
requests for F∗, p ∈ {1, 2} is the type of norm employed and Q = diag([Qx Qy Qz]) ∈ R

3×3

is a diagonal matrix which assigns individual penalisations to the allocation errors. The prob-
lem constraints are related to the friction force mechanism and the limitations of the actuators
introduced in Section 2. It must be pointed out that (i) the vehicle speed v is considered as
known, (ii) the vertical forces Fz are constrained to positive values (in order to avoid wheel
lift) and (iii) steady-state conditions for the wheel rotational dynamics are assumed. This
means that the torque and the longitudinal tyre force are related by the static map (27g), while
the wheel rotational ωi is used as an additional optimisation variable (that affects directly the
wheel longitudinal slip and the friction force).

5.2. Practical allocation approaches

Due to the nonlinearities in Equation (27), obtaining a numerical solution for this problem
is in general difficult, particularly for real-time applications. In the control allocation liter-
ature dedicated to automotive applications, two main approaches are used to overcome this
issue. The first idea is to linearise the friction model around the current operating point. For
instance, by joining all the friction-related constraints of Equation (27), one may find a com-
pact nonlinear map between F∗, the vehicle speed (v) and the control inputs u = [Ti, δi, . . .],
that is, F∗ = f(v, u). Linearising the model around (veq, ueq) gives

F∗ ≈ f(veq, ueq)+ ∂f(v, u)
∂u

∣∣∣∣
veq,ueq

�u. (28)

Thus, the original nonlinear friction is replaced by an affine relation, and the increment �u
can be used as the new control input; the final control value is then obtained as u = ueq +
�u, where ueq is the nominal operation point of the controller (obtained, for example, in
the previous control iteration) and veq is the current vehicle speed. With this approach, the
nonlinear constraints are relaxed to linear relations, which call for simple linear or QP solvers
(assuming that the cost function is linear or quadratic, respectively), as discussed in [7,24,25].

The second possibility for solving Equation (27) builds on the idea of exerting a direct
control over the xy forces of the tyres, i.e. Fxy is considered as a second virtual control.
This approach is very attractive for vehicles with independent wheel steer and independent
wheel drive as those considered herein, since, in principle, each tyre can generate force in an
arbitrary direction. Additionally, the use of Fxy as a virtual control enables us to decompose
the allocation problem in two steps, the first of which determines the xy force distribution
among the tyres in order to fulfil the force/moment requested to the CoG, yielding

min
z,Fxy,Fz

L(·)+ ‖Qz‖p
p, (29a)



F∗ = BFxy + z, (29b)

‖EiFxy‖2 ≤ μmaxFzi, i ∈ T, (29c)

Fz = F0
z +

(	x

m
eT

1 + 	y

m
eT

2

)
BFxy, (29d)

Fz > 0, (29e)

[1 0]EiFxy ≤ min

(
T̄

ri
,

P̄

vx

)
∀i ∈ T. (29f)

For this approximation, the torque and power limits of the motors are approximated using the
considerations discussed in Appendix 3, while the friction limits are treated as described in
[21]. Note that the above constraints are convex: Equation (29c) can be posed as a second-
order cone, while the remaining one is linear. Thus, if the performance metric L(·) is convex,
the resulting optimisation problem is also convex,[26] which brings undeniable theoretical
advantages in comparison to the original formulation (27) (e.g. any local solution is also
global). After solving the above problem, the second step in the allocation process relies on
the inversion of the tyre forces. Namely, using the Fxy obtained from Equation (29) and the
vehicle state v, one must find the torque (Ti) and steer (δi) that yield the desired tyre forces. As
shown in [21], for the slip-based friction model under consideration here, such inversion is
possible and the involved computations are manageable. Different versions of this approach
have been reported in the literature.[6,27–29]

