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ABSTRACT. Integral representations are obtained of positive
additive functionals on finite products of the space of contin-
uous functions (or of bounded Borel functions) on a compact
Hausdorff space. These are shown to yield characterizations of
the dual mixed volume, the fundamental concept in the dual
Brunn-Minkowski theory. The characterizations are shown to
be best possible in the sense that none of the assumptions can
be omitted. The results obtained are in the spirit of a simi-
lar characterization of the mixed volume in the classical Brunn-
Minkowski theory, obtained recently by Milman and Schneider,
but the methods employed are completely different.

1. INTRODUCTION

At the core of modern convex geometry lies the Brunn-Minkowski theory. This
powerful apparatus, constructed by Minkowski, Blaschke, Aleksandrov, Fenchel,
and many others, provides a framework within which questions concerning the
metrical properties of convex bodies in Euclidean space Rn may be formulated
and attacked. The theory arises from combining two notions, volume and vec-
tor or Minkowski addition, which is defined between sets A and B by A + B =
{x + y : x ∈ A, y ∈ B}. Both are ingredients in Minkowski’s theorem on
mixed volumes, which states that if K1, . . . , Km are compact convex sets in Rn,
and t1, . . . , tm ≥ 0, the volumeHn(t1K1+· · ·+ tmKm) is a homogeneous poly-
nomial of degree n in the variables t1, . . . , tm. (See Section 2 for unexplained
notation and terminology.) The coefficients in this polynomial are called mixed
volumes. When m = n, K1 = · · · = Ki = K, and Ki+1 = · · · = Kn = Bn,
the unit ball in Rn, then, up to constant factors, the mixed volumes turn out to
be averages of volumes of orthogonal projections of K onto subspaces, and include
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the volume, surface area, and mean width of K, as special cases. The classic treatise
of Schneider [22] provides a detailed survey of the Brunn-Minkowski theory, and
many references there give testament to the wide variety of its applications in
science.

In the last few decades, the Brunn-Minkowski theory has been extended
in several important ways. One such extension, now called the dual Brunn-
Minkowski theory, arose from the 1975 observation of Lutwak [16] that if K1,
. . . , Km are star sets (bounded Borel sets star-shaped at the origin o) in Rn, and
t1, . . . , tm ≥ 0, the volume Hn(t1K1+̃ · · · +̃tmKm) is a homogeneous polyno-
mial of degree n in the variables t1, . . . , tm. (Here, +̃ denotes radial addition; one
defines x+̃y = x + y if x, y , and o are collinear, x+̃y = o otherwise, and

L+̃M = {x+̃y : x ∈ L, y ∈ M},

for star sets L andM in Rn.) Lutwak called the coefficients of this polynomial dual
mixed volumes, and showed that up to constant factors, they include averages of
volumes of intersections of a star set with (linear) subspaces.

There is a perfect analogy between Minkowski’s theorem for mixed volumes
and Lutwak’s theorem for dual mixed volumes. Such analogies, not always quite
so perfect, between results and concepts in the Brunn-Minkowski theory and its
dual, have often been observed, but this duality has not yet been fully explained.

Since 1975, the dual Brunn-Minkowski theory has seen a dramatic develop-
ment, for example, providing the tools for the solution of the Busemann-Petty
problem in [7], [11], [17], and [28]. It also has connections and applications to
integral geometry, Minkowski geometry, the local theory of Banach spaces, geo-
metric tomography, and stereology (see [8] and the references given there).

An extremely productive recent trend in convex geometry involves the charac-
terization of useful concepts via a few of their properties. For example, the opera-
tions of Minkowski and radial addition mentioned above were characterized in [9].
These characterizations indicate the fundamental nature of these two operations
in geometry, and led to fresh insights into the nature of the Brunn-Minkowski
theory and its possible extensions in [10]. Earlier, Milman and Schneider [19]
gave several results characterizing the mixed volume V(K1, . . . , Kn) of compact
convex sets K1, . . . , Kn in Rn, n ≥ 2. For example, [19, Theorem 2] states (in a
slightly more general form) the following.

Theorem A (Milman and Schneider). Let F : (Kn
s )
n → R, n ≥ 2, be an

additive, increasing functional on the class of n-tuples of centrally symmetric com-
pact convex sets in Rn. If F vanishes whenever two of its arguments are parallel line
segments, then there is a c ≥ 0 such that

F(K1, . . . , Kn) = cV(K1, . . . , Kn),

for all K1, . . . , Kn ∈Kn
s .

