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Statistical scaling of pore-scale Lagrangian velocities in natural porous media
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We investigate the scaling behavior of sample statistics of pore-scale Lagrangian velocities in two different
rock samples, Bentheimer sandstone and Estaillades limestone. The samples are imaged using x-ray computer
tomography with micron-scale resolution. The scaling analysis relies on the study of the way qth-order sample
structure functions (statistical moments of order q of absolute increments) of Lagrangian velocities depend on
separation distances, or lags, traveled along the mean flow direction. In the sandstone block, sample structure
functions of all orders exhibit a power-law scaling within a clearly identifiable intermediate range of lags. Sample
structure functions associated with the limestone block display two diverse power-law regimes, which we infer
to be related to two overlapping spatially correlated structures. In both rocks and for all orders q, we observe
linear relationships between logarithmic structure functions of successive orders at all lags (a phenomenon that
is typically known as extended power scaling, or extended self-similarity). The scaling behavior of Lagrangian
velocities is compared with the one exhibited by porosity and specific surface area, which constitute two key
pore-scale geometric observables. The statistical scaling of the local velocity field reflects the behavior of these
geometric observables, with the occurrence of power-law-scaling regimes within the same range of lags for
sample structure functions of Lagrangian velocity, porosity, and specific surface area.
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I. INTRODUCTION

Micron-resolution imaging of reservoir rock samples and
associated flow and transport modeling is transforming our
ability to characterize pore-scale processes in natural and
reconstructed porous media (see, e.g., [1,2]). Simulations
of flow through pore space images have determined that
there is a billionfold variation in local flow velocities even
across millimeter-size samples [3,4]. This can lead to highly
anomalous (or non-Fickian) transport, which is supported
by evidence from centimeter-scale experiments [3,5]. In
this context, anomalous behavior denotes transport processes
that cannot be described by an interpretation based on the
classical advection-dispersion equation [6]. Such behavior
arises from the complex and heterogeneous structure of natural
porous media and is embedded in solute breakthrough curves
characterized by early breakthrough and long tails as well as
by non-Gaussian distributions of spatial displacements and
of Lagrangian velocity increments (see [4] and references
therein). Theoretical continuum-scale models for non-Fickian
transport have been reviewed previously [6,7]. Recent research
by Bijeljic et al. [3,4] presents experimental results, supported
by numerical simulations, documenting the emergence of a
relationship between pore structure, velocity distribution, and
propagators (i.e., solute concentration vs displacement) in
samples of real rocks. A connection of pore-structure hetero-
geneity with macroscopic flow and transport properties (e.g.,
permeability and dispersion coefficients) has been inferred
from experimental results illustrated in recent works in the
field of soil contamination and remediation problems [8,9].

A key aspect that has not been addressed in these studies
is the assessment of the scaling behavior of static attributes of
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the pore space combined with related dynamic properties of
the flow field taking place within the host rock. Indeed, the
statistics of hydrological properties in aquifers and reservoirs
exhibit dependences on various characteristic length scales,
e.g., measurement volume and resolution, scale of observation,
spatial correlation, and size of the sampled domain [10]. Scal-
ing analyses of statistical moments of hydraulic conductivity
and permeability data have been presented in many works,
including [11–20]. In all these studies, measurement volumes
are associated with a support scale ranging from the millimeter
to the meter and data sets are collected on domains at the field
(kilometer) or laboratory (decimeter to meter) scale. Recently,
Guadagnini et al. [21] documented and analyzed the statistical
scaling of geometric observables, i.e., porosity and specific
surface area, of two different rocks at the millimeter scale.