In comparison with the linearisation approach, the main advantage of using Fxy as a sec-
ond virtual control is that of maintaining the nonlinearities in the friction model. On the other
hand, the formulation (29) makes it more difficult to translate the physical actuator limits
(torque and steer) to the xy force components, which generally calls for the approximation
of the actuator constraints (as explained in Appendix 3). Interestingly, the introduction of
the physical actuator limits is not an issue for the linearisation approach and can easily be
incorporated in the allocation problem. In summary, the designer has two practical routes
to formulate the force allocation problem: (i) linearise the friction model and use the true
physical limits of the actuators [7,24,25]; or (ii) employ the full nonlinear friction model and
approximate the physical actuator limits.[6,27–29] In this work, we will follow the second
approach and concentrate our attention on the application of fast numerical techniques to
handle the control allocation problem, which can be used in real-time applications. This is
motivated by the fact that we intend to choose, as secondary performance metric, the minimi-
sation of the tyre friction force for safety maximisation. Thus, it is important to employ the
most accurate description of the forces available.

5.3. Performance metric and control allocation problem

Due to overactuation in the vehicle, there are many possibilities to allocate the forces among
the tyres. To exploit this redundancy, we will consider, as a secondary performance metric,
the minimisation of the friction used in the tyre, i.e.

L(Fxy, Fz) =
∑
i∈T

∥∥∥∥ 1

μmaxFzi
EiFxy

∥∥∥∥2

=
∑
i∈T

∥∥∥∥∥∥∥
⎡
⎢⎣

1

μmaxFzi
0

0
1

μmaxFzi

⎤
⎥⎦[

Fxi

Fyi

]∥∥∥∥∥∥∥
2

= ‖R∗(Fz)Fxy‖2,

(30)



where R∗(Fz) is a diagonal matrix, which assigns the weight 1/μmaxFzi to the x and y forces
of the ith tyre.

The idea behind the performance metric L is to assign to each tyre a penalisation that
is inversely proportional to the vertical force that each wheel supports. Consequently, the
tyres with higher vertical forces, thus capable of delivering larger forces, will have lower
penalisation, while the lighter tyres will be forced to produce less force. Since this allocation
policy discourages the full use of friction forces, it can also be viewed, to some extent, as
maximisation of a safety margin in the force allocation. In order to facilitate the practical use
of this cost function, it will be further assumed that the allocation errors, z, are not too large,
which enables us to approximate the weight matrix as

R∗(Fz) = R∗
(
F0

z +
(	x

m
eT

1 + 	y

m
eT

2

)
(F∗ − z)

)
≈ R∗

(
F0

z +
(	x

m
eT

1 + 	y

m
eT

2

)
F∗

)
R(F∗).

(31)

Note that, for the cases where non-feasible forces are requested, the variable z may not com-
ply with the assumption of small allocation errors. Notwithstanding, to handle such cases, we
may saturate the calculation of the vertical forces used in the previous relation, thus avoiding
negative or excessive vertical loads that appear when dealing with unfeasible forces. Albeit
this approach will introduce errors, the resulting weight matrix is still in line with our original
goal of assigning higher penalisation to the tyres with lower vertical loads. With this approxi-
mation, the dependence on Fz can be dropped in the cost function, giving L ≈ ‖R(F∗)Fxy‖2;
the final control allocation then follows from joining Equations (29)–(31), i.e.

min
z,Fxy,Fz

‖R(F∗)Fxy‖2 + ‖Qz‖2 s.t. (29b)–(29f)

which makes use of p = 2 for the norm calculation. Note that F∗ is a parameter of the control
allocator; thus, at each update of the control variable, the weight matrix R(F∗) is constant,
and the cost function quadratic. The main difficulty for the numerical solution of the above
problem lies in the second-order cone constraints (29c), which although being convex are not
in a suitable format to be handled by real-time QP solvers, like CVXGEN.[30] In the next
sub-section, we will discuss two practical algorithms to transform the allocation problem into
a QP.

