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1 Introduction

A traditional approach to morphodynamics and sediment trans-
port is based on an Eulerian framework where variables (solid
fluxes, concentrations, velocities of solid phase, and other param-
eters) are defined and measured over finite (and relatively large)
control volumes/areas, being often averaged over finite time
periods. Within this conventional approach, the involved vari-
ables are typically considered as continuous and “well-behaved”
with respect to time and space differentiation (i.e. as differen-
tiable). However, high space–time resolution required for the
analysis of morphodynamic processes at scales smaller than that
of a river reach (e.g. local scour processes, bedform evolution,
and gravel particle motion) often implies that the spatial and tem-
poral extensions at which variables are defined and/or measured
are not much larger than those of the particle motion, thus vio-
lating conventional continuum assumptions. Another example is
a near-threshold sediment transport when the movement of par-
ticles is sparse in space and intermittent in time, and thus it may
be difficult to assume the desired smoothness for the measured

quantities (e.g. Furbish et al. 2012). Thus, it is important that
the variables used in sediment transport studies are unambigu-
ously defined (including the scale of consideration), and intrinsic
limitations of these definitions are well understood and identi-
fied. Below we provide an example that helps to highlight this
issue.

Let us consider a volumetric bedload transport rate per unit
width (qbl) as a variable of interest. According to the current
practice, it can be expressed using two conventional forms (e.g.
Garcia 2008, in ASCE Manual on Practice 110, p. 68):

qbl = ubl cbl δbl (1)

and
qbl = Nbl wbl ubl (2)

where ubl is the particle (or solid) velocity, cbl is the sediment con-
centration, δbl is the thickness of bedload layer, Nbl is the number
of moving particles per unit bed area, and wbl is the particle vol-
ume. A number of conceptual issues arise from definitions (1)
and (2) which are highlighted below.
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(i) Should the quantities in Eqs. (1) and (2) be considered as
instantaneous or as time-averaged measures? In principle,
expressions (1) and (2) cannot be valid for both frameworks
simultaneously unless the quantities on the right sides of the
equations are uncorrelated.

(ii) The variable qbl is intrinsically defined as a flux through a
surface. Self-consistent evaluation for qbl should employ,
therefore, only quantities defined over the same surface.
This is, in principle, possible with Eq. (1), although in
practice volume-averaged quantities are typically used
(e.g. volumetric sediment concentration is used rather
than an areal concentration). As for Eq. (2), it employs
quantities that are intrinsically defined over a volume,
i.e. some volume and/or time averaging is implicitly
employed.

(iii) The bedload rate qbl is typically used in differential equa-
tions (e.g. the Exner equation). Under which conditions (e.g.
space and time resolution) can this variable be considered
smooth enough for spatial and time differentiation?

The example given above suggests that even well-established
and widely used concepts may require some special attention
if accurate and unambiguous definitions are desired. This, for
instance, may be needed if one tries to compare bedload defini-
tions and relationships available in the literature, which often
relate to different scales, from the particle scale to the river
reach scale (see, for example, Böhm et al. 2004, Ancey 2010,
Furbish et al. 2012). However, the scale issue is rarely explicitly
considered making the comparison task ambiguous.

The aim of this paper is thus to discuss and clarify some basic
definitions related to sediment transport, at least with respect
to the Eulerian kinematic variables. Specifically, we will (1)
propose univocal and self-consistent definitions for quantities
involved in the integral continuity equation for sediments, (2)
analyse their time/space (ir)regularity and their scale depen-
dence, and (3) compare relations for different descriptions. For
the sake of clarity, we will treat the problem in its simplest possi-
ble form (see next section for a discussion of basic assumptions),
as extensions to more general frameworks are straightforward.
In particular, we will not discuss quantities involved in the con-
servation equations other than the mass balance, although many
of the considerations proposed here could be extended to other
quantities (i.e. momentum, energy).

The paper is organized as follows. General definitions and
the framework used for the analysis are given in the next
section. Section 3 contains conceptual and mathematical body
of the paper where alternative forms for instantaneous and
time-averaged mass balances are derived (Sections 3.1 and 3.2)
and discussed (Section 3.3). In Section 4, the concepts are
further enlightened by applying them to an experimental exam-
ple. Finally, the definitions given in Section 3 are compared
in Section 5 with corresponding quantities proposed in other
studies.

2 General framework and definitions

To underpin our considerations, we use a general definition
sketch in Fig. 1a. The Eulerian form of the principle of mass
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Figure 1 Definition sketch. Qsl is suspended solid load; Qbl is bedload; Q is total solid discharge; Er is erosion rate; Dr is settling rate; er is
entrainment (pickup) rate; dr is deposition rate; and Voi are control volumes. All quantities (Qx, Er , Dr , er , and dr) are extensive variables calculated
over their respective surfaces. (a) Observation domain is divided into volumes whose boundaries coincide with interfaces between sediment layers.
(b) Domain is identified by single volume, without a priori subdivisions into layers or sub-domains



conservation (mass balance) of sediments with constant den-
sity, over a finite volume Vo and a finite time lag To, can be 
written as

V (t + To) − V (t) = Vin(t, To) − Vout(t, To) (3)

where V (t) is the volume of sediments within the control volume
Vo at time t, Vin(t,To) and Vout(t,To) are volumes of sediments
entering and exiting Vo through its boundary surface during the
time period from t to t + To, respectively. By dividing all terms
by To one obtains:

V (t + To) − V (t)
To

= Vin

To
− Vout

To
(4)

where terms Vin/out/To = Q
s
in/out can be interpreted as time-

averaged sediment fluxes through the input/output surfaces
(proper definitions for averaging will be given in Section 3.2),
and the term on the left represents the average rate of change of
sediment volume contained within Vo.

