
Probabilistic assessment of seawater intrusion under multiple sources
of uncertainty
1. Introduction

Saltwater intrusion (SWI) is a critical an
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and Ababou [2] adopt a vertically-integrated sharp interface 
approach and analyze the effects of variability of aquifer properties 
on the saltwater wedge through numerical simulations within hor-
izontal two-dimensional randomly heterogeneous unconfined 
aquifer. Chang and Yeh [10] employ a spectral approach and deter-
lity due 

research, including, e.g., a recent series of works highlighted in a 
special issue of Hydrogeology Journal (Special issue on: Saltwater 

to heterogeneity of aquifer conductivity and to the spatial variabil-
ity of recharge for an unconfined horizontal aquifer model.
and freshwater interactions in coastal aquifers, 2010, Vol 18, No 1). 
Analytical or semi-analytical solutions of SWI problems have been 
mainly developed for homogeneous aquifers and consider 
saltwater and fresh water as immiscible fluids separated by a sharp 
interface (e.g. [9,6,7,32]). Within this context, Dagan and Zeitoun 
[13] illustrate a first attempt to analyze the effect of aquifer heter-
ogeneity on SWI. These authors consider a vertical cross section of a 
confined aquifer with randomly layered permeability distribution 
and show that the variability of the position of the salt–fresh water 
interface (particularly the location of the toe) is markedly 
influenced by the permeability variance and integral scale. Al-Bitar
A realistic approach dealing with SWI should explicitly account 
for the occurrence of a transition zone where variable density flow 
is coupled with a transport model. This coupling makes it difficult 
to obtain analytical solutions of SWI scenarios. Henry [21] presents 
a semi-analytical solution for steady-state variable density flow 
taking place along a two-dimensional vertical cross-section in a 
homogeneous isotropic coastal aquifer. Since this is the only ana-
lytical solution available, it has been widely used as a benchmark 
problem to SWI numerical approaches (e.g. [35,41]). Dentz et al.
[14] present a methodology conducive to an analytical solution of 
the Henry’s problem in dimensionless form. The Henry’s problem 
has limited use in practical applications because it considers only 
diffusion while dispersion is not simulated. Abarca et al. [1] 
modified the Henry’s problem upon introducing anisotropy in the
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conductivity tensor and a dispersion tensor to improve the repre-
sentation of wide transition zones of the kind observed in several 
field sites. Held et al. [20] investigated the Henry’s problem within 
a randomly heterogeneous aquifer. Making use of the homogeniza-
tion theory, these authors found that the effective conductivity and 
dispersion coefficients are not affected by density effects, the effec-
tive dispersivity being close to its local counterpart. Otherwise, 
Kerrou and Renard [23] showed that macrodispersion coefficients 
differ from their local counterparts in two- and three-dimensional 
heterogeneous scenarios. The effect of density contrast on effective 
parameters has also been analyzed by Jiang et al. [22] by way of a 
stationary spectral approach. A discussion of current challenges in 
modeling density driven flows in the subsurface is offered by 
Werner et al. [41].

Here we consider the anisotropic dispersive Henry’s problem 
introduced by Abarca et al. [1]. As key sources of model uncertainty 
we consider the following dimensionless parameters: (i) the grav-
ity number, expressing the relative importance of buoyancy and 
viscous forces; (ii) the anisotropy ratio between aquifer vertical and 
horizontal permeabilities; (iii) the longitudinal and (iv) trans-verse 
Péclet numbers, quantifying the relative importance of the 
longitudinal and transverse dispersion on solute transport. These 
are critical in governing the general dynamics of density depen-
dent flow and transport processes (see e.g. [1,14,25,29]). We then 
focus on a number of dimensionless global quantities (GQs) which 
are controlled by these parameters and are relevant to describe key 
features of the saltwater wedge and the width of the mixing zone. 
These global descriptors, as well as all system states such as pres-
sure, concentration and velocity distributions within in the aquifer, 
are affected by uncertainty due to the lack of knowledge of the 
characteristic model parameters (e.g. [33]). Proper quantification of 
the uncertainty associated with the characterization of these GQs is 
of critical relevance for the management of coastal aquifers.

Propagation of model parameter uncertainty to a given quantity 
of interest can be quantified through a global sensitivity analysis 
(GSA). Here, we employ a variance-based GSA which allows assess-
ing the relative impact of the model uncertain input parameters on 
the variability of model outputs [3]. We base our analysis on the 
Sobol indices [37], which are widely used sensitivity metrics and do 
not require any linearity assumptions in the underlying mathe-
matical model of the system behavior.

Estimation of the Sobol indices is traditionally performed by 
Monte Carlo (MC) sampling in the uncertain parameter space. 
Therefore their computation can become highly demanding in 
terms of CPU time when the dimension of the parameters space 
and the degree of complexity of the problem increase. In this con-
text, estimation of the Sobol indices is practically unfeasible in SWI 
problems because of the coupled nature of the flow and transport 
problems. We circumvent this problem upon relying on a general-
ized Polynomial Chaos Expansion (gPCE) approximation of the tar-
get GQs (e.g. [19,28]). This approach allows obtaining a surrogate 
model for a given quantity of interest and enables one to calculate 
the Sobol indices analytically via a straightforward post-processing 
analysis (e.g. [12,38]). Examples of application of this technique 
include the study of flow and transport in heterogeneous porous 
media (e.g. [26]). Formaggia et al. [17] and Porta et al. [31] demon-
strate the reliability and computational efficiency of gPCE-based 
approaches in highly non-linear systems under the effect of 
mechanical and geochemical compaction processes.

The work is organized as follows. Section 2 presents the com-
plete flow and transport mathematical model, the key dimension-
less parameters governing the process and the global descriptors of 
interest. Section 3 is devoted to a brief description of the method-
ology we employ to perform GSA and to derive the gPCE surrogate 
model. Section 4 presents the setting analyzed and some details of 
the full and surrogate system models. In Section 5 we show the
main results of our analysis in terms of the relative contribution 
of the uncertain parameters to the variance of each of the global 
quantities analyzed. We then study the joint and marginal proba-
bility density functions (pdfs) of these global quantities. We remark 
that these tasks are computationally unaffordable by making use of 
the complete system model, while they can be performed by 
means of the gPCE surrogate model. Moreover, our relying on the 
gPCE allows obtaining analytical expressions for the marginal pdf 
of the global quantities of interest.
2. Complete model and definition of the global quantities of 
interest

We consider the anisotropic dispersive Henry’s problem intro-
duced by Abarca et al. [1]. The setting is a modification of the origi-
nal Henry’s problem [21] and enables one to describe seawater 
intrusion in coastal aquifers in a way which renders vertical salinity 
distributions that mimic field evidences. Saltwater intrusion is 
modeled across a vertical cross-section of a homogeneous aquifer 
under isothermal conditions (see Fig. 1). Fluid flow is governed by 
the mass balance and Darcy equations, i.e.