5.4. Algorithm 1: fix the tyre force angles and then optimise

The first proposed algorithm is inspired by the CGI method, a widely used allocation strategy
in aeronautical applications.[9,10] Our idea builds on the following reasoning: (i) first, we
determine a suitable direction for the Fxi and Fyi forces of each tyre; (ii) then, such direction
being kept fixed, the force magnitude is computed so as to fulfil the problem constraints. As
will be shown shortly, by fixing the force angles, the second-order cone constraints associated
with the friction circle can be transformed into linear inequalities, which are easier to treat
numerically.

The algorithm is implemented as follows.
Step 1: First assume that power, torque and friction constraints are not active, and that F∗

is feasible, so z = 0. In these conditions, the control allocation problem (32) can be recast as
a minimum-norm problem, subject to equality constraints of the form

min
Fxy

‖R(F∗)Fxy‖2, s.t. F∗ = BFxy. (32)



By constructing the Lagrangian function for the above problem, L(Fxy, λ) = ‖R(F∗)Fxy‖2 +
λ(BFxy − F∗) and applying the first-order optimality conditions (∂L/∂Fxy = 0, ∂L/∂λ = 0),
the following analytical solution can be established:

F0
xy = (RTR)−1BT(B(RTR)−1BT)−1F∗, (33)

which is known in the control allocation literature as the weighted pseudo-inverse solution.
To simplify the notation, the dependence of F∗ in the weight matrix R has been omitted.

Step 2: It is obvious that the assumptions made in step 1 do not always hold, and, in
practice, the vehicle may have to operate close to the boundaries of the friction/power/torque
limits. Consequently, the solution (33) may violate some of the constraints in the problem, and
it becomes necessary to rearrange the allocation solution to comply with the constraints. To
see how this issue can be handled, it is helpful to express the tyre forces in polar coordinates

Fxy,i =
[
Fxi

Fyi

]
= ρi

[
cos(θi)

sin(θi)

]
, i ∈ T, (34)

where ρi is the force magnitude of the tyre i ∈ T and θi its angle. Applying the polar
representation to all tyre forces Fxy, one gets

Fxy =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ1l) 0 0 0
sin(θ1l) 0 0 0

0 cos(θ1r) 0 0
0 sin(θ1r) 0 0
0 0 cos(θ2l) 0
0 0 sin(θ2l) 0
0 0 0 cos(θ2r)

0 0 0 sin(θ2r)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H∗(θ)

⎡
⎢⎢⎣
ρ1l

ρ1r

ρ2l

ρ2r

⎤
⎥⎥⎦

︸ ︷︷ ︸
ρ

= H∗(θ)ρ, (35)

where θ = [θ1l θ1r θ2l θ2r] and ρ ∈ R
4
+. Now, note that, if the angles of the tyre forces θ are

fixed, then there is a linear relation between the force magnitude ρ and the Fxy. More impor-
tantly, the second-order cone constraints associated with the friction limits ‖[Fxi Fyi]T‖2 ≤
μmaxFzi become simple linear inequalities, i.e. ρi ≤ μmaxFzi. Thus, our approach assumes
fixed tyre force angles,

H = H∗(θ0), (36)

where θ0 are the angles obtained from the weighted pseudo-inverse (33). The force magnitude
ρ is then redistributed to comply with the friction/power/torque constraints. This redistri-
bution is obtained by inserting Equation (32) in Equation (35) and solving the following
problem:

min
z,ρ,Fz

‖RHρ‖2 + ‖Qz‖2, (37a)

F∗ = BHρ + z, (37b)

0 ≤ ρ ≤ μmaxFz, Fz > 0, (37c)

Fz = F0
z +

(	x

m
eT

1 + 	y

m
eT

2

)
BHρ, (37d)

[1 0]EiHρ ≤ min

(
T̄

ri
,

P̄

vx

)
∀i ∈ T. (37e)
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Figure 3. Linear approximation of the friction circle constraints.