Equations (3) and (4) do not require any constraint for the
choice of Vo and To, which can be “small” or “large” with respect
to the sediment space and time scales. However, although the
quantities involved in Eqs. (3) and (4) are defined they may not be
well behaved depending on Vo and/or To. The explanatory con-
cept is depicted in Fig. 2, which illustrates a possible behaviour
of the time-averaged sediment flux Q

s
as a function of the inte-

gration time period To. In this sketch, the process is governed by
three time scales: the scale Tp = d/u is the time period needed
for a particle to cross the reference surface, where d and u are
particle diameter and velocity, respectively; the scale Ti is the
time period between arrivals of two subsequent particles at the
reference surface; and the scale Tbf is time period of bedforms.
The time scales in Fig. 2 are chosen to satisfy the condition
Tp < Ti � Tbf , i.e. it is assumed that there is a small-scale sep-
aration between Tp and Ti and a large-scale separation between
the particle scales Tp, Ti , on one hand, and bedform scale Tbf , on
the other hand. At To � Tp, the reference surface is crossed by

TbfTpTi Te3Te2Te1 log(To)

Q
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3

Q
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Figure 2 Qualitative representation of time-averaged sediment flux Qs

as a function of the integration time period To. Tp, Ti, and Tbf are charac-
teristic time scales for individual particle crossing, particles inter-arrival,
and bedforms, respectively. Grey shadings correspond to the intervals
where function is not well behaved. Meaning of Tε is explained in
Section 2 of the article

particles without interruptions producing a “smooth” flux. How-
ever, with increasing To, i.e. at scales comparable to the particle
scales Tp andTi, the average flux becomes ill-defined (first grey
area). At larger scales (i.e. To � Ti), the flux Q

s
assumes smooth

behaviour again preserving it until To reaches values comparable
to Tbf . At To � Tbf , the smoothness of Q

s
returns.

Thus, for the smallest values of the integration time period To,
the flux Q

s
is a smooth function representing the volume flux due

to the uninterrupted particle movement through the surface (Q
s
1

in Fig. 2). The flux Q
s

progressively decreases with increasing
To as the total cross-sectional area of the particles at the reference
plane decreases in time when To approaches Tp. For To > Tp, the
average flux Q

s
oscillates due to alternation of periods when no

particles are crossing the surface and periods when particles cross
the surface. Oscillations eventually disappear for larger To that
includes a large number of crossings, so that the time-averaged
sediment flux Q

s
becomes smooth again reaching Q

s
2. When To is

further increased, the fluctuations of the averaged sediment flux
due to bedforms appear, eventually vanishing at To � Tbf ,, with
Q

s → Q
s
3. In Fig. 2, we assumed that Q

s
2 corresponds to the flux

at the crests of bedforms, so that the time averaging over a series
of bedforms gives lower values for the average flux, leading to
Q

s
3 < Q

s
2.

The example in Fig. 2 highlights potential dependence of the
“instantaneous” sediment flux on the time scale of considera-
tion. From a conventional point of view, the “instantaneous”
sediment flux should be defined as Q = limTo→0 Q

s
leading to

the differential version of the mass balance:

dV
dt

= Qin(t) − Qout(t) (5)

where Q = limTo→0 Q
s = Q

s
1. In morphological models, how-

ever, the scale for the analysis is typically much larger than
particle-related scales. The concept of “vanishing” To in Q =
limTo→0 Q

s
is therefore operationally relaxed to finite values of

To. This relaxation can be interpreted, with the help of Fig. 2, as
a generalization of the “instantaneous” sediment flux by incor-
porating scale dependence of Q, i.e. Q = limTo→Tε

Q
s

where Tε

is a small but finite value representing scale of consideration
(Tε1, Tε2, and Tε3 in Fig. 2). Thus, the quantities Q

s
2 and Q

s
3 in

Fig. 2 may be considered as “instantaneous”, given that the anal-
ysis is performed within the corresponding “smooth” regions of
To. In contrast, the variables within the shaded regions of Fig. 2
although defined are not well behaved.

In this paper we will focus on the “instantaneous” fluxes
defined at Tε1, i.e. Q = limTo→Tε1�Tp Q

s
(Section 3.1). Although

inconvenient for practical applications, this scale of consider-
ation allows clarifying critical issues of scale effects on the
definitions of sediment quantities (Furbish et al. 2012, Ancey
and Heyman 2013), by upscaling to larger scales (e.g. from Tε1

to Tε2 to Tε3) through time integration (Section 3.2).
The discussion of the effects of the integration time To may be

repeated with respect to spatial scales representing the integration



volume Vo and the related surfaces in Eq. (4), eventually leading 
to the differential form of the mass balance in space. We omit this 
consideration here as conceptually it is similar to the discussion 
of the effects of To above.

As we are only interested in the sediment phase, it will be 
necessary to specify whether we are considering superficial or 
intrinsic-averaged quantities (definitions are given below). Fur-
ther specifications may be necessary to differentiate between 
moving and non-moving sediments, or bedload versus suspended 
load. For such demarcations, approaches making use of a clipping 
function γ (x, t) can be adopted (e.g. Nikora et al. 2013); here 
and in the following x (bold) indicates the space coordinate vec-
tor. Specifically for the solid phase (e.g. Coleman and Nikora 
2009), γ (x, t) is defined in space and time as

γ (x, t) = 1 if a point (x, t) is occupied by solid,

γ (x, t) = 0 otherwise. (6)

Note that in different research areas, the function γ (x, t) is
also known as “characteristic”, “phase distribution”, or “phase
indicator” function (e.g. Lhuillier 1992, Zhang and Prosperetti
1994). Clipping functions are useful for defining (integral) quan-
tities which assume some physical property within selected
sub-domains of the integration domain (e.g. solids as above).
Consequently, definitions for superficial 〈θ〉s and intrinsic 〈θ〉
volumetric averages of a variable θ are expressed as

〈θ〉s = 1
Vo

∫
Vo

θ(x, t)γ (x, t)dV = 1
Vo

∫
V

θ(x, t)dV (7)