@ð/qÞ
@t

þr � ðqqÞ ¼ 0; q ¼ � k
l
� ðrpþ qgrzÞ ð1Þ

where q [L T�1] is specific discharge vector with components qx and 
qz respectively along x- and z-directions (see Fig. 1); k [L2] is the 
homogeneous and anisotropic diagonal permeability tensor with 
components k11 = kx and k22 = kz, respectively along directions x 
and z; / [–] is the porosity of the medium; l [M L�1 T�1] and q 
[M L�3] respectively are dynamic viscosity and density of the fluid; 
p [M L�1 T�2] is pressure; and g [L T�2] is the gravitational constant.

Solute transport is described by the advection–dispersion 
equation

@ð/qCÞ
@t

þr � ðqCqÞ � r � ½qD � rC� ¼ 0 ð2Þ

Here C [–] is solute concentration and D [L2 T�1] is the dispersion
tensor, whose entries are defined as

Dxx ¼ /Dm þ aL
q2

x

jqj þ aT
q2

z

jqj

� �
; Dzz ¼ /Dm þ aL

q2
z

jqj þ aT
q2

x

jqj

� �
;

Dxz ¼ Dzx ¼ ðaL � aTÞ
qxqz

jqj ð3Þ

where Dm is the molecular diffusion coefficient and aL and aT [L] 
respectively are the longitudinal and transverse dispersivity coeffi-
cients, which are considered as uniform in the system. Since molec-
ular diffusion is commonly neglected in transport settings taking 
place in porous media under the conditions we consider (e.g.[16]), in 
the following we disregard the contribution of Dm in (3). Initial 
conditions corresponding to freshwater hydrostatic pressure 
distribution are set in the system. No-flow conditions are imposed at 
the bottom and top of the domain; constant freshwater influx,
qf , is prescribed along the inland boundary (x = 0), where C = 0; salt-
water hydrostatic pressure distribution is imposed along the sea-
side boundary, x = l (i.e., p = qs g (d � z), qs being density of seawater) 
where the salt mass flux is set as

ðqC � D � rCÞ � n ¼
qxC if qx > 0
qxCs if qx < 0

�
x ¼ l ð4Þ

n and Cs respectively being the normal vector pointing outward 
from the aquifer and the concentration of salt in seawater (salinity). 
According to (4) water entering and leaving the system has salt con-
centration Cs and C, respectively. Key features and limitations of this 
schematization are illustrated in Abarca et al. [1].



Fig. 1. Scheck of the flow and transport test problem.

Fig. 2. Schematic description of the target GQs. Iso-concentration line C0 = 20% and 
80% (dashed black), 25% and 75% (dashed grey), and 50% (solid black) are depicted.
Closure of the system (1)–(4) is obtained upon specifying a con-
stitutive relationship between fluid properties, q and l, and salt 
concentration. For the range of concentrations typically associated 
with SWI (e.g. [7]), viscosity can be assumed as constant and the 
following linear relationship can be employed to describe the 
evolution of q with C

q ¼ qf þ ðqs � qf Þ
C
Cs

ð5Þ

qf being the freshwater density. Introducing the following
dimensionless quantities

x0 ¼ x
d

; z0 ¼ z
d

; r0 ¼ dr; t0 ¼ t
d=qf

; q0 ¼ q
qf

;

q0 ¼ q
qs � qf

¼ q
Dq

; p0 ¼ p
Dqq2

f

ð6Þ

Eq. (1) can be rewritten in dimensionless form as

@ð/q0Þ
@t0

þ r0 � ðq0q0Þ ¼ 0; q0 ¼ �!Ng

q2
f

gd
r0p0 þ q0r0z0

!
ð7Þ

where ! is a diagonal matrix with entries !11 ¼ 1 and !22 ¼ rk,
rk ¼ kz=kx being the permeability anisotropy ratio, qf

2=gd is a 
representative Froude number, and Ng ¼ gDqkx=qf l is the gravity 
number (e.g. [24,29]).

The transport equation can be written in dimensionless form as

@ð/q0C 0Þ
@t0

þ r0 � ðq0C 0q0Þ � r0 � ½q0D0 � r0C 0� ¼ 0 ð8Þ

with

D0xx ¼
1

PeL

q02x
jq0j þ

1
PeT

q02z
jq0j ; D0zz ¼

1
PeL

q02z
jq0j þ

1
PeT

q02x
jq0j ;

D0xz ¼ D0zx ¼
1

PeT
� 1

PeL

� �
q0xq0z
jq0j ð9Þ

where PeL ¼ d=aL and PeT ¼ d=aT are longitudinal and transverse 
Péclet number, respectively, and C0 ¼ C=Cs. Eqs. (7)–(9) highlight 
that the problem under investigation is governed by eight dimen-
sionless quantities, i.e., /, rk, qf =Dq, Ng , PeL, PeT , Cs and qf

2=gd.
Since point-wise measurements of state variables (e.g., salt 

concentration, velocity and pressure values) in SWI problems are 
usually scarce due to technical and economic constraints (e.g. [8]) 
in our study we focus on a global description of the process by 
considering dimensionless global quantities, GQs, that enable us 
to describe the overall seawater intrusion process. A similar 
approach has also been adopted by [1]. The four GQs of interest 
(note that each GQ is rendered dimensionless by normalization
1. The dimensionless toe penetration, LT. This corresponds to
the inland penetration, measured along the bottom of the
domain, of the 50% C 0 isoline. This metric characterizes the
inland extent of the saltwater wedge.

2. A measure, LS, of the spread of solute at the toe of the saltwa-
ter wedge. This is defined as the dimensionless distance,
evaluated along the bottom of the domain, between the
20% and 80% C0 isolines.

3. The dimensionless average width of the mixing zone, WD.
Here WD is evaluated as the average of wmz(x0) within the
region 0.2 � LT 6 x0 6 0.8 � LT; wmz(x0) being the dimension-
less vertical distance between the 25% and 75% C0 isolines (in
case the 75% C0 isoline has intruded the domain up to a dis-
tance less than 0.8 � LT, we consider wmz(x0) as the vertical
distance between the 25% C0 isoline and the bottom of the
aquifer).

4. The dimensionless sinking of the saltwater wedge at the sea-
side boundary, LY. This is quantified as the dimensionless
vertical distance between the bottom of the aquifer and
the 50% C0 contour curve at the seaside boundary.

3. Uncertainty quantification via global sensitivity analysis and 
generalized Polynomial Chaos Expansion

In this section we introduce the Sobol indices that will be used in 
Section 5 to investigate the way lack of knowledge of key parame-
ters appearing in the problem formulation (6)–(9) propagates to the

through d) are depicted graphically in Fig. 2 and defined in the 
following.



 

selected global descriptors. We also briefly describe the way we 
alleviate the computational burden by introducing a surrogate model 
of the coupled flow-transport problem illustrated in Section 2.

