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I. Introduction

T HE circular restricted three-body problem (CR3BP) has been
examined extensively in recent years; however, considerably

fewer studies incorporate the effects of spacecraft attitude in this
regime. Because of the sensitive nature of the dynamics at the
libration points, a better understanding of the attitude motion of
spacecraft in the vicinity of these points is warranted. The ability to
predict the attitude motion of a spacecraft as orbital parameters and
spacecraft characteristics are varied can be very useful. Similar
studies are common in the restricted two-body problem. For example,
the influence of spin rate, inertia characteristics, and orbit eccentricity
on the attitude response are investigated by Kane et al. [1,2] in those
works, and the consequences of the various parameters are effectively
described using stability charts. Typically, stability charts display
various configurations of a set of parameters and identify the ref-
erence motion as stable or unstable. Once the behavior is explored,
the potential to exploit the natural dynamics for passive attitude con-
trol in these regimes is assessed.
In an early investigation,Kane andMarsh first consider the attitude

stability of an axisymmetric satellite that is located exactly at the
equilibrium points [3]. In their analysis, the satellite is artificially
maintained at each of the equilibrium points and only the attitude
motion is considered. Robinson continues this work with an exam-
ination of the attitude motion of both a dumbbell satellite [4] and an
asymmetric rigid body [5] artificially maintained at the equilibrium
points. Abad et al. introduce the use of Euler parameters in the study
of a single rigid body located at L4 [6]. More recently, Brucker and

Gurfil explore the dynamics and stability of a single rigid-body
spacecraft in the vicinity of the collinear points in the sun–Earth
system, using Poincaré maps [7]. The effects of the gravity gradient
torque are explored by these authors, but the spacecraft is still
artificially fixed to the equilibrium point.
Wong et al. offer a detailed examination of the motion of a single

rigid body near the vicinity of the sun–Earth libration points, using
linear Lyapunov and halo orbit approximations [8]. The response of
the spacecraft is detailed by Wong et al. in a meaningful manner,
offering orientation results for a number of numerical simulations in
terms of a body 3-2-1 �ϕ; θ;ψ� Euler angle rotation sequence. How-
ever, because the Lyapunov and halo orbits are represented in a linear
form, the simulations are only valid for relatively small orbits close to
the equilibrium points.
Recent investigations have examined the motion of a spacecraft

located in various two- and three-dimensional periodic reference
orbits, in the vicinity of the Earth–Moon collinear libration points.
Lara et al. numerically investigate the attitude-orbit coupling of a
large dumbbell satellite on halo and vertical L2 orbits in the Hill
problem [9]. If the spacecraft is in fast rotation and the equations of
motion are averaged over the “fast” angle, the attitude dynamics of
the dumbbell decouple from the orbital motion and the orbital
dynamics simplify [10]. Studying this condition on halo and vertical
L2 orbits in the Hill problem, Lara et al. demonstrate that a suf-
ficiently elongated structure may alter the stability of the reference
periodic orbit [9]. Knutson and Howell explore the behavior of
multibody spacecraft in the circular restricted three-body problem,
using members of the nonlinear Lyapunov and halo orbit families as
reference orbits, where the coupled orbit and attitude equations of
motion are formulated using Kane’s dynamic method [11–13].
Guzzetti et al. examine the coupled motion of a spacecraft in non-
linear Lyapunov reference orbits, in which the vehicle is only free to
rotate in the orbital plane [14,15]. They formulate the equations of
motion using a Lagrangian approach and also incorporate the effects
of solar radiation pressure and flexible bodies. In both approaches,
the equations of motion governing the orbit, as well as the spacecraft
attitude, are blended in a cohesive manner that minimizes com-
putational difficulties and allows for the propagation of meaningful
results. One of themajor andwell-known computational issues in this
process is the management of the disparity in length scales in this
problem. The distance from the barycenter to the spacecraft is on the
order of hundreds of thousands of kilometers (depending on the
system), and the spacecraft dimensions are typically measured in
terms of meters. The differences in the lengths present a com-
putational challenge, because only finite precision is possible. Thus,
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a nonlinear variational formof the equations ofmotion is employed to
mitigate these numerical effects. The motion of the spacecraft is also
monitored relative to some known reference orbit. The equations for
the time rate of change of linearmomentum first describe the absolute
motion of the spacecraft and are then again employed to describe the
motion of the point mass reference system. The contributions from
the reference are subtracted from the absolutemotion, eliminating the
difficulties of significantly different lengths coupled within the same
differential equations.
Themain goals in the current investigation include an examination

of the effects of incorporating attitude dynamics into themodel for the
nonlinear periodic orbits within the context of the CR3BP, par-
ticularly the impact on vehicles in planar Lyapunov reference orbits.
A more global understanding of attitude behavior in the CR3BP
regime is also desired. To bring results from all planar family mem-
bers together, the concept of an attitude map is employed, to visually
display regions where the orientation is changing relative to the
CR3BP frame. These maps are useful to summarize the results ob-
served across a family and can offer insight into behavior that might
not otherwise be observed.