It is worth pointing out that all the constraints in the above problem are linear, and the cost
function is quadratic1; so, we are now in conditions to handle the allocation problem with
fast QP solvers. The final allocation solution is then obtained by Fxy = Hρ.

In what follows, the above algorithm will be referred to as PINV + QP.

5.5. Algorithm 2: linear approximation of the friction circle

The second algorithm that is proposed to transform Equation (32) into a QP is based on the
linearisation of the friction circle constraint. In particular, the main idea is to approximate the
circle constraint ∥∥∥∥

[
Fxi

Fyi

]∥∥∥∥
2

≤ μmaxFzi, i ∈ T, (38)

by a polytope, characterised by N half-spaces. Namely,

C
[
Fxi

Fyi

]
≤ DμmaxFzi, i ∈ T, (39)

where C ∈ R
N×2, D ∈ R

N are matrices that characterise the half-spaces (see [21] for the
detailed derivation of the matrix expressions). From a qualitative perspective, one may see
that, as we increase the number of half-spaces N , the friction circle constraint can be approx-
imated with increasing accuracy (see, e.g. Figure 3 for N = 12). However, for the real-time
implementation of the allocator, N cannot be too large, as the total number of linear inequal-
ities associated with the friction constraints, taking into account all the tyres, is 4N . Hence,



in practice, one may need to find a trade-off value for N , capable of providing a reasonable
accuracy in the friction circle approximation, but, at the same time, without compromising
too much the computational time of the numerical solver (which may be affected by the
number of constraints).

Based on the approximation (39), the allocation problem can be posed as

min
z,Fxy,Fz

‖RFxy‖2 + ‖Qz‖2, (40a)

F∗ = BFxy + z, (40b)

CEiFxy ≤ DμmaxFzi, i ∈ T, (40c)

Fz = F0
z +

(	x

m
eT

1 + 	y

m
eT

2

)
BFxy, (40d)

Fz > 0, (40e)

[1 0]EiFxy ≤ min

(
T̄

ri
,

P̄

vx

)
∀i ∈ T. (40f)

Since all constraints are linear, and the cost function is quadratic,2 the above problem can be
tackled by QP solvers. In comparison with Algorithm 1, the linear approximation requires
a larger number of inequalities and optimisation variables, which has an important impact
on the computational time. However, the linear approximation has more freedom in select-
ing the tyre force orientation (recall that in Algorithm 1 the orientation is fixed by the
weighted pseudo-inverse), which may be beneficial in situations where non-feasible forces
are requested. These properties will be further investigated in the next section, where a
detailed comparison between the two algorithms is provided.

It is worth pointing out that, in the context of the control allocation of forces, the linear
approximation of the friction circle was an idea initially developed by Jonasson and Andreas-
son [6]. However, this previous work did not take into account the important influence of the
longitudinal and lateral acceleration in the friction circle radius, i.e. Equation (40d), as well as
additional power and torque constraints introduced by the IWMs, which are both addressed
in this work. Furthermore, we will also investigate how the algorithm performs for different
values of N , which is important for its real-time implementation.

In the remainder of this work, the allocator (40) will be named as QP(N), where N refers
to the number of linear inequalities employed in the approximations.

5.6. Comparison of the allocation algorithms

To investigate the performance of the two allocation algorithms described above, a series of
simulation tests is presented. The goal is to evaluate the allocation results during the path
following of the Norising track (2.2 km long). The reference force F∗ and the vehicle speed
profile v were generated via the FF controller described in Section 4, without activating the
FB speed loops. As our concern is now merely focused on the allocation problem, this ide-
alised setting (i.e. the assumption of a perfect vehicle model, without disturbances) constitutes
a pragmatic way of gaining insight on the merits and drawbacks of the allocation algorithms.
As for numerical solver to handle the QP numerical problems, CVXGEN was used, which
is a code-generator tool for embedded linear programming and QP optimisation (see [31]
for additional details). We also reduced the number of decision variables in both optimisa-
tion problems by eliminating the equality constraints associated with the z and Fz variables
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Figure 4. Reference values of F∗ employed in the evaluation of the control allocation algorithms.