As seen in Section 2, the seawater intrusion problem is governed 
by eight dimensionless quantities. Amongst these, we consider as 
uncertain the following four parameters: (i) the permeability 
anisotropy ratio, rk, (ii) the longitudinal, PeL, and transverse, PeT , 
Péclet numbers, expressing the effect of the longitudinal and trans-
verse dispersivity, and (iii) the gravity number, Ng , quantifying the 
relative importance of buoyancy and viscous forces. Uncertainty in 
these quantities is associated with our imperfect knowledge of the 
aquifer hydraulic (i.e., permeability tensor components) and dis-
persive parameters related to saltwater spreading in the system 
at the scale of observation.

We collect the four uncertain quantities Ng, rk, PeL and PeT in a 
random parameter vector x � (x1, . . ., xN; with N = 4) and treat each 
xn as an independent random variable. The occurrence of correla-
tion among entries of x could be included in the methodology 
(see, e.g. [27]). However, this would require the knowledge of the 
marginal probability density functions of the uncertain parameters 
and the associated correlation matrix. The type of correlations 
which can be found in the literature, e.g., between aL and aT (i.e., 
between PeL and PeT) are purely empirical and not generally sup-
ported by theoretical arguments. Due to the general lack of prior 
information on x, we also assume that each xn can be described 
by a uniform distribution within the interval Cn ¼ ½xn;min; xn;max�.

Our uncertainty quantification study is based on a global sensi-
tivity analysis (GSA) which is performed through the evaluation of 
the variance-based Sobol indices (e.g. [3,36]). The latter provide a 
description of the way the variability of a given quantity of inter-
est, quantified in terms of its total variance, is affected (separately 
and jointly) by the random parameters collected in x. Sobol indices 
provide generally robust results, as these are not constrained by 
any linearity assumption on the underlying mathematical model 
[34], a feature which is particularly critical in a complex system of 
the kind we investigate.

A target quantity f(x), representing a given GQ, which depends 
on N independent random variables can be decomposed as

f ðxÞ¼ f 0þ
XN

i¼1

f iðxiÞþ
XN

i;j¼1

f i;jðxi;xjÞþ . . . f 1;2;...;Nðx1;x2; . . . ;xNÞ ð10Þ

where

f 0 ¼
Z

C
f ðxÞpCðxÞdx; f iðxiÞ ¼

Z
C i

f ðxÞpC iðxÞdx� f 0;

f i;jðxi; xjÞ ¼
Z

C i;j
f ðxÞpC i;jðxÞdx� f 0 � f iðxiÞ � f jðxjÞ

ð11Þ

Here C ¼ C1 � :::� CN is the hypercube representing the space
of variability of x and pCðxÞ is the joint probability density of x over
C; integration over C i is performed over the space of x excluding
Ci, pC i being the corresponding density function. Note that f 0 in
(10) is the mean of f ðxÞ .

The Sobol index Si1 ;i2 ;...;is , embedding the mixed effects of xi1 ; . . . ; 
xis [36,37], is defined as

Si1 ;...;is ¼
1
Vf

Z
Ci1 ;...;is

f 2
i1 ;...;is
ðxi1 ; . . . ; xis ÞpCi1 ;...;is

ðxÞdxi1 . . . dxis ð12Þ

Vf being the total variance of f(x), i.e.

Vf ¼
Z

C
f ðxÞ2pCðxÞdx� f 2

0 ð13Þ

From (12), the principal sensitivity index of xn, denoted as Sn,
describes the contribution of only xn (without considering interac-
tions with the other parameters) on the total variance, Vf . The
overall contribution of parameter xn to Vf is then given by the total
sensitivity index

ST
n ¼ Sn þ

X
j

Sn;j þ
X

k;j

Sn;j;k þ � � � ð14Þ

and includes Sn and all the joint terms where xn appears. Denoting
by SL

n the contribution to Sn of the linear term associated with xn,
SNL

n ¼ ðS
T
n � SL

nÞ represents the total contribution of non-linear terms
involving xn, i.e., SNL

n indicates the degree of nonlinearity of the
input–output mapping of f(x) with respect to xn.

Computing the indices (12) requires multiple integrations of the 
model response f ðxÞ for diverse combinations of the uncertain 
parameters. This is typically achieved by numerical Monte Carlo 
simulation and the associated computational cost can be very high, 
depending on model complexity and on the number of random 
parameters considered [38].

The generalized Polynomial Chaos Expansion (gPCE) (e.g.
[19,28,36,38,42]) can be employed to build surrogate models of 
target quantities at a relatively affordable computational cost (see, 
e.g., [11,15,17] and references therein). As such, the gPCE 
approximation can be used to ascertain the way uncertainty asso-
ciated with unknown model parameters propagates to system 
states of interest. In this context, the gPCE of f ðxÞ can be con-
structed as a spectral expansion of f ðxÞ in terms of a set of ortho-
normal polynomials representing a basis of the probabilistic space 
C within which an approximation of the model response surface is 
built. The specific family of polynomials which can be used depends 
on the probability distribution of the uncertain model parameters 
considered. Since each xn is here assumed to be uniformly 
distributed, we adopt the family of multivariate Legendre 
polynomials [42]. The way a multidimensional Legendere 
polynomial is constructed starting from univariate Legendre poly-
nomials is described by [18] to which we refer for additional 
details. The gPCE approximation of f ðxÞ can be constructed as

f ðxÞ ¼ h0 þ
XN

i¼1

X
p2Ii

hpLpðxÞ þ
XN

i;j¼1

X
p2Ii;j

hpLpðxÞ þ � � � ;

LpðxÞ ¼
YN
i¼1

Li;pi
ðxiÞ; hp ¼

R
C f ðxÞLpðxÞpCðxÞdx

ð15Þ

Here p ¼ fp1; p2; . .  .  ; pNg 2  NN is a multi-index expressing the
degree of each univariate Legendre polynomial, Ln;pn ðxnÞ, employed 
to construct the multivariate orthogonal Legendre polynomial 
LpðxÞ, hp is the associated polynomial coefficient, and Ii contains 
all indices such that only the ith component does not vanish, i.e.,
Ii ¼ fpi–0; pk ¼ 0 for k–ig.

Considering (10)–(15) allows deriving the equivalence between 
the Sobol indices and the coefficients hp of the gPCE representation 
of f ðxÞ, i.e.

Si1 ;...;is ¼
1
Vf

X
p2Ii1 ;...;is

h2
p; f 0 ¼ h0; Vf ¼

X
p2NN

h2
p ð16Þ

oEq. (16) can be rendered workable upon truncation f the summa-
tion to a set of polynomials with total degree w, i.e.,

P
ipi 6 w. Other

possible truncation schemes are discussed by Bäck et al. [4]. The 
accuracy of the resulting gPCE approximation increases with the 
regularity of f ðxÞ and as w !1. This aspect is explored in Section 4.
4. Test case description and Numerical implementation

4.1. Complete numerical model

We solve the coupled flow and transport problem defined by
(1)–(5) by means of the widely tested numerical code SUTRA



Table 1
Range of variability of the dimensionless uncertain
parameters.