II. Model

A. Problem Assumptions and Kinematic Framework

Consider a finite-sized rigid spacecraft with mass m whose
behavior is influenced by the gravitational field of two other celestial
bodies. No other forces but gravity are incorporated. The first and
more massive body P1 defines the primary attractor with mass m1,
denoted as the primary; similarly, the second attractor P2 is called
secondary with mass, such that m2 < m1. The dynamics of the
spacecraft are modeled under the assumptions of the planar circular
restricted three-body problem.
To the present, at least eight general approaches exist to deliver the

equations of motion of a generic dynamic system [16,17]. Each
formulation relies on different dynamic principles and choice of the
free variables. In this work, to model the coupled problem, Kane’s
method is considered. However, before specifically developing the
approach, it is necessary to supply a general framework for the
kinematic representation of the problem. For the sake of clarity, each
coordinate system is identified by a letter and the attendant versors by
the same letter with a proper subscript; for instance, a genericX frame
will be established by the �x̂1; x̂2; x̂3� term of versors. Let an inertial
frame, denoted as the I frame, be fixed in the center of mass of the
planetary system formed byP1 andP2. The Î1 versor of the I frame is
initially aligned with the axis through the primary P1 and the
secondary P2, but the I frame does not rotate with the planetary
system. Define the l frame to rotatewith the bodiesP1 andP2. The l
frame at time t � 0 is oriented parallel to the I frame and its origin
corresponds to the origin of the I frame. Then, the l frame rotates
with the planetary system angular velocityΩ, such that the l̂1 versor
is always alignedwith theP1 − P2 line. Thel frame is intended as the
common vector basis. With respect to this frame, the position of the
spacecraft relative to the barycenter as origin is defined by the vector
R with components �xyz�T . Finally, a local coordinate system, the b
frame, is fixed in the rigid body and attached to its center ofmassB�; a
body 3-2-1 �ϕ; θ;ψ� Euler angle rotation sequence is assumed to
describe the orientation of the b frame relative to the l frame.
Throughout this analysis, the main interest is on the first angle ϕ of
the sequence, which is the angle of rotation between the body
coordinate system and the l frame about Î3 � l̂3 � b̂3. The angle ϕ
is labeled the pitch angle or simply pitch. If the vehicle only rotates
about an axis orthogonal to the orbital plane, ϕ is sufficient to define
the orientation of the body. Finally, the vectors d and r define the
origin of the b frame relative to the primary and secondary,
respectively. Figure 1 depicts all the coordinate systems.
For a finite-sized rigid spacecraft, the complete set of equations of

motion is derived including both the orbit and attitude dynamics.
Moreover, neither of the two motions is prescribed; instead, the fully
coupled dynamics are simultaneously propagated. However, directly
employing the vector R to track the satellite position is generally a
poor choice for numerical solutions of the coupled equations of

motion. The finite precision of the numerical procedure affects the
problem in a twofold manner: First, computational difficulties arise
because of the significantly different scales of the variables involved
in orbital motion with respect to those appearing in the attitude
dynamics; second, the actual mass extension of the body tends to
vanish compared, again, to the distance from the barycenter of the
celestial system. In fact, gravity does vary over the vehicle dis-
tribution of mass; this distribution yields minimal variations in the
resultant gravity force, as well as in the well-known gravity gradient
torque. To mitigate the numerical issues and to more accurately
incorporate the small variations in the gravity force, the orbital
motion ismonitored relative to a given reference path. To this end, the
equations describing the trajectory are rearranged into a nonlinear
variational form via Encke’s method. Basically, the dynamic con-
tributions from the reference are subtracted from the absolutemotion,
eliminating different variable scales in the same set of differential
equations. Hence, the orbital motion is integrated only in terms of the
displacement from a reference path. More specifically, the reference
trajectories are constructed as solutions of the CR3BP, which implies
modeling the spacecraft as a mass with infinitesimal dimension. It
should be noted that the reference orbits do not rely on any sim-
plification of the CR3BP; conversely, they satisfy the nondimen-
sional set of nonlinear equations

�x − 2 _y � x − �1 − μ��x� μ�
d3

−
μ�x − 1� μ�

r3
(1)

�y� 2 _x � y − �1 − μ�y
d3

−
μy

r3
(2)

�z � −
�1 − μ�z
d3

−
μz

r3
(3)

where

d �
����������������������������������������
�x� μ�2 � y2 � z2

q
; r �

������������������������������������������������
�x − 1� μ�2 � y2 � z2

q
The system is assumed to be normalized such that the following
quantities appear unitary: the total mass of the system m1 �m2, the
distance between the two attractor centers d1 � d2 (originally d1 �
d2 � 384; 400 km for the Earth–Moon system), the angular fre-
quency Ω, and the universal constant of gravity G. The only pa-
rameter of the system that remains is the mass ratio μ �
m2∕�m1 �m2� (μ � 0.01215 for the Earth–Moon system).