In this work we investigate the scaling of increments, or
changes, in local flow velocity across a range of lengths,
spanning from the (micron) resolution scale of the rock images
up to the (millimeter) scale of the sample sizes. Similar to
[11–21], we do so by relying on the analysis of sample structure
functions of order q > 0 of such increments. We then compare
the scaling behaviors observed for static (i.e., local porosity
and surface area) and dynamic (i.e., Lagrangian velocity)
quantities, evaluated on the same rock samples. Our work is an
initial step towards the quantification of statistical scaling of
dynamic variables involved in transport processes and provides
key basic elements that are required to translate a detailed
statistical analysis at the micron scale to (statistical) moments
of flow (and possibly transport) on larger investigation scales
typical of oil reservoirs and aquifers. The results of this
analysis can be of primary interest in all fields where the
heterogeneous and multiscale nature of geological media plays
a key role, including, e.g., oil and gas engineering applications,
groundwater hydrology, geophysics, and petrophysics.
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FIG. 1. Images of the void space (white) along cross-sectional
planes orthogonal to the mean flow direction (x axis) for
(a) Bentheimer sandstone and (b) Estaillades limestone.

II. DATA SETS AND THEORETICAL FRAMEWORK

A. Pore-space imaging

We perform our analysis on samples of two different rocks:
(i) Bentheimer sandstone and (ii) Estaillades limestone. The
three-dimensional structures of the pore spaces of the two
samples are reconstructed via x-ray computer microtomogra-
phy (XCT) using a bench-top scanner (Xradia Versa 500) with
spatial resolution l = 3.0 and 3.3 μm for the sandstone and
the limestone, respectively. Technical details concerning XCT
reconstruction can be found in [21] and references therein.
We produce images that are cubic arrays of ones and zeros,
respectively representing solid and pore space. Bentheimer
and Estaillades images are respectively composed of 10003

and 6503 voxels. The overall image domain is also a cube of
side length 3 mm for Bentheimer and 2.145 mm for Estaillades.

Figure 1 depicts images of the pore space within the two
samples, across selected cross-sectional planes orthogonal to
the mean flow direction, which we identify as the x axis.
Table I lists key features of the two cubic samples: voxel
array size Nvox, image resolution l, overall side length L, total

TABLE I. Main geometrical features of the Bentheimer sandstone
and Estaillades limestone samples: voxels array size Nvox, image
resolution l, overall side length L, porosity φ, and specific surface
area S. Here NP is the number of pathways extending at least to 90%
of the whole domain along the x axis.

Sample Nvox l (μm) L (μm) φ S (μm−1) NP

Bentheimer sandstone 10003 3.0 3000 0.22 0.07 7014
Estaillades limestone 6503 3.3 2145 0.12 0.04 2850

porosity φ (i.e., fraction of total volume occupied by pores),
and specific surface area S (i.e., interfacial area between pores
and solid matrix per unit volume). For the purpose of our
scaling analyses presented in Sec. III, we follow Guadagnini
et al. [21] and compute the distributions of porosity φ and S
along x (represented in Fig. 1), associated with rock volumes
of size L2 × l by applying the methodology of Coker and
Torquato [22] to the digitized binary images.

B. Flow and transport simulations within the pore space

Lagrangian velocities have been obtained by tracking the
trajectories of a large number—O(104)—of particles through
the steady-state flow fields computed by way of pore-scale
numerical simulations within both rock samples. The Navier-
Stokes equations for single-phase incompressible flow are
solved in the pore space by the method presented in [3,23],
which is based on the finite-volume code in OpenFOAM [24].
A finite-volume mesh is generated by converting each image
voxel into a grid block. Fluid flow is simulated from one
face to the opposite face of the system. Boundary conditions
are assigned by assuming constant pressure and zero-gradient
velocities at the inlet and outlet faces and no-flow conditions on
the lateral sides. A no-slip boundary condition is used at solid
voxel boundaries. Pressure and velocity values are obtained
by solving mass and momentum balance equations through
an iterative scheme based on the PISO algorithm [25], until
the velocity field attains a steady-state configuration. Figure 2
depicts the resulting steady-state velocity fields for Bentheimer
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FIG. 2. (Color online) Computed normalized flow fields for (a) Bentheimer sandstone and (b) Estaillades limestone. Results are depicted
as the ratios of the magnitude of velocity |U(x)| at the voxel centers divided by the average pore velocity magnitude Uav and represented on a
logarithmic colorized scale (average flow is from left to right).
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and Estaillades (only velocities values that are at least five
times higher than the average pore velocity are shown, similar
to the analysis in [4]) to illustrate the differences in the spatial
structure of the fast flow lines in the two systems.