〈θ〉 = 1
V

∫
Vo

θ(x, t)γ (x, t)dV = 1
V

∫
V

θ(x, t)dV (8)

where the solid volume V within the total volume Vo is given by

V = V (t) =
∫

Vo

γ (x, t)dV (9)

Analogous expressions can also be written for superficial θ
s

and
intrinsic θ time averages. For our analysis, in addition to γ (x,t)
in Eq. (6) we also define:

γm(x, t) = 1 if point (x, t) is occupied by moving solid,

γm(x, t) = 0 otherwise (10)

γb(x, t) = 1 if point (x, t) is occupied by still (bed) solid,

γb(x, t) = 0 otherwise (11)

so that γ (x, t) = γm(x, t) + γb(x, t).
Basic balance formulations (3) to (5) need to be expressed

in terms of fundamental variables. One of them is the solid

concentration within Vo that can be defined using γ (x, t) as

φV = V (t)
Vo

=
∫

Vo
γ (x, t)dV

Vo
(12)

As the validity of the conservation of mass has no limitation,
we will try to maintain the analysis as general as possible. How-
ever, some (minor) restrictions will be introduced in order to
limit ramifications of the discussion and complications of the
nomenclature. Until now, only the condition of constant sedi-
ment density is assumed, so that mass balances for the solid phase
can be reduced to volumetric balances. Further assumptions are
explained below.

(i) No distinction between bedload and suspended load will be
considered. This separation could be introduced by specify-
ing additional clipping functions similar to those defined by
Eqs. (6), (10), and (11). For the sake of simplicity, however,
our discussion will relate to bedload only.

(ii) Although conceptually the analysis is valid for a fully three-
dimensional space [x, y, z], we will consider particle motion
in the longitudinal direction x only, i.e. focusing on the longi-
tudinal component of the velocity vector of the solid phase.
In addition, the boundaries of control volumes employed
are such that only yz planes are crossed by moving par-
ticles. These restrictions are posed solely to avoid using
vectorial notations; generalization of results is conceptually
straightforward.

Finally, we observe that there is no limitation for the choice
of the size and position of the domain Vo. Size can span from
a sub-particle domain to large volumes containing many par-
ticles (as in classical continuum approach). In this paper we
will not use preferential volumes (Vo1, Vo2, Vo3) of the sketch in
Fig. 1a, where their boundaries coincide with interfaces between
sediment layers with different behaviour. Instead, volumes con-
sidered are fully generic (Fig. 1b) while phases are distinguished
by means of appropriate clipping functions (i.e. liquid vs. solid,
or still solid vs. moving solid). The main advantages of such an
approach are: (i) it does not require identifying layers and inter-
faces a priori and (ii) it can be applied without special care at
any scale, including a particle scale, where a clear definition of
interfaces between layers may become cumbersome.

3 Solid discharge definitions: alternative forms

3.1 Instantaneous fluxes

Following definitions given in the previous section, the solid
flux through a boundary can be expressed using surface
integration as

Q =
∫

So

u(x, t)γ (x, t)dS (13)



where So is the area of the inflow/outflow surfaces and u(x, t) is 
the longitudinal velocity of the solid phase (i.e. within a particle). 
Variants of Eq. (13) are commonly used in continuum mechanics; 
see Furbish et al. (2012) for a specific discussion with respect to 
sediment transport. By substituting Eqs. (9) and (13) into Eq. (5) 
we obtain:

d
dt

∫
Vo

γ (x, t)dV =
∫

So,in

u(x, t)γ (x, t)dS

−
∫

So,out

u(x, t)γ (x, t)dS (14)

Considering solid fluxes it is also useful to employ (phase-) areal
averages:

{θ}s = 1
So

∫
So

θ(x, t)γ (x, t)dS = 1
So

∫
S(t)

θ(x, t)dS (15a)

{θ} = 1
S(t)

∫
So

θ(x, t)γ (x, t)dS = 1
S(t)

∫
S(t)

θ(x, t)dS (15b)

{θ}sm = 1
So

∫
So

θ(x, t)γm(x, t)dS = 1
So

∫
Sm(t)

θ(x, t)dS (15c)

{θ}m = 1
Sm(t)

∫
So

θ(x, t)γm(x, t)dS = 1
Sm(t)

∫
Sm(t)

θ(x, t)dS

(15d)

where the brackets {·} denote areal averaging, S(t) is the portion
of So occupied by the solid phase at time t, and Sm(t) is the portion
of So occupied by the moving solid phase at time t (see Fig. 3).
We also define the sediment areal concentrations φA and φAm as
the areal counterparts of φV , i.e.:

φA = 1
So

∫
So

γ (x, t)dS = S(t)
So

(16a)

φAm = 1
So

∫
So

γm(x, t)dS = Sm(t)
So

(16b)

With Eqs. (15a)–(15d), we have {θ}s = φA{θ} and {θ}sm =
φAm{θ}m.

It should be noted that S(t) and φA(t) are continuous functions
of time, while Sm(t) and φAm(t) are not always so. Let us consider,
as an example, a particle crossing surface So which is entrained
at time t: in the portion of space occupied by the particle we
haveγ (t) = γ (t + dt) = 1, so that S(t) changes smoothly during
entrainment, as a consequence of the infinitesimal displacement
of the particle. Corresponding values for γm, on the contrary,
change from γm(t) = 0 to γm(t + dt) = 1 thus causing a finite
increase for Sm(t) within an infinitesimal time lag.

Using Eqs. (14)–(16) the sediment discharge over surface So

can be expressed as

Q =
∫

So

uγ dS =
∫

S(t)
u dS = So {u}s = SoφA {u} (17a)

Q =
∫

So

uγm dS =
∫

Sm(t)
u dS = So {u}sm = SoφAm {u}m (17b)

Sm(t)S(t) SO

Figure 3 Definition of the different portions of the outflow surface for
the volume Vo : So is complete surface; S is portion of So occupied by
solid phase; Sm is portion of So occupied by moving solid phase

Equations (17) implicitly indicate that {u}s = {u}sm. In gen-
eral, integrals calculated over Sm(t) (moving particles) differ from
those calculated over S(t) (all particles), i.e. {θ}s �= {θ}sm and
γ �= γm. However, for the sediment velocity we have

∫
S u dS =∫

Sm
u dS + ∫

S−Sm
u dS = ∫

Sm
u dS as

∫
S−Sm

u dS ≡ 0 and thus
{u}s = {u}sm.

