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We consider the nonclassical diffusion equation with hereditary memory

ut ��ut ��u �
Z
1

0
�.s/�u.t � s/dsC '.u/ D f

on a bounded three-dimensional domain. Setting the problem in the past history framework, and with very general
assumptions on the memory kernel�, we prove that the related solution semigroup possesses a global attractor of optimal
regularity. Copyright © 2014 John Wiley & Sons, Ltd.
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1. Introduction

1.1. The equation

Let� � R3 be a bounded domain with smooth boundary @�. We consider for t > 0 the equation in the unknown variable u D u.x, t/ :
� �R! R

ut ��ut ��u �

Z 1
0

�.s/�u.t � s/dsC '.u/ D f , (1.1)

subject to Dirichlet boundary conditions

uj@� D 0. (1.2)

The problem is supplemented with the initial conditions

u.0/ D u0 and u.�s/js>0 D g0.s/, (1.3)

where u0 : �! R and g0 : � �RC ! R are given functions, the latter accounting for the initial past history of u.

1.2. Assumptions on the constitutive terms

Let the (time-independent) external force f belong to the space L2.�/, and let the nonlinearity ' 2 C.R/ fulfill '.0/ D 0 along with the
growth restriction

j'.u/ � '.v/j � cju � vj
�
1C juj4 C jvj4

�
(1.4)

and the dissipation condition

lim inf
juj!1

'.u/

u
> ��1, (1.5)
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where �1 > 0 is the first eigenvalue of the Dirichlet operator ��. The convolution (or memory) kernel � is a nonnegative summable
function having the explicit form

�.s/ D

Z 1
s

�.�/d� ,

where� 2 L1.RC/ is a decreasing (hence nonnegative) piecewise absolutely continuous function. In particular, � is allowed to exhibit
(infinitely many) jumps. Moreover, we require that

�.s/ � ‚�.s/, (1.6)

for some‚ > 0 and every s > 0. As shown in [1], this is completely equivalent to the requirement that

�.� C s/ � Me�ı��.s/, (1.7)

for some M � 1, ı > 0, every � � 0 and almost every s > 0. Our analysis, however, will not exclude the degenerate case � � 0.

1.3. A brief overview of the problem

Equation (1.1) arises in the classical diffusion theory when assuming that the diffusing species behaves as a linearly viscous fluid, which
leads to include its velocity gradient in the constitutive laws [2]. Besides, the convolution term takes into account the influence of the
past history of u on its future evolution, providing a more accurate description of the diffusive process in certain materials, such as
high-viscosity liquids at low temperatures and polymers (see, e.g., [3]). This model, with special regard to the case � � 0 corresponding
to the nonclassical diffusion equation

ut ��ut ��uC '.u/ D f , (1.8)

has deserved some attention in the literature during the last years (see, e.g., [4–9]). In all the papers dealing with the memory relaxation
(1.1) of (1.8), the kernel � is assumed to satisfy the inequality

�0.s/C ı�.s/ � 0, (1.9)

introduced in the seminal article [10] and commonly adopted thereafter. However, as shown in [11], the condition (1.7) of the present
paper turns out to be the most general one, for its failure prevents the uniform decay of solutions to systems with memory, no matter
how are the equations involved. It is also evident that (1.7) with M D 1 boils down to (1.9), whereas the same condition for M > 1 is
much more general. Indeed, any compactly supported decreasing � fulfills (1.7) for some M > 1, but it cannot comply with (1.9) if, for
instance, exhibits flat zones. Accordingly, (1.7) allows to treat a greater variety of models with memory, including equations with delay
of the form

ut ��ut ��u �

Z T

0
�u.t � s/dsC '.u/ D f .