Here, “additive” means additive in each argument with respect to Minkowski
addition, and “increasing” means increasing with respect to set inclusion in each
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argument. Thus, this striking result characterizes the mixed volume via just three
very simple properties, none of which may be omitted.

The principal goal of this paper is to establish a corresponding characterization
of the dual mixed volume Ṽ (L1, . . . , Ln) of star sets L1, . . . , Ln in Rn, n ≥ 2. One
of our main results (see Theorem 5.1(iii) below) is as follows.

Theorem B. Let F : (Sn)n → [0,∞), n ≥ 2, be an additive functional on the
class of n-tuples of star sets in Rn. If F is rotation invariant and vanishes whenever
the intersection of two of its arguments is {o}, then there is a c ≥ 0 such that

F(L1, . . . , Ln) = cṼ (L1, . . . , Ln),

for all L1, . . . , Ln ∈ Sn.
Here, “additive” means additive in each argument with respect to radial addi-

tion, and “rotation invariant” means that F is unchanged if the same rotation of
R
n is applied to each of its arguments (see (5.1) and (5.2) below). In Examples 5.2,

5.3, and 5.4, we show that none of the properties of F assumed in Theorem B can
be omitted.

There is a strong similarity between Theorems A and B, another instance of
the still-unexplained duality mentioned above. It is perhaps more instructive to
comment on the differences between the two results. First, Theorem B does not
require symmetry of the sets concerned, as Theorem A does. In fact, the role of
symmetry in Theorem A has not been completely resolved (see [19, p. 672]). Sec-
ond, the functional F in Theorem B is assumed positive, while that in Theorem A
is real valued. In Theorem 6.1 below, we actually provide a version of Theorem B
for real-valued functionals, and then have to assume that F is also increasing, as in
Theorem A. This highlights a third and important difference, namely, the quite
strong assumption of rotation invariance in Theorem B. However, this seems un-
avoidable (see Example 5.4). Moreover, we prove other results that pinpoint the
role of rotation invariance; in particular, Theorem 5.1(ii) completely characterizes
all functionals F satisfying the other hypotheses of Theorem B but not rotation
invariance.

If, as well as rotation invariance, the assumption on F in Theorem B (that it
vanishes when the intersection of two of its arguments is {o}) is also omitted, then
Theorem 5.1(i) states that there is a finite Radon measure µ in (Sn−1)n such that

(1.1) F(L1, . . . , Ln) =

∫

(Sn−1)n
ρL1(u1) · · ·ρLn(un)dµ(u1, . . . , un),

for all L1, . . . , Ln ∈ Sn. Here, ρLi denotes the radial function of Li, the function
giving for all u ∈ Sn−1 the distance from the origin to the boundary of Li in
the direction u. It is remarkable that only the additivity and positivity of F are
required for (1.1) to hold.

Radial functions of star sets are just nonnegative bounded Borel functions on
the unit sphere, so it is natural to view (1.1) in the context of positive additive



72 PAOLO DULIO, RICHARD J. GARDNER & CARLA PERI

functionals on finite products of B+(X), the class of nonnegative bounded Borel
functions on a compact Hausdorff space X. This is, in fact, the approach we take,
and the corresponding result, more general than (1.1), is stated in Theorem 4.6.
The latter is in turn derived from a similar result, Theorem 4.2, in which B+(X)
is replaced by C+(X), the class of nonnegative continuous functions on a compact
Hausdorff space X. Just as Theorem 4.6 yields statements about positive additive
functionals on n-tuples of star sets in Rn, so Theorem 4.2 yields statements about
positive additive functionals on n-tuples of star bodies in Rn. Star bodies are star
sets with continuous radial functions, and they have found many uses in the dual
Brunn-Minkowski theory. Theorem B and related results hold when star sets are
replaced by star bodies (see Theorem 5.1).

