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1. Introduction

The theoretical and numerical modeling of the mechanical
behavior of soft biological tissues in physiological or pathological
conditions has received particular attention in the last few
decades. One of the reasons of the interest is the necessity to
use numerical models in medicine and biology to predict the
behavior of organs or biological ensembles. Another reason is the
design and the improvement of diagnostic tools and instruments
that interact with biological tissues. Another motivation is the
invention and the development of new materials mimicking
peculiar features observed in natural tissues. The definition of a
numerical model involving bio-tissues requires, in addition to the
accurate measurements of the geometry, the use of sophisticated
material models that must be calibrated against ad hoc experi-
mental data. Note that the parameters of a material model are
individual-dependent and often cannot be transferred easily from
one case to another. Therefore, in view of actual applications, it
seems to be wise to pursue the definition of material models with
a reduced number of material parameters but otherwise able to
cover a large range of deformations. In this way the calibration of
the parameters may be somehow facilitated. The search of
accurate material models characterized by a few material para-
meters is one of the key aspects of the modern computational

biomechanics, and the present study tries to give a contribution by
including the natural randomness of soft biological tissues.

In many situations of practical interest the non-pathological
behavior of biological tissues is described sufficiently well by
hyperelastic models that have been conceived for rubber materi-
als, e.g., neo-Hookean, Mooney–Rivlin, Yeoh and others. On the
other hand, most biological tissues are characterized by aniso-
tropy, necessarily because the organ must provide a general multi-
direction confinement and, at the same time, it must resist to
localized and strongly oriented actions. Mechanical anisotropy is
achieved by means of complex and specialized architectures of
cable-like fibrils and fibers, made of the most diffused protein in
nature, i.e., the collagen. It follows that material models commonly
employed for biological tissues account for different kinds of
anisotropy induced by the collagen cables [10,18,5,13,8]. Moreover,
biological tissues are characterized ineluctably by a spatial dis-
tribution of the collagen reinforcement whereas unique strong
alignments of fibers are in contrast with the function of the organ.
Examples of distributed reinforcing fibers are found in the micro-
structure of the cornea [4,15,16,2] and of the artery walls, and in
other biological tissues [7,17]. In the recent literature numerous
material models considering a distributed orientation of the
collagen fibers have been presented and discussed, starting from
the seminal work by Lanir [14], and including several important
contributions [7,6,1]. In this regard, our recent work on this field
[19] proposed a novel point of view by introducing the concept of
second order (or variance) approximation of the strain energy
density of a fiber distributed material in terms of the fourth
pseudo-invariant I4. The model was developed to overcome the
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two main difficulties of non-deterministic mechanical properties:
(i) the impossibility to obtain the analytical definition of stress and
elasticity tensors and (ii) the heavy computational effort necessary
to compute stress and elasticity tensors in numerical applications.

Statistically based material models are appealing in stochastic
approaches when they are proved to perform well also in terms of
covariance stress tensors. The discussion on the covariance stress
tensor of the second order approximation model is one of the new
contributions of the present paper on the line of [23].

In several tissues geometrically organized as structures, e.g.,
skin, corneas, irides, artery walls, and other shell-like or mem-
brane like organs, the distribution of the collagen fibers assumes a
prevailing two-dimensional configuration [2,20]. The attractive
possibility of using membrane and shell theories to reduce the
computational effort in view of evaluating the mechanical beha-
vior of organs calls for the development of constitutive models
characterized by planarity of the fiber micro-structural organiza-
tion, see, e.g., [21,24]. As an additional new contribution of this
work, we present here the two-dimensional version of the second
order approximation material model above recalled [19].

The organization of the paper is as follows. In Section 2 we
introduce briefly the hyperelastic framework and the necessary
definitions. In Section 3 we recall the basic ideas of the three-
dimensional material model presented in [19]. Under the assump-
tion of an axis-symmetric distribution of the fiber orientation, we
derive a particularly compact analytical expression of the second
Piola–Kirchhoff stress and of the covariance stress tensor. In
Section 4 we particularize the three-dimensional model to a
specific plane, containing the distribution of fibers. In Section 5
we compare, through uniaxial, biaxial and shear test, the behavior
of the two-dimensional and three-dimensional distributions, in
terms of stress and covariance stress components. The behavior of
the model as a function of concentration parameter of a von Mises
distribution is also discussed.