(e.g. Equation (40b) was dropped, and the term ‖Qz‖2 replaced by ‖Q(BFxy − F∗)‖2). For
the performance evaluation of the allocation algorithms, three test cases were considered
(Figure 4): (i) normal driving; (ii) limit driving and (iii) unfeasible driving. The normal driv-
ing scenario corresponds to the situation where the vehicle is driven around the track with
moderate levels of acceleration (lower than 0.5g). The second case, limit driving, is related to
the minimum-time manoeuvring approach, where the vehicle operates very close to the fric-
tion and power boundaries. The aim of this test is to assess if the control allocator is able to
reach the maximum operation envelope of the vehicle (see [32] and [21] for additional details
on the CoG force computation for the minimum-time manoeuvring). In the last scenario, the
allocator is asked to produce unfeasible forces, beyond the friction adhesion limits, which is
the most challenging task. In this case, the reference force was obtained by rescaling, with a
factor of 1.5, the minimum-time solution, i.e. F∗ = 1.5Fmin-time.

For each one of these test cases, three allocation strategies will be compared: (i) PINV +
QP, (ii) Q (N = 6) and (iii) Q (N = 12). The latter two were included with the aim of inves-
tigating how the parameter N affects the QP performance. Further, to keep the comparison
fair, all three algorithms share the same weight matrices.

Figure 5 depicts the mean and maximum allocation errors of the algorithms along the test
cases under study. These results show that, for normal driving scenarios, each allocator yields
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Figure 5. Evaluation of the force errors produced by the allocation algorithms. (a) Mean errors in Fx; (b) mean
errors in Fy; (c) mean errors in Mz; (d) max. errors in Fx; (e) max. errors in Fy and (f) max. errors in Mz.

very satisfactory performance, with zero errors. In limit driving conditions, one can find that
the average performance of all the allocators is also acceptable, with average errors smaller
than 2%. However, the maximum allocation errors for the PINV + QP and QP (N = 6) are
much higher than those of the QP (N = 12); for example, the peak error in the generation
of Fy is 14% for both QP (N = 6) and PINV + QP, while the QP (N = 12) shows only
4%. These results suggests that the full potential of the vehicle may not be reached with the
pseudo-inverse allocation and the QP (N = 6) strategies; the QP (N = 12) method will also
be unable to reach the maximum operation envelope, but will be very close. Finally, during
the unfeasible driving conditions, the performance of all the allocation algorithms suffers a
significant degradation, which was expected given the non-feasible requests. Nonetheless, it
can be observed that the QP (N = 12) allocation strategy copes better with the infeasibility
than the other methods, particularly in the tracking of Fy and Mz. On average, the QP (N =
12) features tracking errors of 6% in Fy and 1.8% in Mz, which compares to 8% and 11.8%
generated by the PINV + QP, and 7% and 2.1% for the QP (N = 6).

From these results, it is clear that the QP (N = 12) is the allocation strategy with better per-
formance. The only drawback of this strategy is related to the increase of the computational
time; while the difference to the QP (N = 6) is not significant (on average, QP (N = 12)
requires a 30% of extra computational time), the QP (N = 12) is 2–2.5 times slower than
the pseudo-inverse, as shown in Figure 6. However, the total computational time of the QP
(N = 12) is, on average, less than 1 ms, which is still acceptable for real-time implementation
in a vehicle, where the update rates of the motion controllers are normally of approximately
100 Hz (10 ms).

In view of this analysis, QP (N = 12) will be used in the remainder of this article.