In the recent work [8], rephrasing the problem in the past history framework of Dafermos [10], and assuming (1.9), a dissipative solution
semigroup S.t/ is obtained, acting on a suitable phase space accounting for the past values of the variable u. The semigroup is shown
to possess the global attractor. Actually, the authors of [8] take f 2 H�1.�/ and use a simple approximation argument with a sequence
fn 2 L2.�/ such that fn ! f . However, no regularity of the attractor is given, not even for f 2 L2.�/. In fact, such a regularity when
f 2 L2.�/ is implicitly proved in [9], which deals with the nonautonomous case.

In this note, our aim is twofold. Firstly, we prove the existence of the attractor within the more general (in fact, the most general)
condition (1.6) on the kernel. Secondly, we establish the optimal regularity of the attractor (also for the case � � 0) in a rather direct
way, simplifying quite drastically the argument used in [9], which is imported from the analogous paper without memory [5].

We finally mention that the analysis of this paper can also be made within a different approach, namely, working in the so-called
minimal state framework [12], rather than in the past history one. Quite interestingly, the results in the minimal state framework can be
deduced from the corresponding ones in the past history setting proved here (see [13–15] for a comparison). This might be the object
of a future note.

Remark 1.1
It would be also interesting to consider (1.1) with free parameters ˛,ˇ � 0, that is,

ut � ˛�ut � ˇ�u �

Z 1
0

�.s/�u.t � s/dsC '.u/ D f .

Clearly, the picture significantly changes, depending whether or not ˛ andˇ vanish. Here, we limit ourselves to mention the degenerate
case ˛ D ˇ D 0, firstly considered in [16]. In that situation, as noted by the authors, there is not in general enough dissipation in the
system. Nonetheless, stability results have been obtained in [17, 18] in space dimension one and two, provided that the memory kernel
is sufficiently concentrated at zero (see also [19] for the linear case).



2. Functional setting and notation

2.1. General notation

Given a Banach space X , we denote by BX .R/ the closed ball in X of radius R � 0, that is,

BX .R/ D fx 2 X : kxkX � Rg .

Moreover, we denote by

I the space of continuous increasing functions J : Œ0,1/! Œ0,1/,
D the space of continuous decreasing functions d : Œ0,1/! Œ0,1/with d.1/ < 1.

Throughout the paper, c � 0 will stand for a generic constant. We will also use, often without explicit mention, the Sobolev embeddings,
as well as the Young, Hölder, and Poincaré inequalities.

2.2. Geometric spaces

Introducing the strictly positive Dirichlet operator

A D ��, dom.A/ D H2.�/ \ H1
0.�/ � L2.�/,

we define the scale of compactly nested Hilbert spaces

Hr D dom
�

Ar=2
�

, r 2 R

with inner products and norms given by

hu, vir D
D
Ar=2u, Ar=2v

E
L2.�/

and kukr D
���Ar=2u

���
L2.�/

.

We will always omit the index r whenever r D 0. The symbol h�, �i will also stand for the duality product between Hr and its dual space
H�r . We recall the relations

H D L2.�/, H1 D H1
0.�/, H2 D H2.�/ \ H1

0.�/,
along with the generalized Poincaré inequalities

�1kuk2
r � kuk2

rC1,
where �1 > 0 is the first eigenvalue of A.

2.3. History spaces

For r 2 R, we introduce the so-called history spaces (r is omitted if zero)

Mr D L2
�

�
RC; HrC1

�
endowed with the weighted L2-inner products

h�, 	iMr D

Z 1
0

�.s/h�.s/, 	.s/irC1 ds.

We will also consider the infinitesimal generator of the right-translation semigroup on M, namely, the linear operator

T� D ��0, dom.T/ D
˚
� 2M : �0 2M, �.0/ D 0

�
,

the prime standing for weak derivative. The following inequality holds [11, 20]

hT�, �iM � 0, 8� 2 dom.T/. (2.1)

We recall that if u 2 L1
loc.0,1; H1/, then for every �0 2M, the Cauchy problem on Œ0,1/(

�t D T�C u

�0 D �0

has a unique solution � 2 C.Œ0,1/,M/ given by

�t.s/ D

( R s
0 u.t � �/d� s � t,

�0.s � t/C
R t

0 u.t � �/d� s > t.
(2.2)

Finally, we introduce the extended history spaces (again, r is omitted if zero).