2. Hyperelasticity framework

In the framework of nonlinear continuum mechanics, we
postulate the existence of a Helmholtz free-energy density per
unit reference volume Ψ . We comply with the purely elastic case,
where the free energy is assumed to be dependent on the
deformation gradient F only, i.e., Ψ ¼Ψ ðFÞ. For a biological tissue
with collagen fibers it is customary to decompose additively the

strain energy into three terms:

Ψ ¼Ψ volþΨ isoþΨ aniso: ð1Þ
The first term, Ψ vol, accounts for volume changes, and it is
assumed to be dependent on the volumetric part of the deforma-
tion, i.e., on the Jacobian J ¼ det F, i.e.,

Ψ vol ¼Ψ volðJÞ:
The second term, Ψ iso, accounts for the isotropic behavior of the
material due to the underlying matrix and eventually to a portion
of isotropically distributed fibrous reinforcement. Usually, Ψ iso is
assumed to be dependent on the first and second invariants, I1 and
I2, of the modified Cauchy–Green deformation tensor C ¼ F

T
F,

where F ¼ J�1=3F:

Ψ iso ¼Ψ isoðI1; I2Þ:
The anisotropic effect of the fibrous reinforcement is described by the
third term Ψ aniso. According to a standard approach initiated by
Spencer [22], here Ψ aniso is assumed to be dependent on the modified
tensor C and on particular vectors – or tensors – describing the
intrinsic microstructure of the material. As a consequence of the
additive decomposition (1) and of the decoupling of the arguments
between the addends, it follows that the second Piola–Kirchhoff stress
tensor S splits into the sum of three terms:

S¼ SvolþSisoþSaniso;

in the form:

S¼ 2
∂Ψ
∂C

¼ 2
∂Ψ vol

∂C
þðS isoþSanisoÞ

∂C
∂C

;

where

S iso ¼ 2
∂Ψ iso

∂C
; Saniso ¼ 2

∂Ψ aniso

∂C
: ð2Þ

Explicit expressions for the anisotropic second Piola–Kirchhoff stress
can be found in standard continuum mechanics textbooks [9].

According to [10], in the case of a single family of parallel fibers
oriented in the referential direction a0, a well accepted form of the
anisotropic Helmholtz free energy density is given by

Ψ anisoðI4Þ ¼Ψ anisoðI4ÞþΨ 0
aniso ¼

k1
2k2

exp½k2ðI4�1Þ2�� k1
2k2

;

where the pseudo-invariant I4 is the contraction of C and of the
second order structure tensor A0 ¼ a0 � a0, i.e.,

I4ða0Þ ¼ C : A0:

Fig. 1. Orientation of the generic unit vector a aligned with a portion of fibers. (a) Spherical coordinates for a fully three-dimensional distribution. (b) Cylindrical coordinates
for a planar distribution.



The invariant I4 represents the square of the stretch along the
original direction a0. Since the contribution of the fibers can be
accounted for only when they are in extension, the anisotropic
contribution to the energy must be considered if and only if I441,
otherwise it must be set equal to zero. Alternative forms of the
reinforcing energy, based on polynomial functions [12] or loga-
rithmic functions [11] can be used as well.

3. Fully three-dimensional fiber orientation distribution

In the general case of a distributed fiber reinforced material, the
fibers are not aligned in the unique direction a0 but are spatially
oriented according to a symmetric density function ρðaÞ � ρð�aÞ
that describes the amount of fibers lying along a certain orienta-
tion a. The unit vector a can be defined in terms of two Eulerian
angles ΘA ½0;π� and ΦA ½0;2π�, see Fig. 1(a), as

aðΘ;ΦÞ ¼ sin Θ cos Φe1þ sin Θ sin Φe2þ cos Θe3:

Therefore the expression ρðaÞ sin Θ dΘ dΦ represents the num-
ber of fibers whose orientation falls in the range ½ðΘ;ΘþdΘÞ,
ðΦ;ΦþdΦÞ�. The integral of ρðaÞ over the unit sphere ω givesZ
ω
ρðaÞ dω¼

Z π

0

Z 2π

0
ρðaÞ sin Θ dΦ dΘ¼ 4π: ð3Þ

It follows that the directional second order structure tensor
A¼ a � a is a function of the Eulerian angles, as well as the
directional invariant I4ðaÞ ¼A : C. For the assumed distribution of
fiber orientation, the operator 〈f 〉 provides the average of the
function f over the unit sphere:

〈f 〉¼ 1
4π

Z
ω
ρðaÞf dω: ð4Þ

Since the deformation tensor C is independent of the Eulerian
angles, the average pseudo-invariant 〈I4〉 is easily computed as

I
n

4 ¼ 〈I4ðaÞ〉¼
1
4π

Z
ω
ρðaÞI4ðaÞ dω¼ 1

4π

Z
ω
ρðaÞA dω : C ¼H : C;

where we introduce the second order structure tensor H as

H¼ 〈A〉:

As first observed in [3], in the definition of the average
invariant I

n

4 the fibers under compression cannot be excluded a
priori. Therefore, if one of the principal values of C is less than 1, a
fraction of compressed fibers will be included in the average.

The average strain energy density over the unit sphere
becomes

Ψ n

aniso ¼ 〈Ψ aniso〉¼
1
4π

Z
ω
ρðaÞΨ anisoðI4Þ dω: ð5Þ

Regrettably, in general no close forms of (5) are available, and the
hyperelastic approach loses his appeal since the stress cannot be
derived analytically. The stress tensor can be obtained only
through the numerical calculation of the integral

S
n

aniso ¼ 〈Saniso〉¼
1
4π

Z
ω
ρðaÞSanisoðI4Þ dω: ð6Þ

To alleviate the difficulties inherent to the evaluation of the above
expressions, alternative, simplified forms of the strain energy
density have been proposed, for example transversally isotropic
distributions [7] deriving from the assumption of rotational
symmetry of the fiber distribution about a specific referential
direction a0. This circumstance is important in view of biological
applications characterized by dominant transversally isotropy. Let
us assume here that in the distribution of fibers it is possible to
identify a preferential direction a0. Without loss of generality a0
can be taken to coincide with the Cartesian basis vector e3.

As discussed in [19], the generalized structure tensor (GST)
model described in [7] can be interpreted as a linearization of the
anisotropic strain energy density about the average invariant I

n

4
ðnote that 〈I4� I

n

4〉¼ 0Þ:

Ψ n

aniso �Ψ anisoðI
n

4Þþ
∂Ψ aniso

∂I4 I4 ¼ I
n

4
〈I4� I

n

4〉¼Ψ 0
anisoþΨ

n

aniso:
��� ð7Þ

The approximation (7) leads to a handy form that allows for the
analytical calculation of the average stress tensor:

S
n

aniso ¼MH; M¼ 4k2ðI
n

4�1ÞΨ anisoðI
n

4Þ: ð8Þ
Unfortunately the model fails to describe the correct stress
distribution for largely dispersed fiber orientations [3]. A better
approximation can be obtained by including the second order
term (or variance, V) of the strain energy density about the average
invariant I

n

4 [19]:

Ψ n

aniso �Ψ anisoðI
n

4Þþ
1
2
∂2Ψ aniso

∂I
2
4

I4 ¼ I
n

4
〈ðI4� I

n

4Þ2〉
���

¼Ψ 0
anisoþΨ

n

anisoð1þKnσ2
I4 Þ; ð9Þ

where we denote

Kn ¼ 2k22ðI
n

4�1Þ2þk2

and

σ2
I4 ¼ C : H : C�ðH : CÞ2:

We note that the novel approximation of the strain energy density
introduces the average fourth order tensor H¼ 〈A � A〉.

Through (2), the second order approximation of the average
anisotropic strain energy density (9) leads to the explicit form of
the second Piola–Kirchhoff stress

S
n

aniso ¼ αHþβH : C; ð10Þ
and of the associated tangent stiffness

C
n

aniso ¼ 〈Caniso〉¼ J�4=3ðγH � HþδH � H : Cþ2βHÞ; ð11Þ
where

α¼Ψ
n

aniso ∑
3

j ¼ 0
ajI

nj
4 ; β¼Ψ

n

aniso ∑
2

j ¼ 0
bjI

nj
4 ; ð12Þ

γ ¼Ψ
n

aniso ∑
4

j ¼ 0
cjI

nj
4 ; δ¼Ψ

n

aniso ∑
3

j ¼ 0
djI

nj
4 : ð13Þ

Explicit formulae for coefficients aj; bj; cj; dj are reported in
Appendix A.