Our results about positive additive functionals on finite products of B+(X)
or C+(X), where X is a compact Hausdorff space, may have some independent
interest. Of course, there is already much information in this direction in the
literature. In fact, we use a Riesz-type integral representation for a continuous
positive multilinear functional on C(X)n, where X is a locally compact Hausdorff
space [25, Theorem 7.1], as a springboard for our work. We are grateful to Las-
zlo Stachó for supplying Proposition 3.4, and to him and Fernando Bombal for
helpful correspondence concerning results such as [25, Theorem 7.1], which arise
in the representation of polymeasures. Since this paper was written, Jiménez and
Villanueva [14] have used polymeasures to obtain results that overlap with ours.

The paper is organized as follows. After the preliminary Section 2, we focus
in Section 3 on additive functionals on finite products of partially ordered vector
spaces. The results are applied in Section 4, where our results on positive additive
functionals on n-tuples of continuous functions or of bounded Borel functions
are proved. These are applied in turn in Section 5, which contains our character-
izations of the dual mixed volume in terms of positive additive functionals. The
short Section 6 deals with real-valued additive functionals, and in Appendix A we
sketch a direct proof of a version of one of the characterizations of the dual mixed
volume.

2. DEFINITIONS AND PRELIMINARIES

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space Rn,
where we shall assume that n ≥ 2 throughout.

We denote by 1X the characteristic function of any set X. If X is a subset of
R
n and t ∈ R, then tX = {tx : x ∈ X}.

As usual, C(X) denotes the space of bounded continuous real-valued func-
tions on a topological space X, equipped with the L∞ norm. We denote the set of
bounded Borel functions on X by B(X). Then, C+(X) and B+(X) are the sets of
nonnegative functions in C(X) and B(X), respectively.

We writeH k, where k ∈ {1, . . . , n}, for k-dimensional Hausdorff measure in
R
n. The notation dz will always mean dH k(z) for the appropriate k = 1, . . . , n.
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In particular, for integrals over Sn−1, the symbol du indicates integration with
respect to spherical Lebesgue measure.

We denote by ℓx the line through the origin containing x ∈ R
n \ {o}. A

set L in Rn is star-shaped at o if L∩ ℓu is either empty or a (possibly degenerate)
closed line segment for each u ∈ Sn−1. If L is star-shaped at o, we define its radial
function ρL for x ∈ Rn \ {o} by

ρL(x) =

{
max{c : cx ∈ L}, if L∩ ℓx ≠∅,

0, otherwise.

This definition is a slight modification of [8, (0.28)]; as defined here, the domain
of ρL is always Rn \ {o}. Radial functions are homogeneous of degree −1, that is,

ρL(rx) = r
−1ρL(x),

for all x ∈ Rn \ {o} and r > 0, and this allows us to regard them as functions on
Sn−1.

In this paper, a star set in Rn is a bounded Borel set that is star-shaped at
o and contains o, and a star body in Rn is a star set with a continuous radial
function. (Other definitions have been used; see, for example, [8, Section 0.7]
and [13].) Then, L is a star set (or star body) in Rn if and only if ρL ∈ B+(Sn−1)
(or ρL ∈ C+(Sn−1), respectively). We denote the class of star sets in Rn by Sn and
the class of star bodies in Rn by Sno . Note that Sn is closed under finite unions,
countable intersections, and intersections with (linear) subspaces.

The radial sum L = L1+̃ · · · +̃Lm of Li ∈ Sn, i = 1, . . . ,m, is the star set
with radial function

ρL = ρL1 + · · · + ρLm .

We recall the basics of Lutwak’s dual Brunn-Minkowski theory. Lutwak [16]
worked with star bodies containing o in their interiors, but it was noted in [12]
that with appropriate minor modifications, many of his definitions and results
extend immediately to the class Sn. In particular, we can define the dual mixed
volume Ṽ (L1, . . . , Ln) of sets L1, . . . , Ln ∈ Sn by

(2.1) Ṽ (L1, . . . , Ln) =
1
n

∫

Sn−1
ρL1(u)ρL2(u) · · ·ρLn(u)du.

Lutwak [16] (see also [8, Theorem A.7.1]) found the following analogue of
Minkowski’s theorem on mixed volumes.