Using Eqs. (12) and (17), the instantaneous integral mass
balance (5) can be alternatively expressed as

Vo

So

dφV

dt
= {u}s

in − {u}s
out = {u}sm

in − {u}sm
out (18a)

Vo

So

dφV

dt
= (φA{u})in − (φA{u})out (18b)

Vo

So

dφV

dt
= (φAm{u}m)in − (φAm{u}m)out (18c)

where all terms of the volumetric mass balance have been divided
by the boundary surface So. Equations (18a)–(18c) involve differ-
ent forms for the solid fluxes. Equation (18a) is expressed in terms
of superficial quantities, either over all particles or only mov-
ing ones; Eq. (18b) makes use of intrinsic quantities calculated
over all particles; and Eq. (18c) is referred to intrinsic quanti-
ties over moving particles. A further variety of expressions may
be obtained by dividing the mass balance terms by “intrinsic”
surfaces S and Sm instead of So employed in Eqs. (18a)–(18c).

An interesting alternative to formulation (18c) can be derived
by noticing that this expression uses a mixture of two variable
types: (i) defined over all particles within the volume Vo (con-
centration φV ), and (ii) defined over moving particles within the
surface So (concentration φAm and velocity {u}m). By separating
moving and still particles within the volume Vo we can obtain:

dV
dt

= d
dt

∫
Vo

γ (x, t)dV = d
dt

∫
Vo

(γm(x, t) + γb(x, t))dV

= dVm

dt
+ dVb

dt
(19)

where Vm and Vb are the volumes of moving and still particles
within the control volume Vo, respectively. Similar to the total
concentration φV defined by Eq. (12), we can also consider con-
centrations of the moving (φVm) and still (φVb) particles. The time



derivative of Vb can be expressed by noticing that it corresponds 
to the net exchange rate among the “still” and “moving” phases, 
i.e.:

dVb

dt
= dr(t) − er(t) (20)

where er and dr are volumetric entrainment and deposition rates
within the reference volume Vo. The integral mass balance (18c)
then reads:

dVm

dt
= (Qin − Qout) − dVb

dt
= (Qin − Qout) + (er − dr) (21)

or

Vo
dφVm

dt
= So (φAm{u}m)in − So (φAm{u}m)out + (er − dr) (22)

Equation (22) has been derived from a mass balance over a
generic volume containing moving and still particles (Fig. 1b).
It is formally equivalent to a balance over a volume Vo = Vo1 +
Vo2 + Vo3 in the sketch of Fig. 1a. However, the entrainment
and deposition rates in Eqs. (20)–(22) do not represent physical
fluxes across interfaces (as in Fig. 1a); rather they express rates
of change of status (still or moving) within the reference volume.

3.2 Time-averaged forms

Expressions for the time-averaged balance or, equivalently, the
balance over a finite time period Tf , may be similarly derived
from Eq. (4) or (5). Note that the averaging is assumed over a
time period larger than that used to define an “instantaneous” flux,
i.e. Tf > Tε1. The volumetric term requires no further discussion
in addition to the expressions already presented in the previous
sections. A time-averaged flux terms can be expressed as

Q
s
in/out = 1

Tf

∫ t+Tf

t
Qin/out(τ )dτ = Vin/out

Tf
(23)

so that

V (t + Tf ) − V (t)
Tf

= Q
s
in − Q

s
out (24)

where τ is an integration variable. Equations (23) and (24) make
use of superficial time averaging; however, the intrinsic averag-
ing performed only over time periods when particles are present
at the in/out surfaces may be more beneficial. Similar to Nikora
et al. (2013), we define the time porosity φTμ = Tμ/Tf where the
quantity Tμ is the part of the total averaging period Tf when the
surface So was crossed by solid particle(s). In turn, the quantity
(Tf − Tμ) is the remaining part of Tf when the surface So was
free from the particles. As in the section above, the time averages
can be defined over all particles or over moving particles only.
Consequently, the counterparts of Eq. (24), which make use of

intrinsic time averages, are:

V (t + Tf ) − V (t)
Tf

= (
φTμQ

)
in − (

φTμQ
)

out (25)

V (t + Tf ) − V (t)
Tf

=
(
φTμmQ

m
)

in
−

(
φTμmQ

m
)

out
(26)

where

Qin/out = 1
Tμ

∫ t+Tf

t
Qin/out(τ )dτ = 1

Tμ

Vin/out (27)

Q
m
in/out = 1

Tμm

∫ t+Tf

t
Qin/out(τ )dτ = 1

Tμm
Vin/out (28)

The quantity Tμm and the corresponding time porosity
φTμm = Tμm/Tf are defined for moving particles only while Tμ

and φTμ = Tμ/Tf refer to any particles.
Our final expressions for the time-averaged integral mass

balance can be derived by comparing Eqs. (24)–(26) with instan-
taneous balances given by Eq. (18). Combined space and time
integration/averaging offers nine alternatives based on three
averaging forms: (i) superficial, (ii) intrinsic over all particles,
and (iii) intrinsic over moving particles (as {u}s = {u}sm there
is no need for considering superficial integrals over moving
particles only). Thus, we can derive 3(space) × 3(time) = 9
alternative versions of the flux terms in the balance equation
(where the volumetric term is kept the same):

Q
s = 1

Tf

∫ t+Tf

t
Q(τ )dτ = So{u}ss = SoφA {u}s = SoφAm {u}ms

(29a)

Q = 1
Tμ

∫ t+Tf

t
Q(τ )dτ = So{u}s = SoφA {u} = SoφAm {u}m

(29b)

Q
m = 1

Tμm

∫ t+Tf

t
Q(τ )dτ = So{u}sm = SoφA {u}m

= SoφAm {u}mm
(29c)

The interrelationships between different flux forms are
given by

Q
s = φTμQ = φTμmQ

m
(30)

In principle, there is no preference among the different expres-
sions for the fluxes in Eq. (29) as they all contain the same infor-
mation, although differently distributed between the velocity and
space and/or time porosity (concentration) terms.