Hr D HrC1 �Mr .



3. The dissipative semigroup

Following the approach of Dafermos [10], the original problem (1.1)–(1.2) can be translated into the system in the unknown variables
u D u.t/ and � D �t.s/ 8̂<

:̂
ut C Aut C AuC

Z 1
0

�.s/A�.s/dsC '.u/ D f ,

�t.s/ D T�.s/C u,

(3.1)

where the initial conditions (1.3) become

u.0/ D u0 and �0.s/ D

Z s

0
g0.�/d� .

At a formal level, this is obtained by defining the auxiliary variable

� D �t.x, s/ : � � Œ0,1/ �RC ! R,

accounting for the integrated past history of u, as

�t.s/ D

Z s

0
u.t � �/d� , (3.2)

Actually, the correspondence between the original problem and its reformulation in the history framework is not only formal but can
be rigourously justified with the proper functional setting (see [20] for more details).

The well-posedness result, stated in the next theorem, follows by a standard application of a Galerkin scheme (see, e.g., [8]).

Theorem 3.1
System (3.1) generates a strongly continuous semigroup S.t/ : H! H. Thus, for every t � 0 and every z D .u0, �0/ 2 H,

S.t/z D
�

u.t/, �t
�

is the unique solution at time t to (3.1) with initial datum z. In addition,

ut 2 L2
loc

�
0,1; H1

�
,

while � fulfills the explicit representation formula (2.2).

In fact, the semigroup S.t/ turns out to map Hr into Hr for every r 2 Œ0, 1
. Accordingly, for any fixed initial datum z 2 Hr , we denote
the corresponding r-energy at time t by (as usual, r is omitted whenever zero)

Er.t/ D
1

2

�
ku.t/k2

rC1 C ku.t/k2
r C k�

tk2
Mr

	
.

This functional, clearly equivalent to the Hr-norm of the solution, is what one obtains when performing the natural energy estimates.
The dissipative character of S.t/ is witnessed by the existence of a bounded absorbing set, capable to capture in finite time all

trajectories originating from any given bounded set of initial data.

Theorem 3.2
There exist c0 � 0 and "0 > 0 such that

E.t/ � 2E.0/e�"0t C c0,

for all initial data in H.

Proof
In light of (1.5), there is � > 0 (possibly very small) such that

h'.u/, ui � �.1 � �/kuk2
1 � c.

Accordingly, the function
� D f � '.u/

is easily seen to satisfy the inequality
h� , ui � akuk2

1 C q,

for some a 2 Œ0, 1/ and q � 0. The claim follows by applying Lemma A.1 with r D 0, h.t/ � 0 and Q.t/ � q.

As a straightforward consequence, there exists R0 > 0 such that the ball B0 D BH.R0/ is an absorbing set for S.t/ on H. This means
that for any R > 0, there is an entering time tR � 0 for which

S.t/BH.R/ � B0, 8t � tR.



4. The global attractor

4.1. Statement of the result

The main theorem of this section is the following.

Theorem 4.1
The semigroup S.t/ possesses the global attractor A.

By definition, the global attractor of S.t/ is the unique compact set A � H which is at the same time fully invariant and attracting for
the semigroup (see, e.g., [21–25]). Namely,

(i) S.t/A D A for every t � 0 and
(ii) for every R � 0,

lim
t!1

distH.S.t/BH.R/,A/ D 0,

where distH denotes the standard Hausdorff semidistance in H. We also recall that for an arbitrarily fixed 
 2 R, the global attractor
can be given the form [24]

A D fZ.
/ : Z CBTg ,
where a complete bounded trajectory (CBT) of the semigroup is a function Z 2 Cb.R,H/ satisfying

Z.
/ D S.t/Z.
 � t/, 8t � 0, 8
 2 R.

4.2. Proof of Theorem 4.1

Appealing to a general result of the theory of infinite dimensional dynamical systems (see, e.g., [21–25]), it is enough to show that
the semigroup is asymptotically compact. This will be obtained in two steps, exploiting in a crucial way the technical Lemma A.1 in
Appendix. In what follows, B0 is a bounded absorbing set, whose existence has been established in Theorem 3.2.