Cn ¼ ½xn;min; xn;max�

CNg [3.04; 5.06]
Crk

[10–8;1.0]
CPeL [3.33; 10]
CPeT [10; 100]
[40] within a homogeneous anisotropic porous medium with 
porosity / = 35%. We set the height and length of the domain 
respectively to d = 1 m and l = 2 m (see Fig. 1). The density of fresh 
and sea water are given respectively by qf = 1000 kg/m3 and qs = 
1025 kg/m3, while the fluid viscosity is constant and equal to
l = 10�3 kg/m s. Freshwater enters the system with a Darcy veloc-
ity qf = 6.6 � 10�5 m/s and the concentration of salt in seawater, Cs,
is set equal to the standard value 35.7 � 10�3 kg/kg. As highlighted 
in Section 3, we treat Ng, rk, PeL, and PeT as uncertain parameters. In 
this work we do not investigate the impact of the uncertainty of the 
geometrical setting, boundary conditions, and fresh and sea water 
density and viscosity. The intervals of variability of the four 
dimensionless uncertain parameters are listed in Table 1. The lower 
and upper bounds for each range of parameter variability have 
been selected on the basis of available information on the 
dimensional parameters involved in their definition. In our work 
the variability of Ng arises from the uncertainty in the horizontal 
permeability, having fixed the fluid properties and the inland 
freshwater flux. Since PeL, and PeT affect solute spreading (e.g.
[39,41]), the large range of variability we consider attempts to 
cover several situations encountered in real scenarios. Note that the 
selected range of variability for rk enables one to consider both 
isotropic and strongly anisotropic aquifers.

The computational domain depicted in Fig. 1 is discretized 
through a grid with uniform square elements with side D = 
Dx = Dy. We performed a set of preliminary simulations aimed at 
testing the influence of grid discretization on the quantification of 
the global quantities of interest defined in Section 2. We found no 
appreciable difference between the numerical results associated 
with grids formed by 200 � 100 (i.e., D = 10�2 m), 256 � 128 (i.e.,
Fig. 3. Relative error, ef, between values of the GQs obtained via the solution of the full
(solid curves) and w ¼ 2 (dashed curves) for f = (a) LT, (b) WD, (c) LS, (d) LY.
D = 7.8 � 10�3 m) or 400 � 200 (i.e., D = 5  � 10�3 m) 
elements (details not shown). On these bases, all results reported 
in the fol-lowing are associated with a uniform grid of 256 � 128 
elements. To ensure numerical stability (e.g. [40]), all numerical 
simulations have been performed using a grid Péclet number Pem 

¼ D=aL < 4, while keeping D < aT . Eqs. (1)–(5) are solved until 
steady-state conditions are reached. The latter are attained after 
a total simu-lated time of about 17 h. The effect of different time 
steps has been tested and a uniform time discretization Dt = 60 s 
has been found to render accurate results. With these settings, a 
single simulation via SUTRA is associated with a computational 
cost of about 30 min. All numerical results reported here have 
been obtained on an Intel� Core™ i5-2410 M CPU @ 2.30 GHz 
processor. The target global quantities LT, LS, WD and LY are then 
analyzed at steady-state. This study is consistent with the 
original formulation of Henry’s solution [14,21] and with the way 
the saltwater intrusion scenario is characterized in most 
environmental applications (e.g. [1] and references therein).

4.2. Construction and validation of the gPCE approximation of the 
global quantities

As described in Section 3, constructing the gPCE of a target sys-
tem response entails solving the complete system model (1)–(5) for 
diverse combinations of the selected random parameters Ng, rk, PeL, 
and PeT. The number of these combinations depends on the total 
degree w selected for the polynomial representation. In this section 
we assess the robustness of the gPCE approximations with diverse 
degrees w, in terms of their ability to provide accurate 
representations of the (random) global quantities LT, LS, WD and LY. 
We base our analysis on comparisons between values of each GQ 
obtained via the solution of the full model (1)–(5), f ðxÞFM , against 
corresponding gPCE approximations, f ðxÞgPCE. The coeffi-cients hp 

are calculated by solving the multidimensional integral in (15) 
through the sparse grids interpolation technique [e.g. 17](i.e., the 
so-called non-intrusive spectral projection). We do so by using 
Legendre–Gauss points. Fig. 3 depicts the results of such an analysis 
in terms of the relative error, defined as ef ¼ ðf ðxÞgPCE � f ðxÞFMÞ=f 
ðxÞFM (with f = LT, LS, WD and LY) resulting
 model (1)–(5), and the corresponding gPCE approximations associated with w ¼ 3 



Fig. 4. Convergence of sample mean, lf (solid black curve), and associated 95% CIs (grey dashed curves) with the number of Monte Carlo simulations (NMC) for f = (a) LT, (b) 
WD, (c) LS, and (d) LY obtained through a gPCE with w = 3. Corresponding results obtained via 100 independent MC simulations of (i) the complete model (lf – black circle –
and 95% CIs – grey square) and (ii) the gPCE (lf – black cross – and 95% CIs – grey cross) based on the same set of input random parameters are also depicted. The black 
diamond represents the analytical solution of (16) with w = 3.
from NMC = 100 random MC realizations of the system parameters
drawn from the parameter space. Note that these simulations do
not coincide with those employed for the construction of the gPCE.
The gPCE approximations have been evaluated using two values of
w, i.e., w = 2, 3, for which the sparse grid is formed by 41 and 137
collocation points in the parameter space and the associated com-
putational costs are about 20 and 68 h, respectively. A very good
agreement can be seen between both gPCE approximations and
the full system model solution, the maximum absolute values of
ef being smaller than 18% or 9%, while the mean absolute values
of ef is smaller than 2.0% or 1.1%, respectively for w = 2 or w = 3.
Fig. 5. Convergence of sample variance, rf
2 (solid black curve) and associated 95% CIs (gr

(b) WD, (c) LS, and (d) LY obtained through a gPCE with w = 3. Corresponding results obtai
– and 95% CIs – grey square) and (ii) the gPCE (rf

2 – black cross – and 95% CIs – grey cro
diamond represents the analytical solution of (16) with w = 3.
It is worthwhile to note that once expressions of the gPCE 
approximations are available, a large number of Monte Carlo iter-
ations can be obtained at a very low additional computational cost 
upon sampling the random input parameter space. This allows 
grounding the analysis of the statistics of the target GQs on a very 
large sample of Monte Carlo realizations of the gPCE approxima-
tions. Figs. 4 and 5 respectively depict the dependence of the sam-
ple mean, lf, and variance, rf

2, of the GQs on the number NMC of MC 
realizations obtained via gPCE with w =  3. The 95% estimated 
confidence intervals (CIs) are also graphically reported (see, e.g.[5]). 
Also depicted in the figures are corresponding results obtained
ey dashed curves) with the number of Monte Carlo simulations (NMC) for f = (a) LT,
ned via 100 independent MC simulations of (i) the complete model (rf