The particle trajectories and times of flight are then
computed semianalytically by tracing streamlines through the
pore space [26,3,4], corresponding to simulating advection-
dominated displacement in the pore space. The starting point
of each trajectory is chosen randomly within the pore space
and the particle is tracked until it leaves the domain or until
the total travel time exceeds 106 s (note that the travel time
at the average calculated flow velocity is less than 10 s in
both sample rocks). The time of passage, spatial coordinates,
and velocity components along the three Cartesian axes x ≡
(x,y,z) are registered whenever a particle crosses the faces of a
voxel. Among all particles injected, we select those pathways
spanning at least 90% of the whole domain along the mean
flow direction (identified by the x axis in Fig. 1). The total
number of particles NP satisfying this requirement for each
rock sample is also listed in Table I.

C. Scaling of statistics

Following [11–21], statistical scaling of moments of
velocity is investigated through the analysis of directional
sample structure functions, i.e., qth-order statistical moments
of absolute increments

S
q

N (si) = 1

N (si)

N(si )∑

n=1

|�Yn(si)|q, (1)

where �Yn(si) is a computed (or measured) increment along
the i axis (with i = x, y, z), �Y (si) = Y (x + si) − Y (x), of the
random field Y (x), evaluated along the directional separation
distance (or lag) si . It can be useful to point out that S2

N , i.e., the
structure function of order q = 2, is related to the variogram of
Y (x), which forms the basis for standard analyses of random
fields. The field Y (x) is said to exhibit power-law scaling if

S
q

N (si) ∼ (si)
ξ (q). (2)

Here the scaling exponent ξ (q) depends only on the order q.
When ξ (q) displays a linear dependence on q, i.e., ξ (q) = Hq

[H being a Hurst exponent, which is an index of the degree of
(spatial) persistence of the signal], the field Y is considered to
constitute a self-affine (monofractal) random field. When ξ (q)
depends in a nonlinear fashion on q, Y has traditionally been
considered to be multifractal (or to be interpreted as fractional
Laplace motion). The reader is referred to [27] for a recent
discussion on these topics.

Similar to [21], we investigate the power-law-scaling
behavior of Eq. (1), for different orders q, by means of two
methods: (a) method of moments (MM) and (b) extended
self-similarity (ESS).

The method of moments aims at assessing the occurrence
of a power-law dependence of sample structure functions
on lag si of the kind expressed by Eq. (2). Such scaling
behavior is typically limited to an intermediate range of lags
sI � si � sII and has been observed for a broad variety of
environmental, geophysical, and other variables (including hy-
draulic, hydrogeological, biological, astrophysical, ecological,

and physical). Identification of the exponent ξ (q) enables one
to characterize the way statistical moment transition with scale.
Power-law behavior is inferred by means of linear regression
applied on the log-log plots of S

q

N (si) vs si , in the case of
the MM.

On the other hand, extended power-law scaling (or ESS)
arises from the empirical observation of the occurrence at all
lags of linear dependence of logarithmic structure functions of
successive orders. In this sense, ESS enables one to extend the
scaling range to the complete range of separation scales exam-
ined, as shown empirically by [28–30] and references therein,
and provides another way to characterize the dependence of
the scaling exponent ξ (q) on q. Extended self-similarity is
described by the following power-law relationship between
sample structure functions of different orders [31,32]

S
p

N (si) ∼ [
S

q

N (si)
]β(p,q)

. (3)

Here β(p,q) = ξ (p)/ξ (q), i.e., the ratio between scaling
exponents of S

p

N and S
q

N defined in Eq. (2). With ESS,
power-law behavior is inferred by means of linear regression
applied on the log-log plots of S

p

N (si) vs S
q

N (si). The scaling
exponents ξ (q) and β(p,q) are evaluated as the slopes of the
regression lines.