Proposition 4.2
For any t � 0, there exists a closed bounded set B.t/ � H1=3 such that

distH.S.t/B0,B.t// � c1e�!t ,

for some constants c1 � 0 and ! > 0.

Proof
We prove the proposition by showing that for any z 2 B0, we can split the solution S.t/z D .u.t/, �t/ into the sum

S.t/z D
�
Ov.t/, O	 t

�
C
�
Ow.t/, O�t

�
whose terms satisfy the estimates ����Ov.t/, O	 t

����
H
� c1kzkHe�!t , (4.1)

and ���� Ow.t/, O�t
����

H1=3
� J.t/, (4.2)

for some c1 � 0, ! > 0 and J 2 I. In which case, the closed ball

B.t/ D BH1=3.J.t//

fulfills the claim.
The assumptions on the nonlinearity ' allow us to write (see, e.g., [26])

'.u/ D '0.u/C '1.u/,

for some continuous functions '0,'1 satisfying

'0.u/u � 0, j'0.u/ � '0.v/j � cju � vj.juj C jvj/4,

lim inf
juj!1

'1.u/

u
> ��1, j'1.u/j � c.1C juj/.

For z 2 B0, let
�
Ov.t/, O	 t

�
and

�
Ow.t/, O�t

�
be the solutions to the problems

8̂̂̂
<̂
ˆ̂̂̂:

Ovt C AOvt C AOv C

Z 1
0

�.s/A O	.s/dsC '0.Ov/ D 0,

O	t D T O	 C Ov,�
Ov.0/, O	0

�
D z,

(4.3)



and 8̂̂̂
<̂
ˆ̂̂̂:

Owt C A Owt C A Ow C

Z 1
0

�.s/A O�.s/ds D Og,

O�t D T O� C Ow,�
Ow.0/, O�0

�
D 0,

(4.4)

where

Og D f � '0.u/C '0.Ov/ � '1.u/.

The proof of (4.1) follows at once by Lemma A.1 for r D 0 and � D �'0.Ov/. Indeed, because

h� , Ovi D �h'0.Ov/, Ovi � 0,

the hypotheses of the lemma are verified with

a D 0 and h.t/ D Q.t/ � 0.

In order to prove (4.2), note that

j Ogj D jf � '0.u/C '0.Ov/ � '1.u/j � jf j C cj Owj.juj C jOvj/4 C c.1C juj/.

Thus, the Sobolev embeddings

H2=3 � L18=5.�/, H1 � L6.�/, H4=3 � L18.�/,

jointly with Theorem 3.2 and (4.1), entailD
Og, A1=3 Ow

E
� kfkk Owk2=3 C c.kukL6 C kOvkL6 /4k OwkL18kA1=3 OwkL18=5 C c.1C kuk/k Owk2=3

� ck Owk4=3 C c.kuk1 C kOvk1/
4k Owk2

4=3 C ckuk1k Owk4=3

� ˛k Owk2
4=3 C ˇ,

(4.5)

for some positive constants ˛ and ˇ, depending on R0. Hence, Lemma A.1 for r D 1=3 and � D Og applies with

a D 0, h.t/ � ˛, Q.t/ � ˇ.

Because . Ow.0/, O�0/ D 0, that is, the initial energy vanishes, we obtain (4.2) with

J.t/ D ˇe2˛t ,

up to a multiplicative constant.