Proposition 2.1. Let Li ∈ Sn, i = 1, . . . ,m. If L = t1L1+̃ · · · +̃tmLm, where
ti ≥ 0, then Hn(L) is a homogeneous polynomial of degree n in the variables ti,
whose coefficients are dual mixed volumes. Specifically,

Hn(L) =
m∑

i1=1

· · ·

m∑

in=1

Ṽ (Li1 , . . . , Lin)ti1 · · · tin .
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Lutwak showed that his definition of the dual mixed volume Ṽ (L1, . . . , Ln),
that is, (2.1), is compatible with the previous theorem, and in particular,

Ṽ (L, . . . , L) =Hn(L).

The term vector space in this paper always means a real vector space.
A Riesz space is a vector space Y with a partial order ≤ such that, for all

x,y, z ∈ Y , the following three properties hold: x ≤ y implies x + z ≤ y + z;
for all t ∈ R, t ≥ 0, x ≤ y implies tx ≤ ty ; the supremum x ∨ y = sup{x,y}
and infimum x ∧y = inf{x,y} with respect to ≤ exist in Y .

Let Y be a vector space. A cone in Y will always mean a pointed cone, that is,
a subset of Y closed under multiplication by nonnegative scalars. A convex cone is
a cone that is also closed under addition. A double cone will mean a subset closed
under arbitrary scalar multiplication. The term subspace always means a linear
subspace.

Let Y be a vector space, and let n ∈ N. If T is a subspace of Y , a functional
F : Tn → R is called multilinear if it is linear in each variable. Let A be a subset of
Y that is closed under addition. We say that a functional F : An → R is additive if
it is additive in each variable, that is,

F(v1, . . . , vi−1, vi +wi, vi+1, . . . , vn) =

= F(v1, . . . , vn)+ F(v1, . . . , vi−1,wi, vi+1, . . . , vn),

whenever vi,wi ∈ A, i = 1, . . . , n. Let C be a double cone (or a cone) in Y .
Then, F is called homogeneous (or positively homogeneous, respectively) (of degree
1) on Cn if

F(t1v1, . . . , tnvn) = t1 · · · tnF(v1, . . . , vn),

for all ti ∈ R (or ti ≥ 0, respectively) and vi ∈ C, i = 1, . . . , n. Clearly, a
functional is multilinear if and only if it is both additive and homogeneous.

Let T be a subspace of Y . If F : Tn → R is additive, then F vanishes whenever
one of its arguments is the zero vector. Using this, it is easy to see that

F(v1, . . . , vi−1,−vi, vi+1, . . . , vn)(2.2)

= −F(v1, . . . , vi−1, vi, vi+1, . . . , vn),

whenever vi ∈ T , i = 1, . . . , n. As a consequence, any positively homogeneous
additive functional on Tn is homogeneous. With (2.2) in hand, it is straightfor-
ward to show that any additive functional F on Tn satisfies

F(v1, . . . , vn)− F(w1, . . . ,wn)(2.3)

=

n∑

i=1

F(w1, . . . ,wi−1, vi −wi, vi+1, . . . , vn),
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whenever vi,wi ∈ T , i = 1, . . . , n, where the summands on the right-hand side
are F(v1 − w1, v2, . . . , vn) when i = 1, and F(w1, . . . ,wn−1, vn − wn) when
i = n. Note that in view of (2.2), by interchanging vi and wi, i = 1, . . . , n, we
see that the right-hand side of (2.3) can be written equivalently as

n∑

i=1

F(v1, . . . , vi−1, vi −wi,wi+1, . . . ,wn).

Let Y be a partially ordered vector space. The positive cone Y+ of Y is

Y+ = {v ∈ Y : v ≥ 0}.

Let n ∈ N and let E be a subset of Y . A functional F on En is called positive on
En if F(v1, . . . , vn) ≥ 0 whenever vi ∈ E ∩ Y+, i = 1, . . . , n, and increasing on
En if, whenever vi,wi ∈ E and vi ≥ wi, i = 1, . . . , n, we have

F(v1, . . . , vn) ≥ F(w1, . . . ,wn).

We call a functional F defined on En (where E is a set of functions on Sn−1)
rotation invariant if

F(ϕf1, . . . ,ϕfn) = F(f1, . . . , fn),

for all f1, . . . , fn ∈ E and rotations ϕ of Rn. Here, (ϕfi)(u) = fi(ϕ−1u), for
all u ∈ Sn−1.