3.1. Covariance stress tensors

The fourth order covariance tensor of the second Piola–Kirchh-
off stress tensor, or the covariance stress tensor, is defined as

Raniso ¼ 〈Saniso � Saniso〉� 〈Saniso〉 � 〈Saniso〉:

Recalling (8), we can evaluate a linear approximation of the
average stress and the average stress dyadic product as

〈Saniso〉¼M H; 〈Saniso � Saniso〉¼M2 H:

Therefore Raniso takes the form

Raniso ¼M2ðH�H � HÞ; ð14Þ
or, in index notation

RIJHK ¼M2ðHIJHK �HIJHHK Þ:
It is worth noting that the covariance tensor of the directional
second order structure tensor A is given by

RA ¼H�H � H;



therefore the linear approximation of the covariance stress tensor
(14) becomes

R
GST
aniso ¼M2RA: ð15Þ

Alternatively, a second order approximation of the covariance
stress tensor can be derived from the expression of the average
stress tensor (8), leading to

R
V
aniso ¼ α2RA; ð16Þ

where α is defined in Eq. (12)1.
We recall that the relation between the Cauchy stress tensor

and the second Piola–Kirchhoff stress tensor is

σ ¼ J�1FSFT :

The isochoric anisotropic Cauchy stress σ aniso is related to the
anisotropic second Piola–Kirchhoff stress Saniso in the form [10]

σ aniso ¼ J�1FðP : SanisoÞF
T ¼ J�1MFðP : AÞFT

;

where P is the fourth order projection tensor. It follows that the
average Cauchy stress is

〈σ aniso〉¼ J�1MFðP : HÞFT
;

or, in components

ð〈σ aniso〉Þab ¼ J�1MF aAF bBPABIJHIJ ;

where PABIJ are the components of P. Therefore, the Cauchy
covariance stress tensor is defined as

R
σ
aniso ¼ 〈σ aniso � σ aniso〉� 〈σ aniso〉 � 〈σ aniso〉

or, in components,

ðRσ
anisoÞabcd ¼ J�2F aAF bBF cCF dDPABIJRIJHKPCDHK :

3.2. Rotation of the reference configuration

The previous definition of the fourth order tensor H refers to
the particular orientation of the mean direction of the fibers e3. In
order to apply the model to a generic main orientation a0, the
fourth order tensor H has to be rotated, for example according
to the following method. The two unit vectors a0 and e3 are
separated by the angle θ

cos θ¼ e3 � a0;
and the two vectors define a plane of normal n

n¼ e3 � a0
je3 � a0j

:

A rotation of amplitude θ about the vector n, of components nI, is
obtained by using the following matrix RASOð3Þ

R¼
cþn2

1ð1�cÞ n3sþn1n2ð1�cÞ �n2sþn3n1ð1�cÞ
�n3sþn1n2ð1�cÞ cþn2

2ð1�cÞ n1sþn2n3ð1�cÞ
n2sþn3n1ð1�cÞ �n1sþn2n3ð1�cÞ cþn2

3ð1�cÞ

2
64

3
75

with s¼ sin θ and c¼ cos θ. If RIJ denotes the component of R,
the rotation of H is performed according to the following rule:

HIJHK ¼HABCDRAIRBJRCHRDK :

3.3. Transversely isotropic material

A commonly adopted distribution of fibers related to a trans-
versely isotropic material is the π-periodic normalized von Mises
distribution [24], centered at Θ¼ 0. Therefore we assume

ρðΘÞ ¼ 1
2πI

expðb cos 2ΘÞ; ð17Þ

where

I¼ 1
π

Z π

0
expðb cos 2ΘÞ dΘ:

It follows that the density function becomes independent of Φ,
ρðaÞ � ρðΘÞ, and the normalization condition (3) reduces toZ π

0
ρðΘÞ sin Θ dΘ¼ 2:

The assumption of rotational symmetry leads to the explicit
evaluation of the average second order structure tensor H

H¼ 〈A〉¼
κ 0 0
0 κ 0
0 0 1�2κ

2
64

3
75;

in terms of the unique constant κ [7]:

κ ¼ 1
4

Z π

0
ρðΘÞ sin 3 Θ dΘ: ð18Þ

The novel approximation of the strain energy density requires the
average fourth order tensor H¼ 〈A � A〉 with non-zero coeffi-
cients:

H1111 ¼H2222 ¼ 3bκ ;
H3333 ¼ 1�4κþ8bκ ;
H1122 ¼H2211 ¼H1212 ¼H2121 ¼H1221 ¼H2112 ¼ bκ ;
H2233 ¼H3322 ¼H2323 ¼H3232 ¼H2332 ¼H3223 ¼ κ�4bκ ;
H3311 ¼H1133 ¼H3131 ¼H1313 ¼H3113 ¼H1331 ¼ κ�4bκ ;
where bκ is given by

bκ ¼ 1
16

Z π

0
ρðΘÞ sin 5 Θ dΘ: ð19Þ

The relation between the dispersion parameters κ, bκ and the
concentration parameter b of the von Mises distribution is shown
in Fig. 2. Note that the von Mises distribution is defined for b40,
therefore the ranges of the two parameters are κA ½0;1=3� andbκA ½0;1=15�. Fig. 2 shows that for b44 the parameter bκ becomes
very small and its contribution vanishes. Thus, the model recovers
the linearized distributed model proposed in [7]. This means that
the largest differences are observed in materials characterized by
rather large dispersion and little alignment of the fibers.

Within the von Mises distribution, the non-zero elements of
the covariance tensor RA are

R1111 ¼ R2222 ¼ 3bκ�κ2

R3333 ¼ 8bκ�4κ2

R1212 ¼ R2121 ¼ R1221 ¼ R2112 ¼ bκ

b
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

Fig. 2. Dependence of the dispersion parameters κ, Eq. (18), and κ̂ , Eq. (19), on the
concentration parameter b, for the three-dimensional normalized von Mises
distribution, see Eq. (17).



R1122 ¼ R2211 ¼ bκ�κ2

R2323 ¼ R3232 ¼ R2332 ¼ R3223 ¼ �4bκþκ

R2233 ¼ R3322 ¼ �4bκþ2κ2

R3131 ¼ R1313 ¼ R3113 ¼ R1331 ¼ �4bκþκ

R3311 ¼ R1133 ¼ �4bκþ2κ2:

4. Planar fiber distribution

A planar formulation may be obtained by specializing the
distribution density ρðaÞ. As remarked in [24], although account-
ing for a planar distribution of the fibers, the structural tensor is a
true three-dimensional tensor and the derived stresses are three-
dimensional.

We begin by referring to a planar distribution lying on the
plane normal to the direction e1 where Φ¼ π=2 and, for the
obvious symmetry, we limit ΘA ½�π=2;π=2�. We assume inde-
pendence of the angle Φ and write

ρðaÞ ¼ ρðΘÞ: ð20Þ
The quantity ρðΘÞ dΘ represents the amount of fibers lying on the
direction Θ, see Fig. 1(b). The normalization condition in the half
circle becomes

1
π

Z π=2

�π=2
ρðΘÞ dΘ¼ 1:

The average definition (4) in two-dimensions becomes

〈f 〉¼ 1
π

Z π=2

�π=2
ρðΘÞf dΘ: ð21Þ

Nowwe account for a π-periodic distribution that depends only on
the angle Θ. With no loss of generality, we assume that the mean
orientation of the fibers is in the direction a0 ¼ e3. According to the
definition (21), it is possible to derive the average structure tensor
Hpl in explicit form as

Hpl ¼
0 0 0
0 κpl 0
0 0 1�κpl

2
64

3
75;

where κpl is proportional to the dispersion factor introduced in
[24]:

κpl ¼ 1
π

Z π=2

�π=2
ρðΘÞ sin 2 Θ dΘ: ð22Þ

The non-zero terms of the average fourth order tensor Hpl follow
in explicit form as

Hpl
2222 ¼ bκpl

;

Hpl
3322 ¼Hpl

2233 ¼Hpl
3232 ¼Hpl

2323 ¼Hpl
3223 ¼Hpl

2332 ¼ κpl�bκpl
;