Proposition 4.3
For any t � 0, there exists a compact set K.t/ � H such that

distH.S.t/B0,K.t// � c2e�!t ,

for some c2 � 0, with ! > 0 as in Proposition 4.2.

Proof
For any z 2 B0, we consider the decomposition of the previous proof and we set, for every fixed t,

„t D
[

z2B0

O�t .

Exploiting the representation formula (2.2) for O�t , taking into account that O�0 D 0 and Ow 2 L1.0,1; H1/, we learn that „t � dom.T/,
and by elementary computations, we obtain

sup
z2B0

���T O�t
���
M
� c and sup

z2B0

��� O�t.s/
���2

1
� cs2,

for some c D c.R0/ > 0. Besides, by (4.2),

sup
z2B0

��� O�t
���
M1=3

� J.t/.



Because

s 7! cs2�.s/ 2 L1
�
RC

�
,

we infer from Lemma A.2 for r D 1=3 that„t is precompact in M. If we now define

K.t/ D BH4=3.J.t// �„t ,

the bar standing for closure in M, then K.t/ is compact in H and fulfills the claim, in light of (4.1)–(4.2).

Proposition 4.3 says that S.t/ is asymptotically compact, hence possesses the global attractor A.

5. Regularity of the global attractor

5.1. Statement of the result

So far, we proved the existence of the global attractorA. However, as the estimate of Proposition 4.3 is not uniform-in-time, no regularity
of A can be deduced at this stage. To overcome this obstacle, we will exploit some ideas from [26], providing a tool apt to establish the
regularity of the attractor without uniform-in-time estimates (Appendix A.2). Indeed, we have

Theorem 5.1
The global attractor A of S.t/ is bounded in H1. Besides, for every CBT Z D .u, �/, the formal equality (3.2) actually holds true for all real
times t. In particular, it follows that � 2 dom.T/.

A direct consequence of the last assertion of the theorem is the following corollary, whose proof is left to the reader.

Corollary 5.2
Given u 2 L1.R; H1/ and defining � D �t.s/ for all real times t by the formula (3.2), the function Z D .u, �/ is a CBT of S.t/ if and only if
u solves the equation

ut.t/C Aut.t/C Au.t/C

Z 1
0

�.s/Au.t � s/dsC '.u.t// D f

for every t 2 R.

5.2. Proof of Theorem 5.1

We begin with an intermediate result.

Lemma 5.3
The global attractor A is bounded in H1=3.

Proof
Because A is fully invariant, it is contained in every closed attracting set. We reach the claim by proving the existence of R? > 0 such
that

B? D BH1=3.R?/

attracts (in fact, exponentially) the bounded absorbing set B0. This amounts to finding c? � 0 and !? > 0 for which

distH.S.t/B0,B?/ � c?e�!?t .

To this end, we apply Lemma A.3 with r D 1=3. In order to verify the assumptions therein, let z 2 B0 be fixed. For any y 2 B0 and
x 2 H1=3 such that y C x D z, we define the operators

Vz.t/y D
�

v.t/, 	 t
�

and Uz.t/y D
�

w.t/, �t
�

,

where .v.t/, 	 t/ and .w.t/, �t/ solve the systems (4.3) and (4.4) without the hats, respectively, with initial data�
v.0/, 	0

�
D y and

�
w.0/, �0

�
D x,

but where g is now defined as
g D f � '0.u/C '0.v/ � '1.u/.

Condition (i) of Lemma A.3 holds by construction, while (ii) follows by the exponential decay (4.1), which now reads���v.t/, 	 t
���

H D kVz.t/ykH � c1kykHe�!t . (5.1)

In order to prove (iii), we estimate the nonlinearity g as follows. We write

jgj � jf j C cjwj.juj C jvj/4 C c.1C juj/

� jf j C cjwj.jvj C jOvj/4 C c.juj C jvj/j Owj4 C c.1C juj/



and with analogous computations as in (4.5), we obtain

hg, A1=3wi � kfkkwk2=3 C c.kvkL6 C kOvkL6/4kwkL18kA1=3wkL18=5

C c.kukL6 C kvkL6 /k Owk4
L18kA1=3wkL18=5 C c.1C kuk/kwk2=3

� ckwk4=3 C c.kvk1 C kOvk1/
4kwk2

4=3

C c.kuk1 C kvk1/k Owk
4
4=3kwk4=3 C ckuk1kwk4=3.