B. Kane’s Method

The formulation of Kane’s equations is explored to model the
problem. Kane’s method is based on the principles of linear and
angular momentum. However, the general formulas for the time rate
of change of linear and angular momentum are partitioned into terms
in the directions of a set of specified generalized speeds [18,19].
Generalized speeds, denoted ui, are velocity variables that are

Fig. 1 Kinematic representation.



employed in the analysis in contrast to configuration coordinates (i.e.,
position variables); the generalized speeds can be selected in any
manner, but it is usually desirable to adopt an independent set such
that changes of one speed do not affect any other speed. If a set of
minimal variables is selected, one generalized speed is required for
each degree of freedom; otherwise, constraint equations are incor-
porated to reduce the order of the system. Eventually, the derivatives
of the configuration coordinates, which may be required to fully
describe the system, are formulated by some combination of a subset
of the generalized speeds.
The b frame is selected as the common vector basis and an inertial

observer is assumed for linear velocities, angular velocities, and time
rates of change. Then, the following two equations are constructed:

∂IvB�

∂u

X
FB −

∂IvB�

∂u

�
Id

dt
�mIvB� �

�
� 0 (4)

∂Iωb

∂u

X
MB∕B� −

∂Iωb

∂u

�
Id

dt
��I�B∕B� · Iωb�

�
� 0 (5)

where IvB
�
represents the center of mass velocity and Iωb the body

angular velocity; �I�B∕B� is the spacecraft inertia matrix expressed in
terms of the b frame, whereas FB and MB∕B� are, respectively,
external forces and moments on the center of mass. The method
employs simple matrix multiplications to derive the equations of
motion. Thus, in Eq. (4), ∂IvB�∕∂u denotes the partial velocity
matrix, which is formed from the partial derivatives of the center of
mass velocity with respect to each generalized speed; the partial
derivative of the velocity vector is evaluated for each generalized
speed and this vector quantity is stored as a row in the partial velocity
matrix. Similarly, in Eq. (5), ∂Iωb∕∂u is the partial angular velocity
matrix for the body and it also originates from the partial derivatives
of the angular velocity vector with respect to each generalized speed.
Equations (4) and (5) are now summed to create one vector equation.
Kane splits this equation into two parts: generalized inertia forces and
generalized active forces. Generalized inertia forces, denoted Q�B,
combine the contribution of the quantities that depend on the time rate
of change of both linear and angular momentum, and the generalized
active forces, denoted QB, collect the contributions from external
loads. The generalized inertia force and generalized active force for
the spacecraft are described as follows:

Q�B � −
∂IvB�

∂u

�
Id

dt
�mIbvB

� �
�

−
∂Iωb

∂u

�
Id

dt
��I�B∕B� · Iωb�

�
(6)

QB �
∂IvB�

∂u

X
FB � ∂Iωb

∂u

X
MB∕B� (7)

Finally, Kane’s formulation is represented by the following sim-
plified expression:

Q�B �QB � 0 (8)

Ifmore bodies are incorporated into themodel, the generalized inertia
forces and generalized active forces are computed for each body
using the partial velocities matrices and the appropriate parts of the
momentum equations as described in Eqs. (6) and (7). These two
quantities are combined for each body, as described in Eq. (8);
assuming workless constraints, the contact forces are automatically
eliminated in Kane’s method [18]. Thus, the governing equations are
produced in the form A _u � w. This system of equations is integrated
along with derivatives for the required configuration coordinates to
determine the motion of the individual bodies in the system. The
external forces andmoments are only due to the gravity fields exerted
by the two primaries on the vehicle; because the spacecraft is rep-
resented by a small rigid body, the expressions for both the grav-
itational forces and moments are approximated to the second-order
expansion, as fully detailed in [19]. The resulting system is a coupled

nonlinear set of equations. Additional details concerning this for-
mulation and the development of a nonlinear variational form via
Encke’s method appear in [13].

C. Attitude Dynamics

Section II.B offers a viable method to derive the equations of
motion for a rigid body of finite dimensions subjected to the grav-
itational attraction of two primary bodies. Subsequently, the analysis
is focused on the planar rotational dynamics for a spacecraft moving
along Lyapunov orbits about L1 and L2. Thus, for completeness, the
rotational equations of motion are derived. First, define the location
of the infinitesimal mass dm relative to the b frame

rdm � � xdm ydm zdm �T

and denote the body inertia matrix as �I�B∕B� , where B� denotes the
body center of mass. Assuming the b frame is aligned to the body
principal axes (relative to the center of mass), the inertia matrix
reduces to a diagonal form

�I�B∕B� �

2
4 I1 0 0

0 I2 0

0 0 I3

3
5 (9)

Adopting Kane’s method, the rotational dynamics are derived from
Eq. (5). The body angular velocities themselves (relative to an inertial
frame) can be employed as generalized speeds; therefore, the partials
matrix ∂Iωb∕∂u is equal to

∂Iωb

∂u
�

2
4 1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

3
5T

Additionally,

Iωb � �ω1 ω2 ω3 �T

The external moment vector of Eq. (5) only comprises the
gravitational moment exerted by the two attractors, which, at the
second-order approximation, is equal to (see [19])

M � 3μ1
d5

Z
m
�rdm × db�db · rdm dm� 3μ2

r5

Z
m
�rdm × rb�rb · rdm dm

(10)

where μi is the planetary gravitational constant of Pi; the vectors
db � � xbd ybd zbd �T and rb � � xbr ybr zbr �T represent the
position vectors of the spacecraft relative to the attracting bodies
using the b frame as the vectorial basis. They can be related to the
position coordinates � x y z �T relative to the planetary system
center of mass by

db � �A�Td; rb � �A�Tr (11)

where d � ��x� μ�yz�T and r � ��x� μ − 1�yz�T and �A� denotes
the rotation matrix from the b frame to the l frame. After some
algebra,