Hpl
3333 ¼ 1�2κplþbκpl

;

where bκpl is

bκpl ¼ 1
π

Z π=2

�π=2
ρðΘÞ sin 4 Θ dΘ: ð23Þ

The non-zero components of the planar covariance tensor Rpl
A are

R
pl
2222 ¼ R

pl
3333 ¼ bκpl�κpl

2

R
pl
3232 ¼ R

pl
2323 ¼ R

pl
3223 ¼ R

pl
2332 ¼ κpl�bκpl

R
pl
3322 ¼ R

pl
2233 ¼ κpl

2�bκpl
:

If the normal n to the fiber plane does not coincide with e1, i.e.
a0ae3, the tensors Hpl and Hpl must be rotated. To this aim, we
introduce the unit vector b forming an orthonormal basis with n

and a0:

b¼ a0 � n
ja0 � nj: ð24Þ

Thus, the rotation matrix RplASOð3Þ is defined as

Rpl ¼
n1 b1 a01
n2 b2 a02
n3 b3 a03

2
64

3
75;

leading to

Hpl
IJ ¼Hpl

ABR
pl
AIR

pl
JB:

and

Hpl
IJHK ¼Hpl

ABCDR
pl
AIR

pl
BJR

pl
CHR

pl
DK :

4.1. von Mises distribution

In view of numerical tests we consider the π-periodic normal-
ized von Mises distribution, centered at Θ¼ 0. Therefore we
assume

ρðΘÞ ¼ 1

πI0
expðb cos 2ΘÞ; ð25Þ

where, in order to satisfy (21), the normalization coefficient I0

becomes

I0 ¼ 1
π

Z π=2

�π=2
expðb cos 2ΘÞ dΘ:

The relation between the dispersion parameters κpl; bκpl and the
concentration parameter b is shown in Fig. 3. The range of the two
values is κplA ½0;1=8π�, bκplA ½0;1=16π�. Fig. 3 shows that for b44
the parameter bκpl becomes very small, and its contribution
vanishes. Such a behavior is similar to the one observed for the
three-dimensional formulation, Fig. 2, even though the two
coefficients assume higher values for small b. For the von Mises
distribution the expression of the strain energy density becomes

Ψ npl
aniso ¼

1
π

Z π=2

�π=2
ρðΘÞΨ anisoðI4Þ dΘ;

where I4 is a function of the sole angle ΘA ½�π=2;π=2�. The
expression of the stress is

S
npl
aniso ¼

1
π

Z π=2

�π=2
ρðΘÞSaniso dΘ; ð26Þ

b
0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

pl

pl

pl

Fig. 3. Dependence of the dispersion parameters κpl, Eq. (22), and bκpl, Eq. (23), on
the concentration b, for the two-dimensional normalized von Mises distribution,
see Eq. (25).



where Saniso is defined in (2)2. For the particular expression of the
fiber strain energy density Ψ aniso chosen here, the second order
approximation of the stress and stiffness tensors will preserve the
structure observed in (10) and (11), where the tensors H and H are
replaced by Hpl and Hpl respectively.

5. Numerical tests

We begin by considering the uniaxial behavior of the proposed
models. Since we are focusing on the anisotropic response, in the
following calculation we do not account for the volumetric and the

Fig. 4. Uniaxial true stress–true strain curves, stress in MPa. Solid lines show the exactly integrated solution. Broken lines show the second order approximation. Black circles
refer to the case b¼100, or strongly aligned fibers. Gray circles describe a case with average dispersion b¼2. White circles refer to the fully isotropic distribution, b¼0.
(a) Three-dimensional response. (b) Two-dimensional response.
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Fig. 5. Biaxial true stress–true strain curves, stress in MPa. Solid lines show the exactly integrated solution. Broken lines show the second order approximation. Black circles
refer to the case b¼100, or strongly aligned fibers. Gray circles describe a case with average dispersion b¼2. White circles refer to the fully isotropic distribution, b¼0.
Maximum stretches λ2 ¼ 1:0, λ3 ¼ 1:8 (λ1 ¼ 1=1:8). (a) Three-dimensional response, mean fiber direction. (b) Two-dimensional response, mean fiber direction. (c) Three-
dimensional response, direction normal to the fibers. (b) Two-dimensional response, direction normal to the fibers.