Exploiting the decay estimates (4.1) and (5.1) together with (4.2), we arrive at

hg.t/, w.t/i1=3 �



1

2
C ce�4!t

�
kw.t/k2

4=3 C Q.t/,

for some Q 2 I. Both c and Q depend only on B0. Hence, we can apply Lemma A.1 for r D 1=3 and � D g, where

a D
1

2
and h.t/ D ce�4!t .

The conclusion is
kUz.t/xkH1=3 � ckxkH1=3 e�"t C J.t/,

for some " > 0 and J 2 I. This establishes (iii) and finishes the proof.

Conclusion of the proof of Theorem 5.1
Knowing that A is fully invariant and bounded in H1=3, we split the solution S.t/z with z 2 A into the sum

S.t/z D L.t/zC K.t/z,

where L.t/z D .v.t/, 	 t/ and K.t/z D .w.t/, �t/ solve the systems

8̂̂
<̂
ˆ̂̂:

vt C Avt C Av C

Z 1
0

�.s/A	.s/ds D 0,

	t D T	 C v,

.v.0/, 	0/ D z

and 8̂̂
<̂
ˆ̂̂:

wt C Awt C AwC

Z 1
0

�.s/A�.s/dsC '.u/ D f ,

�t D T� C w,

.w.0/, �0/ D 0.

The same argument (in fact, easier) as the one used for (4.3) shows that the linear semigroup L.t/ decays exponentially in H, that is,

kL.t/zkH � ce�!t . (5.2)

Next, calling
� D f � '.u/,

owing to (1.4), the Sobolev embedding H6=5 � L10.�/ and the H1=3-regularity of the attractor, we have

h� , ui1 � kfkkuk2 C c
�
1C kuk5

6=5

�
kuk2 �

1

2
kuk2

2 C q,

for some q D q.A/ > 0. Hence, we can apply Lemma A.1 for r D 1, where

a D
1

2
, h.t/ � 0, Q.t/ � q.

Because K.0/z D 0, we conclude that

kK.t/zkH1 � �, (5.3)

for some � D �.A/ > 0. Collecting (5.2)–(5.3), and setting B1 D BH1.�/, we obtain

distH.A,B1/ D distH.S.t/A,B1/ � ce�!t ! 0

as t!1, yielding the inclusion A � B1.



We are left to show that for every CBT Z D .u, �/, the formal equality (3.2) holds for all t 2 R. Let then Z.t/ D .u.t/, �t/ be a CBT, that
is, a solution lying on A. Fixed an arbitrary k > 0, let us consider the solution at time 
 > 0 with initial data Z.t � k/

S.
/Z.t � k/ D .v.
/, 	� /.

Observing that

v.
/ D u.t � kC 
/ and 	� D �t�kC� ,

the representation formula (2.2) applied to 	� yields

�t�kC� .s/ D 	� .s/ D

Z s

0
v.
 � �/d� D

Z s

0
u.t � kC 
 � �/d� ,

for every s � 
 . Letting now k D 
 , we obtain (3.2) for all s � 
 , and from the arbitrariness of 
 > 0 the claim follows.

Appendix

A.1. An auxiliary problem

Let r 2 Œ0, 1
 be fixed. For a sufficiently regular function � D �.t/ on Œ0,1/, let us consider the Cauchy problem in the unknown
Z.t/ D .u.t/, �t/ 8̂̂

<̂
ˆ̂̂:

ut C A

�
ut C uC

Z 1
0

�.s/�.s/ds



D � ,

�t D T�C u,

Z.0/ D z 2 Hr .