M � 3μ1
d3

2
4 zbdybd�I3 − I2�xbdz

b
d�I1 − I3�

xbdy
b
d�I2 − I1�

3
5� 3μ2

r3

2
4 zbr ybr �I3 − I2�xbr z

b
r �I1 − I3�

xbr y
b
r �I2 − I1�

3
5 (12)

thus, the equations describing the rotational dynamics are

I1 _ω1 � �I3 − I2�
�
3μ1
d5
zbdy

b
d �

3μ2
r5
zbr y

b
r − ω3ω2

�
(13)



I2 _ω2 � �I1 − I3�
�
3μ1
d5
xbdz

b
d �

3μ2
r5
xbr z

b
r − ω1ω3

�
(14)

I3 _ω3 � �I2 − I1�
�
3μ1
d5
xbdy

b
d �

3μ2
r5
xbr y

b
r − ω2ω1

�
(15)

With the further assumption of no rotations or displacements outside
of the orbital plane of the attractors, zbr � 0, ω1 � ω2 � 0, and the
rotation matrix �A� is only function of the pitch angle

�A� �
"
cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0

0 0 1

#
(16)

Consequently, the description of the attitude behavior reduces to a
single first-order equation

_ω3 �
3μ1
d5
k3��y2 − �x� μ�2� sin ϕ cos ϕ

� �x� μ�y�cos2 ϕ − sin2 ϕ��

� 3μ2
r5
k3��y2 − �x� μ − 1�2� sin ϕ cos ϕ

� �x� μ − 1�y�cos2 ϕ − sin2 ϕ�� (17)

where the inertia ratio

k3 �
I2 − I1
I3

(18)

is introduced to represent the body shape.

III. Results

Alternative to the formulation from Sec. II, the Lagrangian for-
malism can be employed to develop the equations of motion, as
presented in [14,15]. Using that formalism, an algorithm independent
from Kane’s method, can also be developed to reproduce the fully
coupled dynamics of the spacecraft. Thus, two algorithms that differ
in the choice of the kinematic variables, equations of motion, pro-
gramming language, and programmer are actually implemented in
this investigation. Of course, bothmethods address the same physical
motion. All the results presented in this paper can be equally obtained
by either formulation or algorithm. This capability also supports the
validity of the outcomes, which are independently replicated in two
different formulations.

A. Simulation Framework

This investigation is focused on understanding the attitude
behavior across the Lyapunov families of periodic orbits about L1

and L2 in the Earth–Moon system. These families display a quasi-
linear orbital response in the proximity of the equilibrium point;
however, far from the equilibrium or libration point, the trajectories
evolve under the effects of the fully nonlinear dynamics. In this
scenario, the orbital dynamics along the family have been widely
investigated, but little or no insight is available in terms of the natural
attitude response. As discussed previously, some investigations have
explored the problem, limiting the dynamic region of interest or
considering specific point solutions. This work addresses a more
global portrait of the phenomenon. Initially, the reference orbit is
selected among the members of the L1 or L2 family, some of
which are displayed in Fig. 2. The L1 family spans an amplitude Ay
(maximum displacement in the y direction over the single orbit) from
12,694 to 332,644 km, whereas theL2 family extends from 11,889 to
181,648 km in the Ay direction. Alternatively, the L1 family covers a
range in orbital period from 11.77 to 31.72 days; the L2 family of
orbits ranges from 14.69 to 26.49 days.
In the next step, the spacecraft model is introduced. When the

dynamics are planar, the displacements and the rotations of the

vehicle only occur in the orbital plane of the attracting bodies. In such
a case, assuming the b frame to be aligned with the body principal
directions, only the inertia ratio k3 defined in Eq. (18) (rather than the
entire inertia tensor) is required to describe the rigid body distribution
of mass, as modeled in Sec. II.C. By definition, the inertia ratio k3
cannot be greater than one or smaller than −1. The inertia ratio k3
controls the rotational dynamics regardless of the body shape, and the
outcome is independent of the actual physical geometry of the
spacecraft. However, to facilitate visualizing the physical impli-
cations of k3, the spacecraft is assumed, without limiting the results,
to be a rectangular plate lying in the orbital plane of the primaries. The
plate possesses a uniform distribution of mass and the b frame is
attached to the center of mass of the structure. The sides of the
rectangle are aligned with the coordinates axes of the b frame. Thus,
the b frame also represents the principal inertia axes. Given this
configuration, k3 � 1 represents a rod aligned along b̂1 (the b̂2
dimension disappears), k3 � −1 represents a rod aligned along b̂2
(the b̂1 dimension disappears), and k3 � 0 denotes a square plate.
Varying the value of k3 from zero to one, or −1, continuously
stretches the initial square to a rectangle and eventually to a rod.
Finally, the spacecraft is located on the line through P1 and P2 (l̂1