isotropic part of the strain energy. The parameters of the model
are set to the unit k1 ¼ 1 MPa and k2 ¼ 1. The concentration
parameter b of the von Mises distribution will be modified in
order to describe different fiber dispersions. In the following plots,

we refer to the three-dimensional and two-dimensional models
with exact angle integration (i.e., where the stress is computed
according to definitions (6)–(26)), as AI and AIpl respectively;
to the three-dimensional and two-dimensional second order
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Fig. 6. Equibiaxial true stress–true strain curves, stress in MPa. Solid lines show the exactly integrated solution. Broken lines show the second order approximation. Black
circles refer to the case b¼100, or strongly aligned fibers. Gray circles describe a case with average dispersion b¼2. White circles refer to the fully isotropic distribution, b¼0.
Maximum stretches λ2 ¼ λ3 ¼ 1:5. (a) Three-dimensional response, mean fiber direction. (b) Two-dimensional response, mean fiber direction. (c) Three-dimensional
response, direction normal to the fibers. (b) Two-dimensional response, direction normal to the fibers.
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Fig. 7. Shear stress–strain curves, stress in MPa. Solid lines show the exactly integrated solution. Broken lines show the second order approximation. Black circles refer to the
case b¼100, or strongly aligned fibers. Gray circles describe a case with average dispersion b¼2. White circles refer to the fully isotropic distribution, b¼0. (a) Three-
dimensional response. (b) Two-dimensional response.



approximation models as V and Vpl respectively; and to the three-
dimensional and two-dimensional first order approximation mod-
els as GST and GSTpl, respectively.

Fig. 4 shows uniaxial stress–strain curves where the AI and AIpl

stresses are compared with the V and Vpl stresses, for the three-
and two-dimensional cases respectively. The figures show that the
V and Vpl approximations are good, also in the case of dispersed

fibers. It clearly appears that the two-dimensional model is
characterized by a larger stiffness, due to the fact that the fibers
are distributed on a plane and not over the unit sphere. It is also
evident that, for the strongly aligned fiber case, the three- and
two-dimensional models provide the same response.

Fig. 5 shows stress–strain curves for biaxial deformations, up to
λ3 ¼ 1:8;λ2 ¼ 1:0; λ1 ¼ 1=1:8. The main direction of the fibers is 3.

Fig. 8. Covariance stress component R3333 (MPa2) versus strain in uniaxial loading. Solid lines show the exactly integrated solution. Dash-dot lines show the first order
approximation. Broken lines show the second order approximation. Black circles refer to the case b¼100, or strongly aligned fibers. Gray circles describe a case with average
dispersion b¼2. White circles refer to the fully isotropic distribution, b¼0. (a) Three-dimensional response. (b) Two-dimensional response.

Fig. 9. Covariance stress component R3333 (MPa2) versus the concentration coefficient b. White circles refer to the case of exact integration, gray circles refer to the case of
first order approximation and black circles refer to the second order approximation. (a) Three-dimensional case, absolute values. (b) Two-dimensional case, absolute values.
(c) Three-dimensional case, % error. (c) Two-dimensional case, % error.



The exactly integrated stresses, in the direction of the applied
stretches, are compared with the second order approximations, for
the three- and two-dimensional cases, respectively.

Fig. 6 shows similar stress–strain curves for equibiaxial defor-
mations, up to λ2 ¼ λ3 ¼ 1:5, and λ1 ¼ 1=1:52. Note that the model
Vpl provides the exact response for any value of b. This can be
easily understood, since under equibiaxial loading all the planar
fibers are equally activated in tension. The error is still limited for
the V model.

Fig. 7 shows stress–strain curves for the case of pure shear
deformation in the plane of the fibers 2–3, up to γ23 ¼ 0:7. Also in
this case, the main direction of the fibers is 3, and the exact
solutions are compared with the second order approximations, for
the three- and two-dimensional cases respectively. Both V and Vpl

models are able to capture the shear response of the exactly
integrated model, with maximum discrepancy for the fully dis-
tributed fiber case.

Fig. 8 plots the uniaxial covariance stress. The square root of the
R3333 component of the AI and AIpl covariance stress is compared
to the same quantity for the GST, GSTpl, V and Vpl covariance stress,
for the three-dimensional case, Fig. 8(a), and the two-dimensional
case, Fig. 8(b). The plots show that the V and Vpl approximations
are much better than the GST and GSTpl ones. It clearly appears
that the two-dimensional model is characterized in general by a
better approximation, due to the fact that the fibers are distributed
on a plane and not over the unit sphere. It is also evident that, for
the strongly aligned fiber case, the three- and two-dimensional
models provide the same response.