It has been shown in the literature that the breakdown in the
power-law scaling defined in Eq. (2), which is typically ob-
served at small (si � sI ) and large lags (si � sII ), is consistent
with the view of Y (x) as a sample from a truncated fractional
Brownian motion (TFBM), truncated fractional Gaussian
noise (TFGN), or a sub-Gaussian random field subordinated
to TFBM or TFGN (e.g., [27]). According to these theoretical
models, Y (x) represents a hierarchy of superimposed, statis-
tically homogeneous, multivariate, Gaussian, or sub-Gaussian
random fields. The hierarchy is truncated from below by a
cutoff proportional to the measurement or resolution length
scale of the data and from above by a cutoff proportional
to the characteristic scale of the sampling domain. These
cutoffs are intimately related to the breakdown in power-law
scaling. Interpretations based on such modeling framework
have been proven to be consistent with observations associated
with a variety of laboratory and field scale hydrological
and pedological data from sedimentary and fractured rocks
[17–20,33]. With reference to ESS, a theoretical basis for
Eq. (3) and its validity for all investigated lags has been
provided with reference to (a) the one-dimensional Burger
equation [34], (b) TFBM or TFGN [18], and (c) sub-Gaussian
random processes subordinated to TFBM or TFGN [27].

III. SCALING OF LAGRANGIAN VELOCITIES

We compute increments of the x component of Lagrangian
velocity Ux(x) along each trajectory for distances sx traveled
by a particle along the x direction (see Fig. 1 for the Cartesian
frame of reference). We consider values of sx that are integer
multiples of the image resolution l and within the range
l � sx � L/2. Sample structure functions S

q

N (sx) of absolute
increments |�Ux | are computed according to Eq. (1) by con-
sidering jointly incremental data for all of the trajectories. Each
point of S

q

N (sx) is then calculated on the basis of a very large
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FIG. 3. (Color online) Sample structure functions of absolute
increments of φ(x), S(x), and Ux(x) computed at lags sx along the x

axis for the Bentheimer sandstone and (a) q = 1, (b) q = 2, and (c)
q = 3.

number of statistical samples, i.e., N (sx) = O(106 − 107)
for the Bentheimer sandstone and N (sx) = O(105 − 106) for
the Estaillades limestone. The scaling analysis of the static
[φ(x) and S(x)] and dynamic [Ux(x)] properties of the two
rocks is presented in Secs. III A and III B. Following [21], the
quantities φ and S are calculated as averages over all cross
sections orthogonal to the direction of the mean flow (x axis)
and are therefore functions only of the spatial coordinate x.
Sample structure functions of (absolute) spatial increments of
φ and S are computed for the same sx values employed for
|�Ux |.

A. Bentheimer sandstone

Sample structure functions of (absolute) incremental values
of Ux(x), φ(x), and S(x), computed for q = 1, 2, 3,
are illustrated in Figs. 3(a)–3(c), respectively. A power-law
behavior associated with a limited range of lags can be
recognized for all quantities (geometrical observables and
velocities). All curves appear to have a tendency to flatten
beyond the lag sx ≈ 100 μm, which can be identified as
the upper limit sII beyond which power-law scaling breaks
down. The observation of a common value of sII for all
quantities measured on the same sample is consistent with
the interpretation of sII as being proportional to the size of
the sampling domain, according to the theoretical framework
of Neuman et al. [27]. On the other hand, from a qualitative
inspection, it is hard to identify unambiguously a value for a
lower limit sI of the scaling range for the curves analyzed.
This observation is also consistent with the interpretation of
[27], where sI is viewed as proportional to the measurement
scale, which can vary with the type of data considered.

We start by analyzing scaling of sample structure functions
of Lagrangian velocities through the MM. Figure 4(a) depicts,
on a log-log scale, the dependence of sample structure
functions of velocity S

q

N on sx for integer orders 1 � q �
4. According to the MM, power-law-scaling behavior can
be identified in the intermediate range of lags sI � sx � sII

within which the log-log regression line fitted to the data is
associated with the highest coefficient of determination R2.
We found (with R2 � 0.98 for all orders q) sI = 3 μm and
sII = 99 μm, as indicated by dashed lines in Fig. 4(a).