Proposition 2.2 (Stachó [25, Theorem 7.1]). Let X be a locally compact Haus-
dorff space, let n ∈ N, and let F be a continuous positive multilinear functional on
C(X)n. Then, there is a finite Radon measure µ in Xn such that

F(f1, . . . , fn) =

∫

Xn
f1(x1) · · · fn(xn)dµ(x1, . . . , xn),

for all (f1, . . . , fn) ∈ C(X)n.
The proof of [25, Theorem 7.1], which appears in an appendix to that paper,

is completely independent of the rest of [25], and accessible, though there are a
few misprints: ϕ should be Φ in the first line of the statement of the theorem
and on line 5 of page 21, and the equal sign on line 4 of page 21 should be the
less-than-or-equal-to sign. A key tool is the Alaoglu-Bourbaki theorem. In the
context of interest here, when X = Sn−1, the proof is somewhat simpler, since X
is a compact metric space. In particular, the standard Banach-Alaoglu theorem is
sufficient. It should be noted that Stachó writes at the end of the introduction of
[25] that [25, Theorem 7.1] is contained implicitly in a result of Villanueva [26],
while Fernando Bombal, in private communication, points to the earlier paper
[3].
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3. ADDITIVE FUNCTIONALS ON FINITE PRODUCTS OF

PARTIALLY ORDERED VECTOR SPACES

The proof of the next result follows that of the well-known case when n = 1, that
is, the equivalence of continuity and boundedness for linear functionals (see, e.g.,
[5, (5.1.5), p. 103]).

Proposition 3.1. Let Y be a partially ordered normed space. A multilinear
functional F on Yn (or Yn+ ) is continuous if and only if it is bounded, that is, if there
is an M such that

(3.1) |F(v1, . . . , vn)| ≤ M
n∏

i=1

‖vi‖,

for all (v1, . . . , vn) ∈ Yn (or for all (v1, . . . , vn) ∈ Yn+ , respectively).
Lemma 3.2. Let Y be a partially ordered vector space, and let n ∈ N. If F :

Yn+ → [0,∞) is additive, then it is increasing on Yn+ .

Proof. Let vi,wi ∈ Y+ be such that vi ≥ wi, i = 1, . . . , n. Define ui ∈ Y+
by setting ui = vi −wi, for i = 1, . . . , n. Then, vi = ui +wi, i = 1, . . . , n, so
using the additivity and the fact that F ≥ 0 on Yn+ , we obtain

F(v1, . . . , vn) = F(u1 +w1, . . . , un +wn) ≥ F(w1, . . . ,wn). ❐

Lemma 3.3. Let Y be a Riesz space, and let n ∈ N. If F is a positive multilinear
functional on Yn, then

(3.2) |F(v1, . . . , vn)| ≤ F(|v1|, . . . , |vn|),

whenever vi ∈ Y , i = 1, . . . , n.

Proof. Since Y is a Riesz space, for each i ∈ {1, . . . , n} we have vi = v
+
i −v

−
i ,

where v+i = vi ∨ 0 and v−i = (−vi) ∨ 0 are the positive and negative parts of
vi; then, v+i , v

−
i ≥ 0 and |vi| = v+i + v

−
i . (See, e.g., [6, p. 14].) Using the

multilinearity of F , we obtain

F(|v1|, . . . , |vn|) = F(v
+
1 + v

−
1 , . . . , v

+
n + v

−
n )

=
∑

r1,...,rn∈{0,1}

F(r1v
+
1 + (1− r1)v

−
1 , . . . , rnv

+
n + (1− rn)v

−
n )

and

F(v1, . . . , vn) = F(v
+
1 − v

−
1 , . . . , v

+
n − v

−
n )

=
∑

r1,...,rn∈{0,1}

(−1)(1−r1)+···+(1−rn)

× F(r1v
+
1 + (1− r1)v

−
1 , . . . , rnv

+
n + (1− rn)v

−
n ).
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Since all the arguments of F in the previous two sums belong to Y+, the positivity
of F implies that F(v1, . . . , vn) ≤ F(|v1|, . . . , |vn|). Similarly,

−F(v1, . . . , vn) = F(−v1, v2, . . . , vn) ≤ F(|v1|, . . . , |vn|). ❐

The special case Y = C(X) of the following result was communicated to us
by Laszlo Stachó, who stated that the argument is “rather standard.”

Proposition 3.4. Let Y be a normed Riesz space, and let F be a positive multi-
linear functional on Yn such that F is continuous on Yn+ . Then, F is continuous.