axis) at the initial time. Specifically, the vehicle is placed on the left
side of the equilibrium point, whereas the b frame is aligned with the
l frame. At t � 0, the body also appears to possess no initial angular
velocity when observed in the l frame. Maintaining these initial
conditions, different simulations are completed by varying the ref-
erence orbit along the members of the family and by testing different
spacecraft topologies via the variation of k3 within the range �−1; 1�.
In a set of infinite many combinations, this specific set of initial
conditions is preferred because the principal axis of minimum inertia
(for k3 > 0) is initially aligned with the Earth–Moon line, which
would represent a stable configuration if the spacecraft were to be
artificiallymaintained along the same line. An increment of the initial
pitch angle, currentlyϕ�t � 0� � 0 deg, wouldmore likely trigger a
diverging response. Similarly, moving the initial position of the
spacecraft along the orbit would bring the vehicle closer to theMoon,
which appears as a more sensitive dynamic environment. A large
number of simulations are completed by varying the body shape k3
and the reference Lyapunov orbit. Because each Lyapunov orbit is
uniquely represented by its amplitude in the y or l̂2 direction Ay, the
results are represented in terms of an Ay versus k3 map. An attitude
map essentially is a visual display of regions where the orientation
remains aligned with respect to the l frame (which represents the
rotating frame in theCR3BP scenario) and, in contrast, regionswhere
the orientation is changing relative to the l frame. Specifically, in
planar dynamics, the pitch angle ϕ is the only angle necessary to
describe the spacecraft attitude. Thus, the attitude maps reflect the
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time history for ϕ over one or more revolutions. On the map, the
maximum pitch angle in the orientation history is reported by colors
coding; a cutoff might be applied for a maximum value over an
arbitrary threshold.

B. Mapping L1 Lyapunov Orbits

The first map to be produced explores the planar Lyapunov family
about L1. Figure 3 represents the global response in ϕ, over one
revolution, for each Lyapunov reference orbit. Darker colored areas
correspond to conditions of motion where the body frame stays
closely aligned with the rotating frame of the CR3BP, over one
revolution. The darkest color corresponds to a rotation relative to the
initial conditions of 0 deg (ϕ � 0 deg for all the simulation time).
However, a vehicle with fixed orientation relative to the l frame is
rotating about 13 deg ∕day in the Earth–Moon (E-M) system relative
to an inertial observer, such as the I frame. For instance, over a
Lyapunov orbit with a period of 11 days, a spacecraft that maintains a
fixed orientation in the l frame actually undergoes a rotation of
143 deg per revolution, as observed from the I frame. Therefore, dark
areas predict a bounded response in the attitude as observed relative to
the l frame. Conversely, lighter areas are regions where the space-
craft orientation, in terms of pitch angle, is changing significantly
relative to the CR3BP rotating frame. The lightest color on the map
highlights angles greater than 90 deg relative to the initial orientation,
over one revolution. From the map in Fig. 3, three clear regions of
bounded responses over one orbit period appear; the expression
“stable” is employed for a bounded response in the pitch angle ϕ as
measured relative to the l frame. Thus, a first stable zone is the
vertical band centered around k3 � 0. For k3 � 0, the spacecraft is a
perfect square and the gravitational torque (at the second-order
approximation) is zero, supporting the “stability” of this region. A
second region of bounded motions is the dark band near Ay � 0 km
and k3 > 0 (the bottom-right part of the plot); this region corresponds
to the dynamic region investigated by Wong et al. [8], who examine
quasi-linear orbits as a reference path. On a quasi-linear Lyapunov
orbit, the oscillations of the pitch angle have limited amplitude as
long as the minor inertia axis is initially aligned with the line through
the primaries; in the given kinematic framework, that orientation
corresponds to a positive k3 value. Figure 4 shows a sample of quasi-
linear Lyapunov orbits and the correspondent pitch angle solution.
For the sake of completeness, a resonant condition in k3 does exist in
this motion regime [8]. Nonetheless, the amplitude of the oscillations
grows quite slowly, such that the increment is not noticeable over one
period in a map and this particular region appears as stable. As first
observed by Knutson and Howell [11], a completely opposite
behavior arises when nonlinearities in the orbital motion are in-
corporated (i.e., when the orbital amplitude increases). This behavior

corresponds to the lightest area on the right side of the map, which
denotes an attitude history diverging from the initial orientation. As
discussed by Guzzetti et al. [14,15], the transition between the two
regimes can be triggered as function of the orbit size as well as the
body topology, but no specific characterization of the transition was
previously provided. Moreover, it was postulated in [14,15] that it
was not possible to naturally maintain the initial alignment of the
body frame relative to the rotating frame over large Lyapunov orbits
for elongated structures. The map confirms the existence of such a
transition and also better characterizes the phenomena. A clear
picture of the dynamics was not necessarily apparent when only
considering specific test cases, as accomplished in the previous
investigations.
New information also emerges from the map in Fig. 3. First, the