Further forms of the sediment flux stem from its decom-
position into a sum of the mean and fluctuating parts,



such as

Q
s = SoφA {u}s = So

(
φA

s{u}s + φ′s
A {u}′ss)

(31)

where φ′s
A and {u}′s are deviations of the instantaneous variables

from mean values (i.e. prime denotes fluctuations). As differ-
ent strategies for the time averages are possible, corresponding
residual fluctuations require to be differentiated from each other
(as they may have different meaning). Note that the decomposi-
tion into fluctuating and mean components is most meaningful
for intrinsic variables as superficial averages my lead to a non-
zero correlation term even if the physical variables are constant.
Possible relevance of such decompositions will be discussed in
Section 4.3.

3.3 Discussion

In the sections above we have shown that the integral balance of
sediment mass (volume) can be written in different forms. The
volumetric term is the same for all of them, being a product of
the control volume and the concentration of sediments within
it (with the exception of Eq. 22 where the volumetric concen-
tration refers to moving sediments only). The sediment fluxes
through the boundaries may be expressed as the product of Area,
Concentration, and Velocity, definitions of which depend on the
averaging strategy. Alternative forms of the sediment fluxes, such
as in Eqs. (18) and (29), represent different ways of information
partitioning between the concentration and velocity terms. The
use of sediment velocities averaged over moving particles only
is, probably, the most attractive from a phenomenological point
of view, although it generates more complex expressions.

All variables which are based on clipping over all particles,
as in Eq. (18b), are defined and continuous (although poten-
tially intermittent) for any size and form of the control volume
Vo, from the sub-particle scale to very large domains containing
large numbers of particles. The term “intermittent” is used here
to describe a quantity showing alternation of intervals where
its value is zero with intervals when its value is non-zero and
is changing in time (term “intermittency” here should not be
confused with its use in the analyses of high-Reynolds-number
turbulence and continuous records of bedload as in Singh et al.
2009). As already noted, variables based on clipping over mov-
ing sediments, as in Eqs. (18c) and (22), may have a more direct
phenomenological relevance, but they typically suffer from being
less well behaved. Indeed, the change of the “phase” of any par-
ticle contained in Vo from “still” to a “moving” state or vice
versa implies sudden changes within dt of the quantities which
are defined over either of these two phases. As a consequence,
these variables can be not only intermittent but also discontinu-
ous. A limiting case for such a behaviour is represented by the
entrainment and deposition rates er(t) and dr(t), which are likely
to be discontinuous and infinite and best expressed as a sum of
Dirac delta functions.

Within a classical continuum framework, irregular behaviours
as those discussed above mean that the concerned variables are
ill-defined, i.e. they are not sufficiently regularized by averaging
over appropriately large spatial and/or time extents. As pointed
out in Section 1 and in Section 2, such a regularization procedure
is not always possible in sediment transport analysis, as the aver-
aging extents should be large enough to contain many (moving)
particles and at the same time sufficiently small with respect to
the reference domain. The difficulties arise for the case of rela-
tively large sediments and/or relatively low transport rates, for
which a requirement of scale separation needed for the regular-
ization is not met. On the other hand, the strength of the integral
approach compared with equivalent differential balances is that
it can be used even with non-well-behaved quantities.

The integral sediment balance involves both the volumetric
concentration (in the time derivative) and the areal concentra-
tion and areal-averaged velocity (in sediment fluxes). Thus, our
relations highlight approximate nature of the solid discharge
expressions that employ volume-averaged velocities and con-
centrations (instead of areal quantities), as in Eq. (2) and in
experimental assessments where sediment motion is optically
measured from the top (for example, Fernandez Luque and
Van Beek 1976, Radice and Ballio 2008). Such “volume”-based
approximation of the area-based quantities should be considered
with caution. For instance, it is legitimate if volume averaging is
used to generate smoothed variables with the regularity required
by the continuum approach, which is possible only with sufficient
scale separation so that the regularization volume can be taken
as representative of an infinitesimal point (where the variable is
defined for a further mathematical treatment). Finally, differences
between volumetric and areal integral quantities may disappear
for time- or ensemble-averaged quantities, at least under proper
conditions of spatial uniformity and/or time stationarity. For an
extensive analysis of this issue, see Furbish et al. (2012).

Equations (29) show that expressions for mean values of
sediment fluxes typically (though not necessarily) involve aver-
aging of nonlinear terms resulting from the product of sediment
concentration and velocity. As a consequence, if quantities are
decomposed into the mean and fluctuating components, correla-
tion terms arise, as in the example expressed by Eq. (31). This
feature is acknowledged for suspended sediment transport (Hur-
ther and Lemmin 2003) and has been recently highlighted in
Radice and Ballio (2008) for bedload processes. Some studies
suggest that solid discharge fluctuations for transport on a flat
bed are primarily due to fluctuations of the concentration, with
little contribution from velocity fluctuations (e.g. Ancey 2010).
This suggestion implies that the concentration–velocity correla-
tion term (as in Eq. 31) is negligible compared with the product
of the corresponding mean values. On the other hand, it should
not be excluded that significant correlations between the concen-
tration and velocity may occur in more complex configurations
(for example, migrating bedforms or scour due to an unsteady
horseshoe vortex structure), as a consequence of large-scale tem-
poral variations of the processes sustaining sediment transport.



Whatever is their quantitative impact, terms resulting from con-
centration and velocity fluctuations play an important conceptual 
role, as they generate diffusive terms in the averaged sediment 
transport equations (Furbish et al. 2012, Ancey and Heyman 
2013).