Proof. Suppose that F is not continuous on Yn. By Proposition 3.1, for each

k ∈ N, there are v(k)1 , . . . , v(k)n ∈ Y such that

|F(v(k)1 , . . . , v(k)n )| ≥ 2kn
n∏

i=1

‖v(k)i ‖.

Replacing v(k)i by v(k)i /‖v(k)i ‖, and using the fact that F is positively homo-

geneous of degree 1, we may assume that this holds with ‖v(k)i ‖ = 1 for each
i = 1, . . . , n. Then, using (3.2), we have

(3.3) 2kn ≤ |F(v(k)1 , . . . , v(k)n )| ≤ F(|v(k)1 |, . . . , |v(k)n |).

Let m ∈ N, and for i = 1, . . . , n, define

wi =
m∑

k=1

2−k|v(k)i |.

Then, wi ∈ Y+ and ‖wi‖ ≤ 1. (For the latter inequality, note that by the defini-
tion [6, p. 38] of a Riesz norm, |u| ≤ |v| implies ‖u‖ ≤ ‖v‖ for all u,v ∈ Y .

Applying this with u = |v(k)i | and v = v(k)i , we obtain ‖ |v(k)i | ‖ ≤ ‖v(k)i ‖ for
each i = 1, . . . , n and k ∈ N.) Since F is positive and multilinear, it is also
increasing on Yn+ , by Lemma 3.2. Using these facts and (3.3), we obtain

F(w1, . . . ,wn) = F
( m∑

k=1

2−k|v(k)1 |, . . . ,
m∑

k=1

2−k|v(k)n |
)

≥

m∑

k=1

2−knF(|v(k)1 |, . . . , |v(k)n |) ≥m ≥m
n∏

i=1

‖wi‖.

Since m ∈ N was arbitrary, Proposition 3.1 implies that F is not continuous on
Yn+ , a contradiction. ❐

The argument in the next lemma is standard and goes back at least to Cauchy
(see, e.g., [1, pp. 31–32]).
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Proposition 3.5. Let Y be a partially ordered vector space, and let n ∈ N. If
F : Yn+ → [0,∞) is additive, then it is positively homogeneous.

Proof. Let vi ∈ Y+, i = 1, . . . , n. To prove that F is positively homogeneous,
it will suffice to show that if t ≥ 0, then

F(tv1, v2, . . . , vn) = tF(v1, . . . , vn).

To see this, let p ∈ N. Since pv1 = v1 + · · · + v1, where the sum involves p
copies of v1, the additivity of F implies that

F(pv1, v2, . . . , vn) = F(v1 + · · · + v1, v2, . . . , vn) = pF(v1, . . . , vn).

Therefore, if p,q ∈ N, then

qF

(
p

q
v1, v2, . . . , vn

)
= pqF

(
1
q
v1, v2, . . . , vn

)

= F(pv1, v2, . . . , vn) = pF(v1, . . . , vn),

which yields

F

(
p

q
v1, v2, . . . , vn

)
=
p

q
F(v1, . . . , vn).

Thus, F is positively homogeneous for rational factors. Now, let t ≥ 0. Let
(rm) and (sm), m ∈ N, be increasing (and decreasing, respectively) sequences of
nonnegative rational numbers such that rm → t and sm → t as m → ∞. Using
the positive homogeneity for rational factors and the fact that F is increasing (a
consequence of Lemma 3.2), we obtain, for m ∈ N,

rmF(v1, . . . , vn) = F(rmv1, v2, . . . , vn) ≤ F(tv1, v2, . . . , vn)

≤ F(smv1, v2, . . . , vn) = smF(v1, . . . , vn).

Letting m→∞, we obtain

F(tv1, v2, . . . , vn) = tF(v1, . . . , vn).

This completes the proof. ❐

A special case of the following lemma was treated by Aleksandrov [2, pp. 959–
961].