2 – black circle 
ss) based on the same set of input random parameters are also depicted. The black
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via (i) 100 MC simulations of the complete model (performed inde
pendent of the simulations upon which the gPCE construction i
based) and the gPCE using the same set of random input parame-
ters, and (ii) analytical values of lf and rf

2 evaluated directly by
(16) without resorting to the MC procedure. The latter values coin
cide with their Monte Carlo estimates with NMC � 105, a
expected. The results embedded in these figures clearly demon
strate that stabilization of the statistical moments of interest
(and in particular of rf

2) can be reached only at very large value
of NMC (larger than 104). Note that such analysis would be unfea
sible by solving the complete model (1)–(5). Our analysis also ind
cates that (i) all moments and the associated 95% CIs evaluated vi
the full model and via the gPCE approximations practically coin
cide for the NMC = 100 random parameters realizations considere
independent of those employed for the construction of the gPCE
(ii) these moments lie within the 95% CIs obtained by independen
gPCE realizations (dashed line); (iii) the estimates of the mean, lf,
and variance, rf

2, obtained via gPCE and NMC = 5  � 105 and the 95%
CIs lie within the full model-based CIs evaluated by NMC = 100.

To further explore the reliability of our gPCE approximations, w
perform a two-sample Kolmogorov–Smirnov (K–S) test [30] t
compare the marginal probability distribution of the GQs obtaine
via the full model and their gPCE-based counterparts evaluated wit
w = 3. The null hypothesis that the samples belong to the sam
population is not rejected by the K–S test at a signifi-cance level o
0.05 (p-values always being larger than 0.9, details not reported
thus supporting the use of the gPCE surrogate mod-els not only fo
the analysis of the statistical moments of the global quantity but als
their probability distributions.

Finally, we analyze the level of correlation between two GQs o
interest, e.g., f ðxÞ and gðxÞ, by relying on the Pearson’ correlatio
coefficient, qp. It is worthwhile to note that, when the gPCEs of f ðx
and gðxÞ are available, qp can be evaluated analytically making use o
(15) and (16) as
qp ¼
covðf ðxÞ; gðxÞÞffiffiffiffiffiffiffiffiffiffiffi

Vf Vg
p ¼

PN
i¼1

P
p;q2Ii

hphq þ
PN

i;j¼1

P
p;q2Ii;j

hphq þ � � �ffiffiffiffiffiffiffiffiffiffiffi
Vf Vg

p
ð17Þ

Table 2 lists the Pearson’ correlation coefficients evaluated via
(17) with w = 3 and the corresponding values obtained on the basis 
of the above mentioned 100 MC realizations of the full model. Once 
again, it can be noted that the agreement between the full model-
and the gPCE-based results is quite remarkable, especially for the 
highly (positively or negatively) correlated quantities. On these 
bases, the analyses presented in the following section are grounded
Table 3
Principal (Sn) and total (ST

n) Sobol indices (n = Ng, rk, PeL, PeT), together with

LT LS

SL
Ng

; SNg ; ST
Ng

0.49; 0.50; 0.51 0.16; 0.17;

SL
rk

; Srk ; ST
rk

0.10; 0.14; 0.14 0.01; 0.02;

SL
PeL

; SPeL ; ST
PeL

0.05; 0.05; 0.05 0.51; 0.51;

SL
PeT

; SPeT ; ST
PeT

0.29; 0.31; 0.32 0.25; 0.27;

Table 2
Pearson0 correlation coefficient of the GQs evaluated via gPCE, (black fonts) and 100 
MC random realizations of the full model (grey fonts).
on gPCE approximations of order w = 3 for all of the global quanti-
ties of interest.

5. Results and discussion

5.1. Variance-based Sobol Indices

Principal, Sn, and total, ST
n, Sobol indices, together with linear 

contributions, SL
n, are listed in Table 3 for all global quantities of 

interest and considering all of the random input dimensionless 
variables (i.e., in Table 3 n = Ng, rk, PeL, and PeT). Values of SL

n, Sn

and ST
n coincide (or are very close to each other) indicating that 

non-linear terms and joint interaction between the uncertain 
parameters are almost negligible for all GQs with the exception 
of LY. The results embedded in Table 3 show that non-linear terms 
including rk cannot be neglected for the evaluation of LY.

The uncertainty associated with the intrusion of the toe of the 
wedge, as represented by LT, is mainly controlled by 
Ng ¼ gDqkx=qf l (which has about 50% weight in directing the total 
variance of LT). The nature of Ng allows recognizing that increasing 
kx=qf l causes a reduction of the pressure drop required by a given 
qf to flow towards the sea and the ensuing retreat of the wedge. On 
the other hand, an increase of Dq results in an increased capability 
of seawater to intrude the aquifer. The wedge intrusion is also 
strongly affected by PeT . This is so because mixing of fresh and salt 
water tends to be reduced with increasing PeT so that a high den-
sity contrast can be sustained, leading to an increase of LT.

Spreading of solute at the bottom of the wedge, as described by 
LS, is mainly affected by PeL and to a less extent by PeT. This result is 
consistent with the previous observation of Abarca et al. [1] that 
longitudinal dispersivity controls the distribution of concentra-
tions in the lowest (bottom) part of the domain.

The roles of PeL and PeT are then reversed in governing the vari-
ability of WD, describing the extension of the mixing zone. Abarca
et al. [1] suggested a linear relationship between WD and

ffiffiffiffiffiffiffiffiffiffi
aLaT
p

,
thus implying that aL and aT contribute in equal measure to WD.
Our results, which are based on independence between PeL and
PeT, show that PeT (i.e. aT ) plays the main role in controlling the
uncertainty of WD. Our finding that WD is almost insensitive to
Ng or rk suggests that for given values of PeL and PeT the spatial dis-
tribution of the entries of the dispersion tensor remains essentially
unaltered within the transition zone. Therefore, changes in Ng and rk

only cause a horizontal (inland or seaward) and vertical shift of the
transition region whose extension remains practically constant.

Finally, variations of rk only affect variability of LY and LT. This
result is consistent with the observation that decreasing rk (i.e.,
decreasing the vertical permeability) causes the vertical compo-
nent of the freshwater velocity to decrease so that the capability
of the horizontal freshwater flux to contrast the intrusion of the
saltwater is augmented. As a consequence, LY and LT tend to
decrease with rk.

5.2. Probability distributions of global quantities of interest

This Section is devoted to the analysis of the marginal and joint
probability distributions, pdfs, of the global quantities we analyze.
These results are relevant for management of coastal aquifers as
the linear component SL
n of Sn .

WD LY

0.19 0.00; 0.00; 0.00 0.16; 0.16; 0.20

0.02 0.03; 0.04; 0.04 0.60; 0.70; 0.70

0.51 0.27; 0.27; 0.28 0.00; 0.00; 0.00

0.28 0.65; 0.67; 0.69 0.13; 0.13; 0.13



they can be assist in the quantification of the probability of failure 
of the system (i.e., the probability to exceed a given threshold val-
ues of the GQ).