Sensitivity of different forms of the sediment balance to 
change of scale is not the same. As an example, let us con-
sider a spatially homogeneous field and sufficiently large time 
intervals. Referring to superficial quantities Q

s = So{u}ss
, no  

scale effect is expected since although {u}s (t) depends on So 

its time-averaged value does not if Tf is large enough to rep-
resent ensemble averaging. Similarly, in the limit So we 

may also expect {u}s (t) → {u}ss
. On the other hand, if we

→ ∞
refer

to the intrinsic quantities based on mobile particles such as in
Q

s = So

(
φAm

s{u}ms + φ′s
Am {u}m′ss)

, we should expect all vari-
ables to be sensitive to So, which makes them much less attractive
as descriptors of sediment transport. This scale sensitivity occurs
because fluctuations around the mean are strongly dependent
on So: instantaneous values are highly intermittent for So ≈ d2

but regularity increases with increase of So. Again, we should
expect that fluctuations are no longer present in the time series
if So → ∞, and thus the correlation term disappears.

4 Example: weak bed load on a plane bed

In this section, an experimental data set related to uni-directional
sediment transport on a plane bed is used to explore properties
of the previously defined quantities. The full description of the
experimental set-up and procedures is reported in Radice and
Ballio (2008) and Campagnol et al. (2012), and therefore below
only essential details of experimentation and data processing are
given.

4.1 Experimental procedure

The experimental run was completed in a 5.8 m long, 0.4 m
wide, and 0.16 m deep rectangular pressurized duct. Plastic
PVC grains with density of 1.43 kg m−3 and characteristic size
d = 0.0036 m were used as sediments. Water discharge was
Qw = 0.0248 m3 s−1, slightly larger than the threshold value for

incipient motion of bed particles (Qwc = 0.0190 m3 s−1), thus
providing conditions of a weakly-mobile bed. The run duration
was Tf = 20 s, along which the particle motion was filmed from
above using a black-and-white CCD camera with a resolution set
to 763 × 576 pixels and a frame rate of 50 fps. Particle move-
ments were identified by means of the Streams package (Nokes
2007) which allowed to track the paths of individual particles and,
consequently, to identify grain crossing events across a transverse
reference line (L = 0.165 m long) at the centre of the channel,
together with velocities and intercepted areas of the particles
(Fig. 4). A total number of 566 particles crossed the line within
the run duration; the consequently obtained average solid dis-
charge was Q

s = 6.91 × 10−7 m3s−1. Finally, trajectories around
the reference line were interpolated in order to reconstruct time
series at a sampling frequency as high as 750 Hz. The correspond-
ing sampling time �ts = 0.0013 s is much less than the typical
values for the particle time scale Tp = d/u = 0.03 − 0.04 s and
thus the obtained time series can be considered as “instanta-
neous”. The image-processing procedure identified only moving
grains and, as a consequence, all measured quantities are intrin-
sically clipped on moving particles. Specifically, a grain was
labelled as “moving” if it moved a distance larger than 0.1 mm
from its rest position.

4.2 Instantaneous quantities

Figure 5 presents snapshots of the time series for the intrin-
sic concentration φAm and velocities {u}m and {u}sm, which are
computed over a reference area So = L × d. These variables
can be used to compute the sediment flux (per unit area) as
Q(t)/So = {u}sm(t) = φAm(t){u}m(t).

Plots in Fig. 5 clearly show the intermittency of the process,
i.e. there are time periods when no particles are crossing the ref-
erence line, with the overall time porosity of φTμm = Tμm/Tf =
0.57. The lower peaks in the concentration time series (Fig. 5a)
correspond to crossings of single particles; such events are
characterized by the peak concentration equal to (πd2/4)/So =
0.017. Higher peak values relate to multiple crossings (up to 6
particles simultaneously crossing the line were observed). The
intrinsic-averaged sediment velocities (Fig. 5b) vary within the
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Figure 4 (a) Portion of a movie frame with indication of the reference line and two sample particles (A, B) upstream of the line moving with different
velocities. (b) Qualitative sketch of resulting temporal evolution of solid discharge due to crossing of the two particles
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Figure 5 Time series of instantaneous (a) concentration φAm, (b) intrin-
sic velocity {u}m, and (c) superficial velocity {u}sm. Only a fraction of
the total time series is shown

range {u}m = 0 to 0.25 m s−1, with approximately 50% of the
velocity values falling in the range from 0.07 to 0.14 m s−1.

Figure 5c shows the superficial-averaged velocity {u}sm that
is equivalent to the sediment flux per unit area Q(t)/So. This
velocity is fictitious as values of {u}sm(t) are not physical veloci-
ties of the moving particles (typical values of {u}sm(t) are within
the range 10−3 to 10−2 m s−1, i.e. much smaller than the physi-
cal velocities). Superficial and physical (intrinsic) velocities are
connected as {u}sm = φAm{u}m (see Eq. 18).

4.3 Time-averaged quantities

Values of the relevant time-averaged quantities are listed in
Table 1. Expressions (32)–(34) below provide flux estimates
based on the definitions introduced in Section 3.2:

Q
s

So
= φAm {u}ms = 1.16 × 10−3 m s−1 (32a)

Q
s

So
= φAm

s{u}ms + φ′s
Am {u}m′ss

= (0.0105 × 62.2 + 0.51) × 10−3

= (0.65 + 0.51) × 10−3 = 1.16 × 10−3 m s−1 (32b)

Q
m

So
= φAm {u}mm = 2.05 × 10−3 m s−1 (33a)

Q
m

So
= φAm

m{u}mm + φ′m
Am {u}m′mm

= (0.0185 × 110 + 0.02) × 10−3

= (2.03 + 0.02) × 10−3 = 2.05 × 10−3 m s−1 (33b)

Q
s

So
= φTμmQ

m

So
= 0.57 × 2.05 × 10−3 = 1.16 × 10−3 m s−1

(34)