Lemma 3.6. Let Y be a Riesz space, and let n ∈ N. If F : Yn+ → [0,∞) is
additive, there is an extension of F to a positive multilinear functional on Yn.
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Proof. Suppose that vi ∈ Y , i = 1, . . . , n. Since Y is a Riesz space, we can
write vi = v+i − v

−
i , for each i, where v+i ∈ Y+ and v−i ∈ Y+ are the positive

and negative parts of vi. Now, if vi = v(0)i − v(1)i , where v(0)i , v(1)i ∈ Y+, for
i = 1, . . . , n, we define

(3.4) F(v1, . . . , vn) =
∑

r1,...,rn∈{0,1}

(−1)r1+···+rnF(v
(r1)
1 , . . . , v

(rn)
n ).

We claim that the extension of F to Yn via (3.4) is well defined. (The defini-
tion (3.4) and the following argument are also standard and analogous to those in
[22, p. 291], e.g.) To see this, let i ∈ {1, . . . , n}, and suppose that

vi = v
(0)
i − v(1)i =w(0)

i −w(1)
i ,

where v(0)i , v(1)i ,w(0)
i ,w(1)

i ∈ Y+. Then,

v(0)i +w(1)
i = w(0)

i + v(1)i .

Therefore,

F(v1, . . . , vi−1, v
(0)
i , vi+1, . . . , vn)+ F(v1, . . . , vi−1,w

(1)
i , vi+1, . . . , vn)

=
∑

rj∈{0,1}
j≠i; ri=0

(−1)r1+···+rnF(v(r1)
1 , . . . , v

(ri−1)
i−1 , v(0)i , v

(ri+1)
i+1 , . . . , v(rn)n )

+
∑

rj∈{0,1}
j≠i; ri=0

(−1)r1+···+rnF(v(r1)
1 , . . . , v

(ri−1)
i−1 ,w(1)

i , v
(ri+1)
i+1 , . . . , v

(rn)
n )

=
∑

rj∈{0,1}
j≠i; ri=0

(−1)r1+···+rnF(v
(r1)
1 , . . . , v

(ri−1)
i−1 , v(0)i +w(1)

i , v
(ri+1)
i+1 , . . . , v

(rn)
n )

=
∑

rj∈{0,1}
j≠i; ri=0

(−1)r1+···+rnF(v(r1)
1 , . . . , v

(ri−1)
i−1 ,w(0)

i + v(1)i , v
(ri+1)
i+1 , . . . , v(rn)n )

= F(v1, . . . , vi−1,w
(0)
i , vi+1, . . . , vn)+ F(v1, . . . , vi−1, v

(1)
i , vi+1, . . . , vn),

which yields

F(v1, . . . , vi−1, v
(0)
i , vi+1, . . . , vn)− F(v1, . . . , vi−1, v

(1)
i , vi+1, . . . , vn)

= F(v1, . . . , vi−1,w
(0)
i , vi+1, . . . , vn)− F(v1, . . . , vi−1,w

(1)
i , vi+1, . . . , vn).

This suffices to prove the claim.
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Note that the extension of F defined by (3.4) is positive on Yn, since it is
positive on Yn+ .

Next, we claim that F as defined by (3.4) is multilinear. Indeed, let i ∈

{1, . . . , n}, vi = v
(0)
i −v(1)i , andwi = w

(0)
i −w(1)

i , where v(0)i , v(1)i ,w(0)
i ,w(1)

i ∈

Y+. Then,
vi +wi = (v

(0)
i +w(0)

i )− (v(1)i +w(1)
i ),

and so

F(v1, . . . , vi−1, vi +wi, vi+1, . . . , vn)

=
∑

r1,...,rn∈{0,1}

(−1)r1+···+rn

× F(v(r1)
1 , . . . , v

(ri−1)
i−1 , v

(ri)
i +w

(ri)
i , v

(ri+1)
i+1 , . . . , v

(rn)
n )

= F(v1, . . . , vi−1, vi, vi+1, . . . , vn)+ F(v1, . . . , vi−1,wi, vi+1, . . . , vn).

Therefore, F is additive.
Let α ∈ R. If α ≥ 0, we have αvi = αv(0)i − αv(1)i . Noting that each

of the variables in the summands in (3.4) are vectors in Y+, and using (3.4) and
Proposition 3.5, we obtain

F(v1, . . . , vi−1, αvi, vi+1, . . . , vn) = αF(v1, . . . , vi−1, vi, vi+1, . . . , vn).