We construct these sample pdfs by relying on the gPCE represen-
tation. The latter is employed to perform 5 � 105 Monte Carlo sim-
ulations of the target system states at a remarkably low 
computational cost (about 68 h for the construction of the gPCE 
approximations, plus about 2 h for the generation of the MC realiza-
tions), as opposed to standard Monte Carlo simulations performed 
with the complete model which would be unfeasible (the estimated 
CPU time is about 1.7 � 105 h). Uniform sampling of the parameter 
space is here employed.

Once a gPCE representation is constructed, it is also possible to 
derive an analytical expression of the marginal probability distri-
bution (marginal pdf) of the GQ, without resorting to numerical MC 
sampling. The procedure is detailed in Appendix A. Appendices A1–
A3 show that, when the gPCE approximation (15) can be trun-ated 
to the first order Legendre polynomials of the parameters which are 
identified as relevant on the basis of the associated Sobol indices 
(see Table 3), as in the case of our analysis for WD, LT, and LS, the 
related marginal pdfs are fully determined by the coefficients of the 
Legendre polynomial of orders zero and one. When non-linear 
terms are relevant in the gPCE (i.e., for LY, as described in Section 
5.1), the complexity of the analytical expression of the marginal pdf 
increases. Details for this case are illustrated in Appendix A4 for 
completeness.

Fig. 6 juxtaposes the MC-based marginal pdfs of the GQs with 
the corresponding analytical formulations. The agreement 
between the numerical and analytical results is remarkable. The 
marginal pdfs of LT, WD and LS, for which non-linear effects can 
be neglected, are symmetric around the mean. Otherwise, the
Fig. 6. Numerical (black continuous) and analytical (grey dashed) marginal pdf for LT;W
For rendering purposes, the iso-probability curves in each subplot are normalized by th
marginal pdf of LY, where non-linear effects due to rk are relevant, 
is negatively skewed, its long tail being associated with settings 
characterized by low values of the vertical permeability.

Fig. 6 also depicts contour plots of the joint pdf of all pairs of the 
global variables. A negative correlation between LT and WD is evi-
dent. The latter is mainly due to the contrasting effects that PeT has 
on these quantities. While increasing PeT (i.e., decreasing aT ) causes 
the mixing zone to decrease, the inland intrusion of seawa-ter 
increases. The joint pdf of WD and LS is characterized by a clear 
positive correlation. This is related to the observation that both 
quantities are primarily affected by the longitudinal and transverse 
Péclet numbers and they both decrease with PeL and PeT . Note also 
that the joint pdf of LT and LY shows a marked elongation in the 
region corresponding to relatively low values of both global vari-
ables. This behavior is representative of settings characterized by 
low values of the vertical permeability, i.e. by small values of rk. The 
joint pdfs reported in Fig. 6 are also in agreement with the pic-ture 
offered by the Pearson’ correlation coefficients introduced in 
Section 4 and listed in Table 2. In particular, these confirm the lack 
of correlation between WD and LY and between LS and all global 
variables with the exception of WD.

In practical applications, some of the global quantities here con-
sidered can be known through experimental campaigns. A relevant 
question in the management of coastal aquifers is therefore how 
can the knowledge of one global quantity affect the probability dis-
tribution (and therefore the predictability) of the remaining GQs. 
An answer to this question can be directly obtained by applying 
Bayes’ theorem to the joint pdfs described above and then deriving 
the conditional pdf of the GQs of interest.
For the problem here considered, while measurements of LY can be 

obtained with relatively modest efforts (e.g., through electrical
D; LY and LS. Contours of joint pdf for all pairs of GQs are also shown (color curves).
e corresponding maximum pdf value.



Fig. 7. Marginal pdf of (a) LT, (b) WD and (c) LS conditioned to LY = lLY ± 6.1 � 10�3 (solid curves). Corresponding unconditional pdfs are also depicted (dashed curves).
conductivity profiles), acquiring data on the remaining GQs (and in 
particular of LT and LS) is problematic. It is therefore of interest to 
analyze the way the availability of LY data would affect predictions 
of the remaining GQs. On the basis of Fig. 6, one can anticipate that 
while LY measurements would affect the predictability of LT, these 
data would not influence markedly the marginal pdf of WD and LS 
because of their weak level of correlation with LY. As an example of 
the type of results which one can obtain, Fig. 7a depicts the 
marginal pdf of LT conditioned to the mean value of LY, i.e., lLY = 
0.61. In Fig. 7a we consider a measurement error with ampli-tude 
equal to ±1% lLY and condition the marginal pdf of LT on the range of 
LY values [lLY � 6.1 � 10�3, lLY + 6.1 � 10�3]. The uncon-ditional pdf 
is also depicted for comparison. Corresponding results for WD and 
LS are depicted in Fig. 7b and c, respectively. These results clearly 
show the reduction of the variability of LT, which is, e.g., quantified 
by its variance that decreases from 4.2 � 10�2 for the unconditional 
case to 1.8 � 10�2 for the conditional one. On the other hand, 
knowledge of LY practically does not affect the pdf of WD and LS, as 
expected by the reasoning illustrated above.
5. Conclusions

We analyze the way key global dimensionless quantities (GQs)
characterizing the saltwater wedge in the dispersive Henry’s prob-
lem are affected by the incomplete knowledge of system proper-
ties, as encapsulated in the gravity number (Ng), the anisotropic
ratio of permeability (rk), the transverse (PeT) and longitudinal
(PeL) Péclet number. The analysis is based on the generalized Poly-
nomial Chaos Expansion (gPCE) of the following GQs: the median
toe penetration (LT), the spread of solute around the toe (LS), the
mean width of the mixing zone (WD) and the sinking of the wedge
at the seaside boundary (LY). These kinds of analyses can be useful
to assist coastal aquifer management and risk assessment proce-
dures as they lead to an appropriate probabilistic characterizations
of the saltwater wedge.

Our uncertainty quantification procedure relies on the variance-
based Sobol indices. We found that the variability of the gravity
number greatly influences LT, while uncertainty of the permeability
anisotropy ratio chiefly controls LY. On the other hand, transverse
and longitudinal Péclet number respectively affects mainly the var-
iance of the width of the mixing zone and of the spread of solute
around the toe.

We then compute the joint and marginal probability density
functions (pdfs) of the target global descriptors. We remark these
tasks are computationally unaffordable by making use of the com-
plete system model, while they can be performed with a relatively
modest computational effort by means of the constructed gPCE
surrogate model. We also derive analytical expressions for the
marginal pdf of the global quantities on the basis of the gPCE
approximations. The study of the joint pdfs allows us to highlight
the degree of correlation between the GQs. This analysis is relevant
to management and assessment of quality of coastal aquifers
because it enables us to identify the way information on one state
variable impacts on the reduction of uncertainty associated with 
other target quantities, thus ultimately constituting a potential dri-
ver to planning required experimental campaigns.