Fig. 9 visualizes the uniaxial covariance stress versus the
concentration parameter b. The square root of the covariance
stress component R3333 AI and AIpl is compared with the same
component for the GST, GSTpl, V and Vpl, in the three-dimensional
case, Fig. 9(a), and two-dimensional case, Fig. 9(b), respectively.
Fig. 9(c) and (d) plots then percentage error with respect to the
exact integration. It is worth noting that the covariance stress
reaches a maximum value for b� 2.

6. Conclusions

We present a study on the mechanical response of hyperelastic
fiber reinforced models with statistical distribution of the fiber
orientation. As starting point, we refer to a recent contribution by
Pandolfi and Vasta [19] that introduced the concept of the second
order (or variance) approximation. The model describes the features of
the fiber distribution by means of the average and the variance of the
fourth pseudo-invariant I4. As demonstrated in [19], in the particular
case of transversally isotropic materials (e.g. we choose the von Mises
distribution) the variance model approximates the exactly integrated
model in a better way than alternative models accounting exclusively
for the average pseudo-invariant I

n

4. The better behavior has been
demonstrated for a few significant loading conditions, i.e., uniaxial,
biaxial and pure shear.

For the second order approximation model, new studies reported
in the present contribution discuss the concept of covariance stress
tensors and the specialization to a planar fiber distribution.

For a more exhaustive probabilistic characterization of the
response of fiber distributed materials, the knowledge of the second
order statistics is mandatory. To this end, we studied the covariance
stress tensor for the second Piola–Kirchhoff and Cauchy stresses. We
prove that the covariance stress tensor is proportional to the
covariance stress tensor of the directional second order tensor A
that characterizes the second order approximation elasticity tensor.
Furthermore, two approximated explicit expressions of the covar-
iance stress tensors are derived.

Second, we specialize the model for two-dimensional distributions
of the fiber orientation, in order to be able to describe materials
frequently observed in biology and biomechanics. We follow the path
of reasoning found in [24], and describe a second order approximation
material model instead of the linearized model presented in [24]. The
two-dimensional model can be formulated in analytical form for any
two-dimensional distribution of the fiber orientation. Note that only the
fiber distribution is two-dimensional, while the material model is fully
three-dimensional, to be used within three-dimensional solids and not
restricted to dimension-reduced structures, such as plates or shells.

Additionally, in view of the implementation of the model in
numerical codes, we illustrate how to perform the rotation of the
anisotropic stress and elasticity tensors. The rotation allows us to
apply the constitutive model to any distribution characterized by
the main orientation of the fibers different from e3, for which all
the analytical expressions here reported have been derived.

Numerical tests are carried on for the sole isochoric component of
the material model, i.e., by excluding the contribution of the volu-
metric deformation and the isochoric–isotropic behavior of the matrix.
For the particular case of the von Mises distribution of the fiber
orientation, where the exactly integrated numerical solutions can be
easily computed, we simulate uniaxial, biaxial, equi-biaxial and shear
tests in the three-dimensional and two-dimensional settings.

The results demonstrate that the second order approximation
provides accurate values of the mechanical response of material
models with statistically distributed orientation of the fibers. The
two-dimensional model is particularly interesting for loadings in
uniaxial, equi-biaxial, and shear conditions.
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Appendix A

Coefficients:

a0 ¼ �4k2�8σ2
I4k

3
2�12σ2

I4k
2
2

a1 ¼ 24σ2
I4k

3
2þ12σ2

I4k
2
2�8k22

a2 ¼ 16k22�24σ2
I4k

3
2

a3 ¼ 8σ2
I4k

3
2�8k22

b0 ¼ 4k2þ8k22
b1 ¼ �16k22
b2 ¼ 8k22
c0 ¼ σ2

I4
ð32k42þ96k32þ24k22Þ

c1 ¼ 96k22þ64k32�192σ2
I4
k32�128σ2

I4
k42

c2 ¼ 192σ2
I4
k42þ96σ2

I4
k32�192k32�96k22

c3 ¼ 1928k32�128σ2
I4
k42

c4 ¼ 328σ2
I4
k42�64k32

d0 ¼ 64k32�96k22
d1 ¼ 192k32þ96k22
d2 ¼ �192k32
d3 ¼ 64k32 ð27Þ
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