5.7. Tyre force inversion

After determining the desired x and y forces of each tyre, it is necessary to calculate the corre-
sponding torque Ti and steer angle δi, capable of delivering the requested forces. As explained



Figure 6. Computational time for the control allocation algorithms. (a) Mean CPU time and (b) max. CPU time.

in [21], this transformation can be performed using the tyre inverse model. However, since,
in practice, the tyre model is subject to uncertainty, the tyre inversion will not be perfect
and, as a result, allocation errors will emerge. In any case, such approximation errors can be
embedded in the disturbance term (D) and mitigated by the robust FB loops discussed in the
previous section.

6. Simulation results

To evaluate the performance of the proposed control scheme, several tests were carried out
with the help of a high-fidelity simulator, the CarSim environment.[33] Since CarSim con-
templates dynamics that were neglected at design time, e.g. nonlinear suspension dynamics,
compliance effects, roll and pitch motions, etc., this simulation setting enables us to evaluate
the robustness of the closed-loop system. The vehicle used in the simulations is based on a
B-Class sports car, available in the default library of the CarSim, with the parameters listed
in Appendix 2.

6.1. Double lane change – high µ

The well-known double lane change (DLC), with normal dry adhesion conditions (μmax =
1), is the first manoeuvre employed to evaluate the performance of the proposed motion
controller. The speed set points vr for the vehicle were generated so as to negotiate the DLC
at constant longitudinal speed, while keeping the friction force of the tyre (relatively) close to
the limits of adhesion. Further, given the high degree of manoeuvrability offered by the 4WS
architecture, there are many possibilities to combine the linear and rotational velocity of the
vehicle along the DLC. Here we will focus on two particular instances:

• Zero side slip: the vehicle relies only on the yaw rate to change the direction along the
trajectory, while keeping the side slip to zero, i.e. vy,r = 0.

• Zero yaw rate: only lateral displacement is imposed, without yawing, i.e. ψ̇r = 0.

It is also interesting to investigate the benefits provided by the speed FB loop that is incor-
porated in the motion controller. To this aim, the DLC was negotiated with and without the
speed FB activated. In the latter case, only the FF action is employed.

Analysing the results depicted in Figure 7, one can verify that the FF control action is
unable to keep the vehicle within the DLC cones. The reason for this performance degra-
dation is related to the inability of the FF control action alone to counteract disturbances
and unmodelled dynamics (and also to the errors in the force allocation process), which
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introduce significant discrepancies between the desired motion demand (vr) and the real
vehicle response (Figures 8(a) and 9(a)). On the other hand, by activating the robust FB
action, the model mismatches can be attenuated, and the desired vehicle speed vr is tracked
with good accuracy. To better illustrate this issue, let us look more closely at the yaw dynam-
ics depicted in Figure 8(a); during this test, the controller aims to keep the yaw rate of the car
at 0 deg/s, and, as a result, the FF controller is requesting zero yaw moment. However, the
simulation results reveal that this control action is insufficient to maintain ψ̇ at zero, leading
to large tracking errors. Instead, the FF + FB action is able to keep small yaw-rate tracking
errors thanks to a significant yaw-moment request.

The two speed references along the DLC manoeuvre also reveal differences in the steering
allocation results (Figures 8(b) and 9(b)). For first case – zero yaw-rate approach – the front
and rear steering are applied in the same direction and also have approximately the same
value. Since the vehicle orientation is intended to be kept constant during the zero yaw-rate
approach, this steering policy is reasonable. As for the zero side-slip approach, one may see
that the front and rear steer have the same direction, but now the rear steer takes much smaller
values. From an engineering perspective, these steering allocation results are explained by
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Figure 8. Simulation results when negotiating a DLC (high μ), with a zero yaw-rate policy. (a) CoG speeds and
forces/moments and (b) torque and steer allocation; friction usage of the tyres.

the need to generate relatively large yaw moments in the zero side-slip approach. It is also
worth mentioning that the torque allocation between left/right wheels contributes with some
yaw-moment correction.