As an example of results that can be obtained by ESS,
Fig. 4(b) depicts, on a log-log scale, the way S

q+1
N (sx) varies

with S
q

N (sx) for 1 � q � 4. The straight-line relationships
displayed by log-log plots of S

q+1
N versus S

q

N demonstrate
that the data analyzed satisfy ESS with high confidence
(R2 � 1.0 for all orders q). Equations of the power-law fits are
also shown in Fig. 4(b) for completeness. Similar to what is
observed for the scaling behavior evidenced above through the
MM, we consider also these types of results to be consistent
with the interpretation proposed by [27], which can explain
the ESS of variables that do not necessarily satisfy Burger’s
equation [34].

We then investigate functional relationships between the
power exponent ξ (q) and the order q of structure functions
within the identified scaling regime. As indicated in Sec. II C,
according to the MM, these powers are the slopes of regression
lines fitted to log-log plots of S

q

N (sx) versus sx , such as
those depicted in Fig. 4(a). In the case of ESS, we (i)
evaluate β(q + �q,q) = ξ (q + �q)/ξ (q), for given �q, as
the slope of the regression line fitted to log-log plots of
S

q+�q

N (sx) versus S
q

N (sx) such as those depicted in Fig. 4(b);
(ii) compute by the MM a reference value ξref of ξ (q) for a
selected q = qref ; and (iii) start from ξref to evaluate ξ (q + �q)
and ξ (q − �q) according to ξ (q + �q) = β(q + �q,q)ξ (q)
and ξ (q − �q) = ξ (q)/β(q,q − �q). Following [21] and
references therein, we adopt ξref = ξ (1).

Plots of ξ (q) as a function of q, evaluated by the method of
moments and ESS are presented in Fig. 5. Results obtained by
the two methods are very similar. In all cases ξ (q) delineates
convex functions that lie below the straight line having slope
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FIG. 4. (Color online) (a) Sample structure functions S
q

N (sx) of absolute increments of Ux versus sx and (b) S
q+1
N versus S

q

N for the
Bentheimer sandstone and q = 1, 2, 3, 4. Vertical dashed lines demarcate breaks in power-law-scaling regimes. Logarithmic scale regression
lines indicating extended power-law scaling and the corresponding relations between S

q+1
N versus S

q

N are given in (b).

approximately equal to 0.72 and passing through the origin.
This slope is typically regarded in the literature as an estimate
of the Hurst exponent H . Similar to the scaling behavior
documented through the MM and ESS, also the types of
behavior exhibited by ξ (q) in Fig. 5 can be considered to
be consistent with the interpretation proposed by [27].

B. Estaillades limestone

Guadagnini et al. [21] investigated the statistical scaling
of φ and S on the same sample of Estaillades limestone we
analyze. Here we analyze jointly their results [see Figs. 2(b)
and 3(b) of [21]] and those stemming from sample structure
functions of Lagrangian velocity increments. Figures 6(a)–6(c)
present log-log depictions of S

q

N (sx) versus sx of (absolute)
increments of Ux(x), φ(x), and S(x) for q = 1, 2, and 3,
respectively. It can be noted that all plots show a linear increase
(corresponding to a power-law dependence of S

q

N on sx) up to a
lag s̄x ≈ 40 μm, this upper limit being identified by a dashed
line in the figures. For sx > s̄x a linear increase associated
with a different slope can be recognized. This behavior can
be explained by two diverse arguments: (a) The change of the

0

0.5

1

1.5
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3

0 1 2 3 4 5 6
q

( ) 0.72 q q

MM
ESS

ξ(
q)

FIG. 5. Scaling exponent ξ (q) evaluated as a function of q by
the MM and ESS for the Bentheimer sandstone sample. The slope of
the dashed straight line passing through ξ (1) and the origin (equation
listed) provides an estimate of the Hurst exponent.

slope of the linear trends is due to the effect of a lower limit of
the scaling region sI = s̄x ≈ 40 μm above which power-law
scaling takes place or (b) the two slopes reveal the occurrence
of two power-law-scaling regimes. The latter behavior could
be interpreted as the effect of two underlying structures that
are characterized by different spatial correlations.