Given a nonnegative constant a < 1, a nonnegative locally summable function h on RC and a function Q 2 I, the following lemma
holds.

Lemma A.1
Assume that

h�.t/, u.t/ir � .aC h.t//ku.t/k2
rC1 C Q.t/.

Then, there exists " > 0 small such that the r-energy of the system fulfills the estimate

Er.t/ � 2I.t/e�"tEr.0/C
1

"
I.t/Q.t/,

where

I.t/ D exp

�Z t

0
2h.
/d




.

Proof
Multiplying the first equation by u in Hr and the second one by � in Mr , on account of (2.1), we obtain the estimate

d

dt
Er C kuk2

rC1 D h� , Arui C
D
TAr=2�, Ar=2�

E
M
� .aC h/kuk2

rC1 C Q.

Following [27], we introduce a further functional in order to reconstruct Er , namely,

‰.t/ D

Z 1
0

�.s/
���t.s/

��2

rC1
ds.

In light of (1.6),‰ satisfies an upperbound

‰.t/ � ‚
���t
��2

Mr � 2‚Er.t/.

Besides, from the second equation of the system, and exploiting again (1.6), we get

d

dt
‰ D �k�k2

Mr C 2

Z 1
0

�.s/h�.s/, uirC1 ds � �
1

2
k�k2

Mr C 2‚2�.0/kuk2
rC1.

Therefore, for " > 0 to be fixed, we define the functional

ˆ.t/ D Er.t/C 2"‰.t/,



which satisfies the differential inequality

d

dt
ˆC

�
1 � a � 4"‚2�.0/

�
kuk2

rC1 C "k�k
2
Mr � hkuk2

rC1 C Q � 2hˆC Q.

Choosing " small enough such that (here we use the Poincaré inequality)

"



1C

1

� 1

�
� 1 � a � 4"‚2�.0/,

we end up with
d

dt
ˆC 2"Er � 2hˆC Q.

Up to further reducing ", we also have

Er.t/ � ˆ.t/ � 2Er.t/.

Hence,
d

dt
ˆ � .2h � "/ˆC Q,

and a direct application of the Gronwall lemma gives (recall that Q is increasing)

Er.t/ � I.t/e�"tˆ.0/C I.t/Q.t/e�"t

Z t

0
e"� d


� 2I.t/e�"tEr.0/C
1

"
I.t/Q.t/,

with I.t/ as in the statement of the lemma.

A.2. Two technical lemmas

We finally recall two results needed in the course of the investigation. The first is a compactness lemma in the space M proved in [28]
(see Lemma 5.5 therein). The second one is Theorem 3.1 from [26], written here in a suitable form for our scopes.

Lemma A.2
Let„ be a subset of dom.T/, and let r > 0. If

sup
�2„

Œk�kMr C kT�kM
 <1

and the map

s 7! sup
�2„

�.s/k�.s/k2
1

belongs to L1.RC/, then„ is precompact in M.

Lemma A.3
Let B0 � H be an absorbing set for S.t/, and let r > 0. For every z 2 B0, assume there exist two operators Vz.t/ and Uz.t/ acting on H
and Hr , respectively, with the following properties:

(i) given any y 2 B0 and any x 2 Hr satisfying the relation y C x D z,

S.t/z D Vz.t/yC Uz.t/x;

(ii) there exists d1 2 D such that for any y 2 B0,

sup
z2B0

kVz.t/ykH � d1.t/kykH;

(iii) there exist d2 2 D and J 2 I such that for any x 2 Hr ,

sup
z2B0

kUz.t/xkHr � d2.t/kxkHr C J.t/.

Then, B0 is exponentially attracted by a closed ball of Hr centered at zero; namely, there exist (strictly) positive constants R, K , ~
such that

distH.S.t/B0, BHr .R// � Ke�~t .
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