6.2. DLC – low µ

The goal of the second test is to evaluate the robustness of the motion controller to mod-
elling errors in the estimation of the tyre–road friction coefficient. To do this, the DLC is
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negotiated on a low grip surface (μmax = 0.35), while the motion controller is configured
under the assumption of a high tyre–road friction (μ̂max = 1.0). From the results illustrated
in Figures 10 and 11, one can verify that, despite the large friction modelling errors, the pro-
posed motion controller is still capable of negotiating the DLC with safe levels of yaw rate
and lateral velocity. Inspecting more closely the allocation results in Figure 11(b), it is worth
noting the contribution of the left/right wheel torques to the yaw-moment correction of the
vehicle, as well as the (almost) equal distribution of the friction usage between the four tyres
(e.g. all four tyres reach the friction saturation approximately at the same time). For compari-
son purposes, we also performed the same DLC using only front steering; the set point for the
front steer was generated through the default path following controller available in CarSim. It
can be verified that this 2WS configuration is unable to accomplish the low-mu DLC, leading
to a spin at the end of the manoeuvre. These results demonstrate that the proposed motion
controller is essential to stabilise the vehicle motion during critical driving conditions.
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Figure 11. Simulation results when negotiating a DLC (low μ). (a) CoG speeds and forces/moments and (b)
torque and steer allocation; friction usage of the tyres.
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Figure 12. Simulation results when negotiating an L90 corner. (a) L90 approach with β = 0 and (b) L90 approach
with high β.

6.3. Left 90◦ corner

The last simulation test analyses the allocation solution when the vehicle is subject to a sig-
nificant level of combined steering and acceleration/braking. Accordingly, a set of speed
profiles vr was generated to allow the vehicle to negotiate a left 90◦ corner (L90) – 40 m
radius – with more than 0.5g of combined longitudinal and lateral accelerations (see [32]
for additional details). Similar to the DLC manoeuvre, two different side-slip policies were
evaluated: (i) trajectory following with zero side-slip and (ii) injection of a significant side-
slip during the middle of the corner (Figure 12). The results depicted in Figures 13(a) and
14(a) show that, for both policies, the motion controller is able to ensure a good tracking of
the reference vr. Analysing now the torque allocation results with the zero side-slip policy,
illustrated in Figure 13(b), a fairly intuitive result is found: during the strong braking phase,
s ∈ [45, 85] m, the controller applies a larger braking torque to the front axle, while the oppo-
site is verified in the accelerating phase, i.e. the rear wheels are given larger torques in the
region s ∈ [167; 200] m. Further, the outer wheels (the right ones in this particular example)
are given a larger torque than the inner ones. In view of the load transfer between front–
rear axle and left–right wheels that the vehicle experiences when subject to longitudinal and
lateral accelerations, these allocation results act to restore the best vehicle stability. In other
words, the controller is applying larger torques to the wheels with larger vertical loads. In the
high side-slip manoeuvre, illustrated in Figure 14, a similar torque split strategy between the
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Figure 13. Simulation results when negotiating an L90 corner (zero side-slip). (a) CoG speeds and
forces/moments and (b) torque and steer allocation; friction usage of the tyres.
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Figure 14. Simulation results when negotiating an L90 corner with a high level of side-slip. (a) CoG speeds and
forces/moments and (b) torque and steer allocation; friction usage of the tyres.

wheels can be observed. The major difference with respect to the zero-slip approach lies in
the steering allocation. More specifically, in the high side-slip manoeuvre the front and rear
steers, besides being of a significant magnitude, point outside the corner. This behaviour ends
up being instrumental to keep the vehicle sliding throughout the turn.



7. Concluding remarks

In this work, a motion control strategy for overactuated EVs has been proposed. Specifically,
the full architecture comprising the set point generation, the motion control and the force
allocation layer has been designed. The closed-loop stability of the motion control system was
formally proved, and a specific attention was devoted to propose force allocation strategies
that can meet the real-time requirements of the final application. Simulation results carried
out in the full-vehicle CarSim simulation environment demonstrated the effectiveness of the
approach, in both normal and extreme driving conditions.