In order to analyze the relative robustness of these in-
terpretations, we also explore the statistical scaling of the
geometrical features of the sample on the basis on an XCT
reconstruction characterized by a coarser resolution l′ =
7 μm. Figure 7 depicts sample structure functions of absolute
increments of φ(x) [Fig. 7(a)] and S(x) [Fig. 7(b)] associated
with low (l′ = 7 μm) and high (l = 3.3 μm) resolution.
Sample structure functions obtained within the low-resolution
domain exhibit a single power-law-scaling regime, within
the range sI (=l′=7 μm) � sx � sII (=300 μm), whereas
the curves tend to flatten for sx > sII . These results are not
consistent with our hypothesis (a), according to which the
effect of the lower cutoff should be amplified by increasing
the degree of spatial resolution, the theoretical value of sI

being proportional to the resolution scale l′. These results
are consistent with our interpretation (b), suggesting that the
power-law behavior observed in the range of small lags (i.e.,
sx < s̄x ≈ 40 μm) within the high-resolution domain is due
to a spatially correlated structure that cannot be resolved by
the low-resolution XCT reconstruction. To further support
this picture, we calculate estimates of the Hurst exponents
for porosity Ĥφ and specific surface area ĤS , following the
procedure illustrated in Sec. III A, relying on the method
of moments. For the low-resolution domain we estimate
Ĥφ = 0.68 and ĤS = 0.77 in the range sI (=l′=7 μm) �
sx � sII (=300 μm). As mentioned above, we identify two
distinct power-law-scaling regimes, respectively indicated as
scaling regions I and II, in the high-resolution domain. These
regimes are characterized by different estimates of the Hurst
scaling exponent for φ and S, i.e., Ĥ

(I )
φ = 0.86 and Ĥ

(I )
S =

0.56 in the scaling range associated with small lags (region
I) sI (=3.3 μm) � sx � s̄x (=40 μm) and Ĥ

(II )
φ = 0.68 and

Ĥ
(II )
S = 0.75 in the scaling range s̄x � sx � sII (=300 μm)
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FIG. 6. (Color online) Sample structure functions of absolute
increments of φ(x), S(x), and Ux(x) computed at lags sx along the x

axis for the Estaillades limestone and (a) q = 1, (b) q = 2, and (c) q

= 3.

(region II). We note that these values are all indicative of
a mild to strong spatial persistence (i.e., tendency of large
and small values of the variable to alternate mildly in space
within the system) of the signal analyzed and Ĥ

(II )
φ and Ĥ

(II )
S

are very similar to their counterparts obtained in the low-
resolution domain. These results are consistent with the
observation that an increased level of resolution reveals the
emergence of an additional correlation structure that is likely
to be associated with microporosity in the pore structure and
affects the behavior of sample structure functions at small lags.
This structure is not resolved with a coarser reconstruction
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FIG. 7. (Color online) Sample structure functions of order q = 1,
2, 3 of absolute increments of (a) φ(x) and (b) S(x) for two resolution
levels of the XCT reconstruction, i.e., l′ = 7.0 μm (labeled Low Res
and plotted with symbols) and l = 3.3 μm (labeled High Res and
plotted as dashed lines).

of the rock sample. The scaling behavior associated with a
correlation structure typical of large lags is captured in both
low- and high-resolution domains.

On the basis of these considerations, we consider inter-
pretation (b) to be more realistic and perform all scaling
analyses associated with Lagrangian velocities within the
high-resolution domain. Figures 8(a) and 8(b) illustrate the
results obtained through the MM and ESS, respectively,
depicting log-log plots of S

q

N of |�Ux | versus sx [Fig. 8(a)]
and S

q+1
N versus S

q

N [Fig. 8(b)] for integer orders 1 � q �
4. Similarly to the results depicted in Figs. 7(a) and 7(b),
Fig. 8(a) demonstrates the occurrence of the two distinct
scaling regimes, labeled regions I and II, for sample structure
functions of all orders. Figure 8(b) shows that, despite the
two distinct scaling behaviors revealed by the MM, a unique
power-law trend reflecting ESS behavior [Eq. (3)] is attained
at all lags, with considerably high determination coefficients
(R2 � 0.99).