shift fromone regime to the other appears smooth. The smoothness of
the transition suggests that small uncertainties in the investigated
parameters do not lead to a drastic and sudden change in the attitude
behavior. Second, quite unexpectedly, a third dark slightly diagonal
band of small librations emerges from the map for a narrow set of
Lyapunov orbits (near amplitudes Ay ≈ 1.1 × 106 km). Even in
certain large reference orbits, spacecraft with specified inertia ratios,
which lie on the dark line, remain relatively stable in orientation with
respect to the CR3BP rotating frame. As visible on the map (light
areas), the pitch response for elongated bodies (jk3j > 0.3) along
large Lyapunov orbits is generally unstable; however, the dark
regions offer bounded solutions in a truly nonlinear orbital dynamics
model for a fairly wide range of k3 values.Moreover, negative as well
as positive values of k3 are included; this observation implies that the
spacecraft could be stretched in both the coordinate directions rel-
ative to the b frame and small rotations might still exist. Beyond the
horizontal dark band, the spacecraft always rotates more than 90 deg
from the initial condition, if it possesses a geometry sufficiently
extended in the b̂2 direction, which is the direction initially or-
thogonal to the line throughP1 − P2. Different space structures, such
as deep space gateway facilities or astronomical observatories [20],
are proposed for flight in the vicinity of the Lagrangian points. The
mass distribution of such architectures is unlikely axisymmetrical in
the orbiting plan, yielding an inertia ratio k3 certainly not zero. Such
space structures or long-term facilities or habitats would be likely
similar to those already flying near Earth, such as the International
Space Station (k3 ≈ 0.2, [21]) or the Hubble space telescope
(k3 ≈ 0.6).¶

Given the novelty of the horizontal stable zone about Ay ≈ 1.1 ×
106 km in the attitude map, further steps are necessary to understand
the coupling between the nonlinear orbital dynamics and the attitude
response in these regions. The orbits involved in this phenomenon are
depicted in Fig. 5: They span an amplitude range Ay from 101,108 to
114,621 km, one that corresponds to an interval from 17.57 to 19.04
days in terms of orbital period. It is worth noting that this span of
orbital periods is located in the neighborhood of the two-thirds
resonant ratio of the lunar period; ap∕q resonant ratio implies that the
spacecraft accomplishes q revolutions along the reference orbit (in
the l frame) in the same time interval that the Moon requires to
complete p orbits about the Earth (in the I frame). In such a res-
onance, the Earth, the Moon, and the spacecraft return to the same
inertial configuration afterp lunar periods.Also, across this region an
inversion of the direction of spin rotation occurs after the close
approach to the Moon at 0.5 revolutions. Consider the example from
Fig. 6 (which corresponds to k3 � 0.6): Avehicle transiting along the
smaller orbit in this amplitude region eventually spins counter-
clockwise (as observed in the rotating frame) after departing the l̂1

axis at the crossing closest to the Moon. Conversely, the ultimate
direction of spin is clockwise, when the spacecraft is moving in the
larger orbit in Fig. 6. Between these opposite behaviors, the pitch
dynamics seem to transition smoothly from one limit to the other,
generating the set of bounded responses that characterize this zone.
Also, the nature of the stable response in this region is highly

Fig. 3 Orientation response in ϕ forL1 Lyapunov family (E-M system)
over one revolution.

¶Data available online at http://www.pha.jhu.edu/groups/hst10x [retrieved
May 2014].
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nonlinear and significantly differs from what it is observed in the
quasi-linear zone (as seen in Fig. 4).
A further insight is offered from the eigenvalue analysis along the

Lyapunov family. For eachmember of this family of periodic orbits, it
is possible to compute the monodromy matrix and the associated
eigenvalues. Given the symplecticity of the monodromy matrix, the
eigenvalues occur in reciprocal pairs: One real pair is associated with
the existence of planar manifolds, one unitary pair is associated with
the periodic nature of the orbit and the existence of a family, and one
pair corresponds to the out-of-plane dynamics. For planar Lyapunov
orbits, the latter pair determines the changes of the eigenstructure
throughout the family. Such mutations are usually investigated be-
cause they correspond to orbital bifurcations, but the attitude be-
havior may also relate to the eigenstructure. As apparent in Fig. 7, the

orbits forming the stable horizontal band in the attitude map cor-
responds to the vicinity of the second of the Lyapunov family
bifurcations. Specifically, the system mutates from hyperbolic to
nonhyperbolic as the considered pair of eigenvalues shifts from the
real axis to the unitary circle in the Argand–Gauss diagram. It is also
noted that the quasi-linear stable region (terminating roughly at
Ay ≈ 27; 890 km) encompasses one earlier bifurcation along the
family (i.e., the first one at Ay ≈ 21; 640 km). Generally speaking,
bifurcations indicate zones where the system is subject to a change of
the dynamic regime; thus, it is reasonable that the transition in the
orbital regime appears linked to the transition in the attitude regime.
However, further investigations are necessary to completely under-
stand this mechanism.