Notes

1. Note that the cost function can be rewritten as
∥∥[ RH 0

0 Q

] [ cρ
z

]∥∥2

2. The cost function can be rewritten as
∥∥[ R 0

0 Q

] [
cFxy

z

]∥∥2
.
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Appendix 1. Resistance forces

The main resistance forces that affect the vehicle motion are assumed to be rolling friction and aerodynamic drag.
Road grade forces were neglected, since only planar motion is considered. Thus, the resistance force can be expressed
as

R(v) =
⎡
⎣Rx
Ry
Rψ

⎤
⎦ =

⎡
⎣mgfr

0
0

⎤
⎦ + 1

2
ρ

⎡
⎣AxCx(β)|vx|vx

AyCy(β)|vy|vy
0

⎤
⎦ , (A1)

where fr is the rolling resistance coefficient, ρ represents the air density, Aj the vehicle area in the direction j ∈ {x, y}
and Cj the drag coefficient, which may be dependent on the vehicle side-slip angle β = atan(vx/vy).[17]

http://www.carsim.com/products/carsim/index.php
http://www.carsim.com/products/carsim/index.php


Appendix 2. Parameters of the model and controller

See Table A1.

Table A1. Vehicle and controller parameters.

Variable Symbol Value

Vehicle mass m 1100 kg
Yaw inertia Iz 996 kg m2

Distance between front axle and COG l1 1.2 m
Distance between rear axle and COG l2 1.3 m
COG height h 0.37 m
Track width c 1.5 m
Rolling resistance fr 0.004
Aero. drag coefficient (frontal) Cx 0.35
Aero. drag coefficient (lateral) Cy 0.7
Frontal area Ax 1.6 m
Lateral area Ay 1.6 m
Air density ρ 1.206 kg/m3

Wheel radius r 0.3 [m]
MTF parameter A B 7
MTF parameter B C 1.6
MTF parameter C D 1
Maximum power/IWM P̄ 36 kW
Maximum torque/IWM T̄ 777 Nm

Parameters of the speed controller
[kax, kay, kaψ ] [2.9, 4.9, 2.6]
[kηx, kηy, kηψ ] [2.2, 0.7, 3.1]
[εx, εy, εψ ] [1.7, 1.1, 0.14]

Control allocation
Q diag([1, 1, 5])

Note: MTF; Magic tyre formula.

Appendix 3. Approximation of torque and power constrains

To make torque and power constraints of the electric motors and friction brakes in Equation (10) manageable in the
allocation process, the main idea is to express them as functions of (vx, Fxi), instead that in the original coordinates
(ωi, Ti). To do this, we assume steady conditions for the wheel dynamics (10), which are much faster than the chassis
ones that the controller aims at regulating. Thus, one has

Ti ≈ riFLi, i ∈ T. (A2)

Further, the tyre longitudinal slips will be neglected, which allows us to approximate the wheel rotational velocity
as ωi ≈ vx/ri. Finally, the wheel steering angles δi are assumed to be small, enabling us to approximate W(δi) ≈ I,
where I is the identify matrix. Under these assumptions, the power and torque limits (10) can be approximated as

T ≤ Fx,iri ≤ T̄ , Fx,ivx ≤ P̄, i ∈ T. (A3)

Moreover, assuming that T , provided by the friction brakes, is always capable to overcome the friction limits of
the tyre–road adhesion, then the lower inequality in Fx,i can be neglected. This allows us to rewrite the previous
constraints as

Fx,i ≤ min

(
T̄

ri
,

P̄

vx

)
, i ∈ T. (A4)

The above set provides a very reasonable approximation of the torque/power constraints in straight-line conditions,
its accuracy degrading when the cornering manoeuvres become more aggressive (i.e. when δi increases). Neverthe-
less, since during cornering conditions the longitudinal accelerations are normally low, the above approximated sets
proved to yield good performance in the allocation scheme.
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