We then investigate the way the scaling exponent ξ (q) varies
with q by means of both the MM and ESS. With reference to
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ESS and considering Fig. 8(b), we note that

β(q + �q,q) = ξI (q + �q)

ξI (q)
= ξII (q + �q)

ξII (q)
, (4)

where ξI (q) and ξII (q) are the slopes of the regression lines
fitted to the sample structure function of a given order q within
regions I and II, respectively. The functions ξI (q) and ξII (q)
based on ESS are calculated by assuming ξI,ref = ξI (1) and
ξII,ref = ξII (1). The results of the analysis are collected in
Figs. 9(a) and 9(b) for regions I and II, respectively. Results
obtained by the two methods are, for the most part, very similar.
All curves associated with both scaling regimes display a linear
dependence of ξ (q) versus q in the range 0.1 � q � 1 and
deviate from linearity for larger-q values. Estimates of the
Hurst exponent are ĤI = 0.67 and ĤII = 0.25 for regions
I and II, respectively, indicating that the correlated structure
characterizing sample structure functions in the range of small
lags has a higher degree of spatial persistency when compared
against the underlying structure associated with large lags. This
result is also consistent with the observation that Ĥ

(I )
φ > Ĥ

(II )
φ .

Similar to what is observed for the sandstone sample in

Sec. III A, we consider the observed scaling behavior to be
consistent with the interpretation proposed by [27].

IV. CONCLUSIONS

Our work leads to the following key conclusions.
(1) Sample structure functions (statistical moment of

absolute increments) of the Lagrangian velocity component
along the mean flow direction Ux evaluated in two different
samples of rocks reconstructed via x-ray computer tomography
exhibit a clear power-law dependence on the spatial lag sx

for intermediate ranges of lags. All scaling manifestations
documented appear to be consistent with the interpretation
proposed by [27], which is supported by theoretical [35,36],
computational [19,27,29,37], and extensive experimental
[17,18,20,21,33] evidence.

(2) For the Bentheimer sandstone sample, a single power-
law regime is observed within a range of lags that spans more
than one decade within the observation window (i.e., the size
of the porous sample).

(3) For the Estaillades limestone sample, we recognize
two distinct power-law trends attained on adjacent ranges of
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FIG. 9. Scaling exponent ξ (q) evaluated as a function of q by the MM and ESS for the high-resolution Estaillades limestone sample for
scaling regions (a) I and (b) II. The slope of the dashed straight lines passing through ξ (1) and the origin (equations listed) provides estimates
of the Hurst exponents associated with the two scaling regimes.
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lags extending almost one decade each. We regard each of
these power-law behaviors to represent an underlying spatially
correlated structure. These distinct scaling regions emerge
through analysis of high-resolution imaging and are likely
to be associated with the effect of microporosity that is not
captured at coarser levels of image resolution.

(4) For both rock samples, power-law scaling is extended
at all lags by means of extended self-similarity. The method
of moments and ESS provide scaling exponents ξ (q) that vary
linearly with q for 0.1 � q � 1 and deviate from linearity for
q > 1.

(5) Estimates of the Hurst exponents of Ux indicate a
higher degree of spatial persistence (tendency for large and
small values not to alternate rapidly in space) in the Bentheimer
sandstone than in the Estaillades limestone, consistent with
the observation that the limestone is more heterogeneous in
structure, flow, and transport [1,3,4]. Moreover, the spatial
structure revealed in the limestone and associated with the

range of small lags (identified as scaling region I) exhibits a
higher degree of persistence when compared against the spatial
structure associated with the largest lags (scaling region II).

(6) Statistical scaling of the local velocity (i.e., dynamic)
field reflects the behavior of geometric (i.e., static) ob-
servables: Breakdown in power-law scaling, as well as the
occurrence of different power-law-scaling regimes observed
for the limestone sample, is exhibited within the same range
of lags for sample structure functions of absolute increments
of Lagrangian velocity, porosity, and specific surface area.
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