C. Additional Maps

Under the coupled regime, any spacecraft naturally experiences a
drift from the reference orbit as a consequence of its finite dimension.
Therefore, the actual path nominally loses the periodicity property of
the Lyapunov reference trajectory. No corrections are applied to
restore the periodicity of the reference motion under the coupled
dynamics in this analysis. As discussed previously [11,14,15], bodies
with dimensions that are small compared with the distance from the
attractors experience a significantly smaller drift from the orbit. Even
if such deviation eventually leads to divergence because of the
unstable nature of the nominal Lyapunov trajectories, within the time
window observed here, the effects on the overall dynamic picture are
negligible. Considering a space structurewith a characteristic dimen-
sion of 100 m, Fig. 8 displays a comparison of the mapping obtained
on the strictly nominal Lyapunov orbits and the mapping for the
actual path, which include the drift from the reference. In Fig. 8, no
visible differences are apparent. Thus, the lack of orbital periodicity
over this time scale is not the significant factor influencing the
attitude.
Thus far, the attitude map essentially offers a view of the natural

attitude dynamics across the L1 family after one revolution along
each orbit. It is immediately evident that both the subject and the
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“exposure time” of such a portrait can be modified. First, the focus is
maintained on the L1 planar Lyapunov family, while increasing the
observation time to two revolutions. No correction to the orbit or
attitude is applied over the two revolutions. As a result, the attitude
map in Fig. 9 emerges. Compared with the previous plot in Fig. 3, an
overall reduction of the dark stable areas is perceived; specifically, the
central horizontal band is disappearing and the bottom-right region is
squeezed by an inflating unstable light zone. The vanishing of the
horizontal band ismore pronounced on the left side of themap,which

corresponds to k3 < 0, such that this region is now nearby completely
(besides a minimal trace of the horizontal band) dominated by
unbounded responses. Additionally, the transition to unbounded
librations along the edge of the central vertical band becomes sharper.
Given the current framework for the analysis, a structure mainly
elongated in the b̂2 direction necessarily undergoes a natural rotation
greater than 90 deg over a longer period. Conversely, spacecraft
whose major extension is identified by b̂1 (i.e., k3 > 0) still preserve
some bounded solutions. However, it is noted that the bottom-right
region, related to the pitch responses addressed by Wong et al. [8],
significantly reduces in size and alters in outline. The linear behavior
in Wong et al. [8] predicts an oscillatory response with limited
amplitude, unless k3 equals a critical value that triggers a resonance
between the orbital frequency and the attitude librations. In a fully
nonlinear regime, these predicted solutions hold true up to a certain
amplitude of the quasi-linear orbits, as visible in Fig. 3. Increasing the
integration time reduces the maximum orbit amplitude that guar-
antees a rotation less than 90 deg over the observation interval. In
addition, the region in the vicinity of the linear resonant k3 value (i.e.,
k3 ≃ 0.36 in the Earth–Moon system) appears more unstable than
observed over the time window of one revolution, as deducible from
the light bulge that penetrates in the bottom-right dark area of Fig. 9,
such that the latter zone almost splits into two regions.
Of course, not only the integration time but the orbital reference

corresponding to the map can also be changed. Thus, the same
procedure and the same structure of the initial conditions yields
similar depictions for the L2 family. In this case, the family spans an
amplitude range in Ay from 11,889 to 181,648 km, which cor-
responds to a set of orbital periods from 14.69 to 26.49 days. The
resulting attitudemap appears in Fig. 10 for one revolution.Under the
set of initial conditions investigated, there is no clear evidence of a
central stable horizontal band in the L2 family; a more predictable
portrait comes to light. This map is characterized only by the central

Fig. 8 Comparison of attitude mapping on reference and perturbed trajectories.

Fig. 9 Orientation response in ϕ forL1 Lyapunov family (E-M system)

over two revolutions.

Fig. 10 Orientation response inϕ forL2 Lyapunov family (E-Msystem)
over one revolution.
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vertical band associated with a value k3 � 0 and the bottom-right
region, corresponding to the quasi-linear behavior; however, the
latter area covers a larger extension than its counterpart in theL1 map.
Both the attractors P1 and P2 are located on the same side relative to
the orbit, thus, the dynamic behavior more closely resembles a single
attractor regime. To complete the analysis, the eigenvalue structure of
the L2 Lyapunov family of orbits is also investigated. Figure 11
demonstrates that the system shifts from hyperbolic to nonhyperbolic
(or vice versa) along the family, similar to the observations in the L1

family counterpart. However, these mutations do not seem to affect
the attitude behavior as observed on the current map. Nonetheless,
extending the integration to two revolutions, new features emerge, as
displayed in Fig. 12. Over the longer period, the bottom-right area

associated with the quasi-linear motion contracts, but a small double-
spike-like region remains for larger Ay amplitudes. The overall
double-spike-like region extends approximately from Ay � 26; 800
to Ay � 43; 800 km, which locates this zone in the neighborhood of
the first bifurcation of theL2 Lyapunov family (atAy ≃ 34; 140 km).
At this bifurcation, the system changes from nonhyperbolic to
hyperbolic. A similar outcome is also observed in the L1 Lyapunov
family; a double-spike-like region can be located within Ay �
28; 900 and Ay � 18; 900 km on the map of Fig. 9, which is in the
neighborhood of the first bifurcation of the L1 Lyapunov family (at
Ay � 21; 640 km). Further analysis is warranted to better understand
the attitude response and its relationship to the eigenvalue structure of
the orbital dynamics.