The estimates above illustrate clear differences between the
superficial and intrinsic time averages. Expressions (32a,b)
describe the superficial sediment flux and employ the superfi-
cial time averages φAm

s
and {u}ms

, which are not directly related
to the physical transport parameters, being around 40% lower.
In contrast, expressions (33a,b) involve the intrinsic time aver-
ages only, making use of most “physical” quantities φAm

m
and

{u}mm
. The net solid discharge Q

s
/So in Eq. (34) is obtained by

multiplying Q
m
/So with the time porosity φTμm that illustrates

how the time and spatial (areal) porosities are combined together
to give a superficial flux. In this respect the product φAm

m
φTμm

can be viewed as a “global” sediment porosity.
Estimate (32b) shows almost equivalent contributions to the

total superficial flux from the mean term φAm
s{u}ms

and the cor-
relation term φ′s

Am{u}m′ss
, with the latter being basically imposed

by the transport intermittency (as defined in Section 3.3). The
occurrence of time intervals when no particles cross the con-
trol surface during the averaging time Tf (hence intermittency)
leads to a non-zero term φ′s

Am{u}m′ss
, even if both particle velocity

and areal porosity are constant during transport periods. Thus,
non-zero φ′s

Am{u}m′ss
should be interpreted as pseudo-correlation

rather than a real correlation. Indeed, the corresponding term
φ′m

Am{u}m′mm
in relationship (33b) for the intrinsic sediment flux

Table 1 Relevant statistics of the experimental test

φAm
s = 0.0105 φTμm = 0.57 {u}ms = 0.062 m s−1 Qs

/So = 1.16 × 10−3 m s−1

φAm
m = 0.0185 {u}mm = 0.110 m s−1 Qm

/So = 2.05 × 10−3 m s−1



is negligible meaning that the concentration and velocity of mov-
ing grains in reality are very weakly correlated. This effect was 
already noticed by Radice and Ballio (2008), who explained 
such behaviour by independency of mechanisms for sediment 
entrainment (linked to concentration of moving grains) and 
displacement (linked to velocity). As a consequence, the flux 
equation can be simplified as

Q
s

So
= φTμmφAm {u}mm ≈

(
φTμmφAm

m
)

{u}mm
(35a)

= (0.57 × 0.185) × 110 × 10−3 = 0.105 × 110 × 10−3

= 1.15 × 10−3 m s−1 (35b)

where the two porosities are combined to give a global- (double)
averaged concentration. Using Eqs. (16) and (30), Eq. (35) can
be presented slightly differently as

Q
s

So
= φAm {u}ms ≈ φAm

s{u}ms

φTμm
= (0.0105 × 62.5 × 10−3)

0.57

= 1.15 × 10−3 m s−1 (36)

Additional discussion of this issue can be found in Radice and
Ballio (2008). Although the vanishing correlation between the
particle concentration and velocity in our example is probably
typical, we have to mention again that there may be situations
when this correlation may not be neglected, as discussed in
Section 3.3.

5 Comparisons with other formulations

In this section we compare the proposed approach with some
currently available formulations with the aim of emphasizing
the variety of possible approaches for the description of transport
processes.

5.1 Van Rijn (1984)

Van Rijn (1984) proposed a model for bedload transport, whose
structure is similar to Eq. (1) with the thickness of the bedload
layer δbl identified as the saltation height. Although not explicitly
indicated, the quantities of Van Rijn’s model should be treated
as mean values, where “mean” refers either to time or ensemble
averages. It should be also noted that qbl and cbl are the Eulerian
quantities defined over a space domain, whereas ubl and δbl are
Lagrangian properties of individual particles.

Following the nomenclature introduced in Section 3, we have
qbl = Q

s
/B, where B is the width of the flow. The thickness of

the active layer is directly linked to a reference surface So = Bδbl

while the particle velocity ubl defined as the mean velocity of par-
ticles along their trajectories (that is, when they are moving) can
be approximated under uniformity and ergodicity conditions as
ubl � {u}mm

; no explicit definition was given for cbl . Combining

Van Rijn’s approach with our formulation, one can write:

cbl = qbl

δblubl
≈ Q

s

So{u}mm = φTμmSoφAm {u}mm

So{u}mm

= φTμmφAm
m + φTμm

φ′m
Am {u}m′mm

{u}mm (37)

For φ′m
Am{u}m′mm � {u}mm

the concentration cbl is approximated
as cbl = φTμmφAm

m
. In other words, together with the expected

space porosity it also includes the time porosity of the transport
process. For relatively intense transport conditions and/or large
reference surfaces, one can expect that the time porosity φTμm is
close to unity and thus the conventional concept of concentration
is recovered, i.e. cbl = φAm

m
. However, if φ′m

Am{u}m′mm ≈ {u}mm

then the quantity cbl in Eq. (37) does not really represent a phys-
ical concentration as it also contains information on kinematics
of the transport process (diffusion).

5.2 Coleman and Nikora (2009)

These authors proposed an expression for the sediment mass
balance as

∂φV

∂t
+ ∂φV 〈u〉

∂x
= 0 (38)

where the notations of Eqs. (8) and (12) are used. This is a
differential form of the instantaneous mass balance where quan-
tities φV and 〈u〉 are averaged over a thin volume Vo parallel to
the bottom, allowing the analysis of vertical distributions of the
transport variables; note that their equation also holds if the inte-
gration volume covers large extensions in the vertical direction.
Equation (38) is the differential (along direction x) counterpart
of Eq. (18b). The main difference between the two expressions
is that all variables of Eq. (38) are regularized over the same
averaging volume while in Eq. (18b) a mixture of volume- and
area-averaged quantities is used. However, if the divergence
theorem (in its one-dimensional form) is applied to the second
term of Eq. (38) we obtain:

∂φV 〈u〉
∂x

= ∂ 〈u〉s

∂x
= ∂

∂x
1

Vo

∫
Vo

uγ dV = 1
Vo

∫
Vo

∂uγ

∂x
dV

= 1
Vo

(∫
So,out

uγ dS −
∫

So,in

uγ dS

)

= So

Vo

({u}s
out − {u}s

in

) = So

Vo

(
(φA{u})out − (φA{u})in

)



Thus, the mass balance (38) can also be expressed as

dφV

dt
+ So

Vo

(
(φA{u})out − (φA{u})in

) = 0 (39)

which is identical to Eq. (18b). In other words, the differential
mass balance employing volume-averaged variables coincides
with the integral mass balance over the same volume: the spatial
differentiation “cancels” all information inside the volume so that
only values at its borders are related to the flux of sediments, as
explicitly expressed by Eqs. (18) and (39).