Future extensions of this study comprise the study of seawater 
intrusion processes in randomly heterogeneous systems, the inclu-
sion of additional uncertain quantities such as porosity, inland 
freshwater flux and salt concentration at the sea boundary. The 
investigation of flow scenarios of increased complexity, such as 
those involving pumping and recharge wells in coastal aquifers is 
also envisioned.
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Appendix A. Analytical derivation of the marginal pdf of the 
target global variables

In this Appendix we detail our derivations conducive to the ana-
lytical expressions of the marginal probability density function, 
pdf, of the target global variables we consider. For illustration pur-
poses, in the following we retain in (15) and (16) all terms which 
allow representing at least 90% of the total variance of each state 
variable.

A1. Marginal pdf of WD

Within the range of variability of the uncertain parameters 
listed in Table 1, one can note that 91% of the total variance of WD 
can be retained upon truncating (15) up to the first order Legendre 
polynomials nPeT 

and nPeL 
, defined as

nPeT
¼

ffiffiffi
3
p 2PeT � g � h

h� g
; nPeL

¼
ffiffiffi
3
p 2PeL � e� f

f � e
ðA1Þ

where PeT 2 CPeT ¼ ½g; h� and PeL 2 CPeL ¼ ½e; f � (see Table 1). There-
fore, (15) becomes

WD0 ¼WD� hWD;0 ¼ hWD;PeT nPeT
þ hWD;PeL nPeL

ðA2Þ

where hWD;0 is the mean of WD, hWD;PeT and hWD;PeL are the coefficients
of the Legendre polynomial of order one in PeT and PeL, respectively.

Eq. (A2) can be rewritten as 

WD0 ¼ AWD þ BWDPeT þ CWDPeL ðA3Þ

where

AWD ¼ �
ffiffiffi
3
p

hWD;PeT

hþ g
h� g

þ hWD;PeL

f þ e
f � e

� �
;

BWD ¼
2
ffiffiffi
3
p

hWD;PeT

h� g
; CWD ¼

2
ffiffiffi
3
p

hWD;PeL

f � e
ðA4Þ

The probability density function, of PeT and PeL are respectively
given by



pdfPeT ¼
1

h� g
½HðPeT � gÞ � HðPeT � hÞ�;

pdfPeL ¼
1

f � e
½HðPeL � eÞ � HðPeL � f Þ� ðA5Þ

H being the Heaviside step function. Since PeT and PeL are two inde-
pendent random variables, the marginal pdf of WD is given by the
convolution of pdfPeT and pdfPeL as

pdfWDðwd0Þ ¼ 1
BWD

Z þ1

�1
pdfPeT

wd0 �AWD�CWDPeL

BWD

� �
pdfPeL ðPeLÞdPeL

ðA6Þ

Making use of (A5) and (A6) becomes

pdfWDðwd0Þ ¼ 1
BWDðh�gÞðf �eÞ

Z þ1

�1
�H

wd0 �AWD�CWDPeL

BWD
�h

� ��

�HðPeL�eÞþH
wd0 �AWD�CWDPeL

BWD
�h

� �
HðPeL� f Þ

þH
wd0 �AWD�CWDPeL

BWD
�g

� �
HðPeL�eÞ

�H
wd0 �AWD�CWDPeL

BWD
�g

� �
HðPeL� f Þ

�
dPeL ðA7Þ

The first integral appearing in (A7) can be evaluated as

I1;WD ¼
Z 1

�1
H

wd0 � AWD � CWDPeL

BWD
� h

� �
HðPeL � eÞdPeL

¼
Z 1

e
H

wd0 � AWD � CWDPeL

BWD
� h

� �
dPeL

¼ BWD

CWD

wd0 � AWD � CWDe
BWD

� h
� �

H
wd0 � AWD � CWDe

BWD
� h

� �
ðA8Þ

All remaining terms in (A7) can be evaluated in a similar way, so 
that (A7) becomes

pdfWDðwd0Þ ¼ 1
CWDðh�gÞðf �eÞ �

wd0 �AWD�CWDe
BWD

�h
� ��

�H
wd0 �AWD�CWDe

BWD
�h

� �

þ wd0 �AWD�CWDf
BWD

�h
� �

H
wd0 �AWD�CWDf

BWD
�h

� �

þ wd0 �AWD�CWDe
BWD

�g
� �

H
wd0 �AWD�CWDe

BWD
�g

� �

� wd0 �AWD�CWDf
BWD

�g
� �

H
wd0 �AWD�CWDf

BWD
�g

� ��
ðA9Þ

Finally, after some manipulations and making use of (A3), (A4), (A9) 
can be rewritten as

pdfWDðwdÞ ¼ 1
12hWD;PeLhWD;PeT

X1

i¼0

X1

j¼0

ð�1Þiþjnwd;ijH
nwd;ij

hWD;PeT

� �
ðA10Þ

with nwd;ij ¼ wd� hWD;0 þ
ffiffiffi
3
p
ðð�1ÞihWD;PeL þ ð�1Þ jhWD;PeT Þ.

A2. Marginal pdf of LT

Within the range of variability of the uncertain parameters 
listed in Table 1, one can note that 93% of the total variance of LT 
can be retained upon truncating (15) up to the first order Legendre
polynomials nPeT 

introduced in (A1) and nNg and nrk 
defined as

nNg ¼
ffiffiffi
3
p 2Ng � a� b

b� a
; nrk

¼
ffiffiffi
3
p 2rk � c � d

d� c
ðA11Þ
where Ng 2 CNg ¼ ½a; b� and rk 2 Crk ¼ ½c; d�. Therefore, (15) can be 
simplified as

LT 0 ¼ LT � hLT;0 ¼ hLT;Ng nNg þ hLT;rk
nrk
þ hLT;PeT nPeT

ðA12Þ

where hLT;0 is the mean of LT, hLT;Ng , hLT;rk
and hLT;PeT are the coeffi-

cients of the Legendre polynomial of order one in Ng , rk, and PeT ,
respectively.
Eq. (A12) can be rewritten as LT0

¼ ALT þ BLT Ng þ CLT rk þ DLT PeT ðA13Þ

where

ALT ¼ �
ffiffiffi
3
p

hLT;Ng

aþ b
b� a

þ hLT;rk

c þ d
d� c

þ hLT;PeT

hþ g
h� g

� �
;