D. Axisymmetric Spinning Satellite

Spinning the spacecraft about one of its principal axes is a common
practice to inertially stabilize the pointing direction along that same
axis. For spacecraft in a Keplerian orbit about a single body, the

vehicle often spins about the b̂3 axis. The spin axis b̂3 and the vector
normal to the orbit define a plane, if they are not aligned (there exists a
nonzero nutation angle). The precession of that plane relative to an
inertial or local reference might be investigated for different spin

rates. As the spacecraft spins to maintain the b̂3 pointing, the ori-

entation of the b̂1 and b̂2 axes is usually less relevant; for this reason
also, such analysis best applies to axisymmetric satellites. In the

current investigation, the spacecraft is initially spinning about b̂3,
relative to the inertial frame, at the same rate of rotation as the Earth–
Moon line (≈13 deg ∕day), such that ϕ � 0 deg for all time if there
were no external torques. However, the precession of the plane

defined by b̂3 and the orbit normal is a significant three-dimensional
phenomenon, beyond the scope of the present work. Further analysis
would be necessary to clarify the three-dimensional effects and the

impact of different initial spin rates about b̂3. Conversely, this paper is

Fig. 12 Orientation response inϕ forL2 Lyapunov family (E-Msystem)

over two revolutions.
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focused on the precession of the b̂1 axis projection in the orbiting
plane relative to the Earth–Moon line, which is described by the pitch
angle ϕ. Thus, for completeness, any changes in the stability chart of

Sec. III.B changes as the vehicle spins about b̂1 is considered. This
analysis is conducted on an axisymmetric spacecraft spinning on the

axis of symmetry. Let b̂1 be the axis of symmetry andω1 the spin rate.
In that respect, the inertia ratio k3 � 1 represents a rod-like structure,
such that the smallest moment of inertia is about the axis of
symmetry; conversely, k3 � −1 denotes a disk-like structure, such
that the largest moment of inertia is about the axis of symmetry.
Figure 13 reports some illustrative responses across orbits of theL1

Lyapunov family as the spin rateω1 and the inertia ratio k3 vary. Each
orbit is identified by its Ay amplitude; Ay ranges from 12,695 to
210,813 km.As evident in Fig. 13a for k3 � 1, a small spin ratemight
not significantly affect the pitch angle dynamics: The response over
one revolution stays bounded for a spacecraft orbiting a small
amplitude L1 Lyapunov orbit; conversely, the motion diverges
quickly as the amplitude of the orbit increases. During the transition
to larger orbits, it is also possible to observe a bounded solution that
belongs to the horizontal stable region discussed in Sec. III.B. If the
spacecraft is revolving sufficiently fast, the spin axis can be inertially
stabilized so that it would be pointing a fixed direction in the inertia I
frame. An axis fixed in the inertial frame would appear linearly
precessing in the rotatingl frame. This phenomenon can be observed
in Fig. 13d, asϕ describes the orientation of the vehicle relative to the
l frame. The threshold value ofω1 that inertially fixes b̂1 depends on
the mass distribution of the structure; ω1 � 2π seems to be already
effective on a disk-like structure with k3 � −1, as seen in Fig. 13b.
Nonetheless, the same spin rateω1 � 2π does not alter the dynamics
of a rod-like structure with k3 � 1 (see Fig. 13a). However, the
transition of the pitch angle motion from solutions essentially not
impacted by ω1 to those that reflect linear precessing motions is not
sharp. Further studies are warranted to investigate the intermediate
regime. Moreover, the close passage by theMoon at 0.5 revolution is
a relevant dynamic event for larger Lyapunov orbits. In fact, not only

can it generate the large oscillations of the pointing direction b̂1
depicted in Fig. 13b, but also the close passage can provoke a
divergent motion along the larger orbit (Ay � 210; 813 km) in

Fig. 13c.
The Earth–Moon system rotates approximately 13 deg ∕day

relative to an inertial observer. Thus, relative to the Earth–Moon line,
an axis that is inertially fixed is likely to precess more than 90 deg
over one period of a Lyapunov orbit; in such a case, the ϕ solution
should appear as unstable in the mapping presented in Sec. III.B.
Also, as supported by Fig. 13, lower values of k3 should appear as
unstable on the map at lower ω1; to recall, the lower the inertia ratio,
the lower the rate to inertially point the spin axis. Consistently, the
attitude maps in Fig. 14 demonstrate that the alignment with the
Earth–Moon line is lost at lower angular rates ω1 for lower inertia
ratios and the map fades from negative to positive values of k3.
Eventually, if the spacecraft is revolving sufficiently fast, any mass
configuration (i.e., any k3 value) will be becoming unstable and the
map will be fading to a uniform white.

IV. Conclusions

The overall goal of this research effort is a better understanding of
the attitude dynamics for a rigid spacecraft within the context of the
circular restricted three-body problem. The analysis is expanded to
fully nonlinear orbits while limiting the orbital motion to the planar
Lyapunov families aboutL1 andL2 in the Earth–Moon system. Also,
the vehicle is only free to rotate in the orbital plane. The equations
governing the spacecraft motion are derived via Kane’s method,
although a Lagrangian procedure yields a consistent set of equations
as well as the same response in a simulation algorithm. A large set of
simulations explores the attitude behavior across the families, as well
as different vehicle configurations. Results are summarized in terms
of attitude maps to identify regions (as a function of spacecraft
topology and orbit amplitude) where the body remains close to its
initial orientation as observed from the rotating frame. The maps not
only display features that are consistent with previous studies, but
unexpected solutions also emerge.
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