5.3 Furbish et al. (2012)

Furbish et al. (2012) present different approaches for defin-
ing sediment fluxes, mainly focusing on the links between
Lagrangian and Eulerian properties of variables describing sed-
iment motion. Their basic expression for the sediment discharge
(Eq. 1 in their paper) is essentially equivalent to our Eq. (13), also
involving sediment velocity at a reference surface. However, due
to practical difficulties in measuring particle velocities and the
focus on linking Eulerian distributed properties to Lagrangian
properties of individual particles Furbish et al. (2012) propose
an approximate expression (Eq. 8 in the paper) equivalent to

Q(t) = 〈Si(t)〉 〈ui(t)〉 = SoĈ û (40)

where Si and ui are, respectively, the cross section and the veloc-
ity of the ith particle, crossing the reference surface, angular
brackets 〈·〉 here indicate average over N particles, Ĉ and û are
corresponding averaged values of solid concentration and veloc-
ity. Equation (40) is similar to Eq. (17b), if we note that Ĉ ∼= φAm

and û ∼= {u}m. It has some advantages compared with Eq. (17b)
in that it is operationally more straightforward and its parameters
are directly linked to the properties of individual grains, making
Eq. (40) a convenient starting point for linking the Lagrangian
and Eulerian frameworks. However, for Eq. (40) to be valid it
is required that 〈Siui〉 = 〈Si〉 〈ui〉, which is (approximately) true
when N is large enough and Si and ui are uncorrelated in space.
As indicated by the authors, the latter condition is satisfied if,
for example, all particles have the same size. In other words,
advantages of expression (40) come with some loss of generality
compared with Eq. (17b), which accounts for spatial correlations
independently of the scale of consideration.

This example, once more, confirms that no absolute pref-
erence can be given to any of the many possible alternative
expressions for the sediment discharge, as the “best” choice
is linked to physical and statistical properties of the variables
involved in different expressions.

6 Conclusions

The key objectives of this paper were to accentuate the impor-
tance of unambiguous quantitative definitions for sediment

transport variables that are often poorly defined, and to pro-
pose alternative definitions that may serve as a sound conceptual
basis for phenomenological considerations. General forms for
integral sediment balances and sediment fluxes through the
boundaries have been defined, analysed, and compared with
existing formulations. The proposed expressions refer to the
Eulerian quantities (sediment fluxes, concentrations, and aver-
aged velocities) that can be applied at sub-particle resolution and
upscaled to larger scales through averaging. The link between
the proposed Eulerian quantities and the Lagrangian descriptors
(position and velocity) of the individual grains is straightfor-
ward; the suggested equations, therefore, constitute a possible
base for quantitative interrelations between Lagrangian and Eule-
rian kinematic descriptions. The validity and generality of the
proposed approaches and the relative advantages of the different
strategies for the transport description have been discussed using
experimental data and by comparison with formulations of other
researchers.

Our analysis highlights the necessity for unambiguous defi-
nitions of transport variables in research publications (e.g. areal
vs. volumetric averages, instantaneous/deterministic vs. mean
values, etc.), as in many publications these issues are given
little attention, if at all, making comparisons among studies
difficult.
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Notations

bl = bed load
in, out = inflow, outflow section of the

reference volume
s = superficial averaging
m = moving particles
b = bed (still) particles
〈θ〉s, 〈θ〉 = superficial and intrinsic volumetric

averages of variable θ , respectively



〈θ〉m = intrinsic volumetric average of
variable θ over moving particles

{θ}s, {θ} = superficial and intrinsic areal
averages of variable θ , respectively

{θ}sm, {θ}m = superficial and intrinsic areal averages
of variable θ over moving particles,
respectively

θ
s
, θ = superficial and intrinsic time averages

of variable θ , respectively
θ

m = intrinsic time average of variable θ

over moving particles
c = volumetric sediment concentration (–)
d = grain size (m)
er , dr = entrainment, deposition rates within a

reference volume Vo (m3 s−1)

N = number of moving particles per unit
area (particle m−2)

q = volume sediment transport rate per unit
width (m2 s−1)

Q = volume sediment transport rate through
surface So (m3 s−1)

S = surface of sediments intersected by the
control surface So (m2)

So (in,out) = reference control surface for integral
balance (inflow, outflow) (m2)

t = time (s)
To = reference time lag for sediment

balance (s)
Tf = averaging “finite” time (s)
Tε = time scale assumed as

“infinitesimal” (s)
Tμm = fraction of Tf during which surface So

is crossed by moving particles (s)
Tμ = fraction of Tf during which surface So

is crossed by particles (s)
Tp = time scale for particle crossing,

Tp = d/u (s)
Ti = inter arrival time scale (s)
Tbf = bedforms time scale (s)
u = longitudinal velocity of the solid

phase (m s−1)
V = volume of sediments within the control

volume Vo (m3)
Vo = reference control volume for integral

balance (m3)
w = particle volume (m3)
x, x = space coordinate (scalar, vector) (m)
δ = thickness of the sediment transport

layer (m)
φA = areal concentration of sediments over

surface So (–)
φV = volumetric concentration of sediments

over volume Vo (–)
φTμ, φTμm = time porosities (–)
γ , γm, γb = clipping functions (–)
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