BLT ¼
2
ffiffiffi
3
p

hLT;Ng

b� a
; CLT ¼

2
ffiffiffi
3
p

hLT;rk

d� c
; DLT ¼

2
ffiffiffi
3
p

hLT;PeT

h� g

ðA14Þ

The pdfs of Ng and rk are given respectively by

pdfNg ¼
1

b� a
½HðNg � aÞ � HðNg � bÞ�;

pdfrk
¼ 1

d� c
½Hðrk � cÞ � Hðrk � dÞ� ðA15Þ

Since Ng , rk and PeT are independent random variables, the marginal
pdf of LT is

pdfLTðlt0Þ ¼
1

BLT

Z þ1

�1

Z þ1

�1
pdfNg

lt0 � ALT � CLT rk � DLT PeT

BLT

� �
� pdfrk

ðrkÞpdfPeT ðPeTÞdrkdPeT ðA16Þ

Making use of (A5) and (A15) and following the same strategy 
adopted in Appendix A1, (A16) can be evaluated as

pdfLTðltÞ ¼
1

48
ffiffiffi
3
p

hLT;rk
hLT;PeT hLT;Ng

X1

k¼0

X1

i¼0

X1

j¼0

ð�1Þkþiþjðnlt;ijkÞ2H
nlt;ijk

hLT;Ng

� �

ðA17Þ

with nlt;ijk ¼ lt � hLT;0 þ
ffiffiffi
3
p
ðð�1ÞihLT;Ng þ ð�1ÞjhLT;rk

þ ð�1ÞkhLT;PeT Þ

A3. Marginal pdf of LS

Within the range of variability of the uncertain parameters 
listed in Table 1, one can note that 95% of the total variance of LS 
can be retained upon truncating (15) up to the first order Legendre
polynomials nPeL 

, nPeT 
introduced in (A1) and nNg , given by (A11). 

Therefore, (15) can be simplified as

LS0 ¼ LS� hLS;0 ¼ hLS ;PeL nPeL
þ hLS;PeT nPeT

þ hLS ;Ng nNg ðA18Þ

where hLS;0 is the mean of LS, hLS;PeL , hLS;PeT and hLT;Ng are the coeffi-cients 
of the Legendre polynomial of order one in PeL, PeT and Ng

respectively. Following the same procedure outlined in Appendix 
A2, we obtain the following expression for the marginal pdf of LS

pdfLSðlsÞ ¼
1

48
ffiffiffi
3
p

hLS;PeL hLS;PeT hLS;Ng

X1

k¼0

X1

i¼0

X1

j¼0

ð�1Þkþiþjðnls;ijkÞ2H
nls;ijk

hLS;PeL

� �

ðA19Þ

with nls;ijk ¼ ls� hLS;0 þ
ffiffiffi
3
p
ðð�1ÞihLS;PeL þ ð�1ÞjhLS;PeT þ ð�1ÞkhLS;Ng Þ

A4. Marginal pdf of LY

Within the range of variability of the uncertain parameters 
listed in Table 1, one can note that 97% of the total variance of LY 
can be retained upon truncating (15) up to the first order Legendre
polynomials nPeT 

, nNg and nrk 
defined by (A1) and (A11) and to the 

second order Legendre polynomial



 

nr2
k
¼

ffiffiffi
5
p

2
3

2rk � c � d
d� c

� �2

� 1

!
ðA20Þ

Therefore, (15) can be written as

LY 0 ¼ LY � hLY;0 ¼ hLY;Ng nNg þ hLY ;PeT nPeT 
þ hLY;rk nrk 

þ hLY;r
k
2 nr

k
2 ðA21Þ

where hLY ;0 is the mean of LY, hLY;Ng , hLY ;PeT and hLY ;rk are the coeffi-
cient of the Legendre polynomial of order one in Ng , PeT and rk, 
respectively, and hLY;r

k
2 is the coefficient of the Legendre polynomial 

of order two in rk. Eq. (A21) can be rewritten as

LY 0 ¼ ALY þ BLY Ng þ CLY PeT þ DLY rk þ ELY r2
k ðA22Þ

where

ALY ¼�
ffiffiffi
3
p

hLY ;Ng

aþ b
b� a

þ hLY ;rk

c þ d
d� c

þ hLY;PeT

g þ h
h� g

� �

þ hLY ;r2
k

ffiffiffi
5
p

ðd� cÞ2
ðc2 þ d2 þ 4cdÞ;

BLY ¼
2
ffiffiffi
3
p

hLY;Ng

b� a
; CLY ¼

2
ffiffiffi
3
p

hLY;PeT

h� g
;

DLY ¼
2
ffiffiffi
3
p

hLY;rk

d� c
�

6
ffiffiffi
5
p

hLY ;r2
k
ðc þ dÞ

ðd� cÞ2
; ELY ¼

6
ffiffiffi
5
p

hLY;r2
k

ðd� cÞ2
ðA23Þ

Since Ng , rk and PeT are independent random variables, the
marginal pdf of LY is

pdfLYðly0Þ ¼
1

BLY

Z þ1

�1

Z þ1

�1
pdfNg

ly0 �ALY �CLY PeT �DLY rk�ELY r2
k

BLY

� �
�pdfPeT ðPeTÞpdfrk

ðrkÞdPeT drk ðA24Þ

Eq. (A24) can be evaluated as

pdfLYðly0Þ ¼
1

CLYðb� aÞðh� gÞðd� cÞ

Z þ1

�1

n
H½rk � c� � H½rk � d�

o

� ðAr2
k þ Brk þ C1ÞH½Ar2

k þ Brk þ C1� � ðAr2
k þ Brk þ C2Þ

n
� H½Ar2

k þ Brk þ C2� � ðAr2
k þ Brk þ C3ÞH½Ar2

k þ Brk þ C3�

þðAr2
k þ Brk þ C4ÞH½Ar2

k þ Brk þ C4�
o

drk ðA25Þ

where

A ¼ � ELY

BLY
; B ¼ �DLY

BLY
; C1 ¼

ly0 � ALY � CLY g � aBLY

BLY
;

C2 ¼
ly0 � ALY � CLY g � bBLY

BLY
; C3 ¼

ly0 � ALY � CLY h� aBLY

BLY
;

C4 ¼
ly0 � ALY � CLY h� bBLY

BLY
ðA26Þ

Eq. (A25) can be rewritten as

pdfLYðly0Þ ¼ I1;LY � I2;LY � I3;LY þ I4;LY ðA27Þ

where

Ii;LY ¼ A
Z d

c
ðv � v1;i

Þðv � v2;iÞH½Aðv � v1;iÞðv � v2;iÞ�dv ðA28Þ

and

v1;i ¼
�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4ACi

q
2A

; v2;i ¼
�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4ACi

q
2A

ðA29Þ

Since A > 0 in our case, the integral expression (A28) can be evalu-
ated as
Ii;LY

A
¼ H½v1;i � c�H½d� v2;i�

v3
2;i � v3

1;i

6
� v1;iv2;i

v2;i � v1;i

2

!

þ H½v1;i � d� þ H½c � v2;i� þ H½v1;i � c�H½d� v2;i�
	 

� d3 � c3

3
� v1;i þ v2;i

2
ðd2 � c2Þ þ v1;iv2;iðd� cÞ

!

þ H½d� v2;i�H½c � v1;i�H½v2;i � c� d3

3
� v1;i þ v2;i

2
d2 �

v2
2;i

2
v1;i

þ
v3

2;i

6
þ v1;iv2;id

!
þ H½v1;i � c�H½d� v1;i�H½v2;i � d�

�
v2

1;i

2
v2;i �

v3
1;i

6
� c3

3
þ v1;i þ v2;i

2
c2 � v1;iv2;ic

!
ðA30Þ
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