Thus, F is positively homogeneous on Yn and therefore, as noted after (2.2),
homogeneous. Together with the additivity, this implies that F is multilinear, so
the claim is proved. ❐

4. POSITIVE ADDITIVE FUNCTIONALS ON (C+(Sn−1))n OR (B+(Sn−1))n

Lemma 4.1. Let X be a compact Hausdorff space, and let n ∈ N. If the func-
tional F : (C+(X))n → [0,∞) is additive, then it is continuous.

Proof. Let F : (C+(X))n → [0,∞) be additive. By Lemma 3.2 and Propo-
sition 3.5 with Y = C(X), F is also increasing and positively homogeneous. Fix

f = (f1, . . . , fn) ∈ (C+(X))n, and suppose that f (j) = (f (j)1 , . . . , f
(j)
n ), j ∈ N,

is a sequence in (C+(X))n converging to f . Let 0 < ε ≤ 1 be given. Choose j0

such that ‖fi − f
(j)
i ‖∞ ≤ ε for all j ≥ j0 and all i = 1, . . . , n. Define

M = F(f1 + 1, . . . , fn + 1)

and
Mj = max{F(h1, . . . , hn) : hi = f

(j)
i or hi = 1, i = 1, . . . , n},

for j ∈ N. From the facts that F is increasing and that fi ≥ 0 and f
(j)
i ≤

fi + ε ≤ fi + 1 for all j ≥ j0 and i = 1, . . . , n, we obtain Mj ≤ M , for j ≥ j0.
Using the additivity and positive homogeneity of F , we can expand the quantity
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F(f
(j)
1 + ε, . . . , f

(j)
n + ε) into an expression involving 2n terms, each of the form

εkF(h1, . . . , hn), where hi = f
(j)
i or hi = 1 and k ≥ 1 for all but one term.

Recalling that ε ≤ 1, this gives

F(f ) ≤ F(f
(j)
1 + ε, . . . , f

(j)
n + ε) ≤ F(f (j))+ ε(2n − 1)Mj

≤ F(f (j))+ ε(2n − 1)M,

for all j ≥ j0. Similarly, we get

F(f (j)) ≤ F(f1 + ε, . . . , fn + ε) ≤ F(f )+ ε(2n − 1)M,

for all j ≥ j0. This shows that F(f (j))→ F(f ) as j →∞, and proves the claim. ❐

Theorem 4.2. Let X be a compact Hausdorff space. Suppose that n ∈ N and
that F : (C+(X))n → [0,∞) is additive. Then, there is a finite Radon measure µ in
Xn such that

(4.1) F(f1, . . . , fn) =

∫

Xn
f1(x1) · · · fn(xn)dµ(x1, . . . , xn),

for all (f1, . . . , fn) ∈ (C+(X))n.

Proof. By Lemma 3.6 with Y = C(X), F extends to a positive multilinear
functional on (C(X))n that is continuous on (C+(X))n by Lemma 4.1. By Propo-
sition 3.4 with Y = C(X), this extension is continuous on (C(X))n, and then by
Proposition 2.2, it has the integral representation (4.1). ❐

Corollary 4.3. Let X be a compact Hausdorff space, and let n ∈ N. Suppose
that F : (C+(X))n → [0,∞) is additive and vanishes when the supports of two of its
arguments are disjoint. Then, there is a finite Radon measure µ in X such that

(4.2) F(f1, . . . , fn) =

∫

X
f1(x) · · ·fn(x)dµ(x),

for all (f1, . . . , fn) ∈ (C+(X))n.

Proof. By Theorem 4.2, there is a finite Radon measure ν in Xn such that
(4.1) holds with µ replaced by ν. Suppose that (x1, . . . , xn) ∈ Xn is such that
xi1 ≠ xi2 for some 1 ≤ i1 ≠ i2 ≤ n. Choose open sets Ui in X with xi ∈ Ui,
i = 1, . . . , n, such that the closures of Ui1 and Ui2 are disjoint. Define fi ∈ C+(X)
such that fi(x) = 1 for all x ∈ Ui, and the supports of fi1 and fi2 are disjoint.
Then, we have

0 = F(f1, . . . , fn) =

∫

Xn
f1(x1) · · ·fn(xn)dν(x1, . . . , xn)

≥

∫

Xn
1U1(x1) · · · 1Un(xn)dν(x1, . . . , xn) = ν

( n∏

i=1

Ui
)
.
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Thus, each (x1, . . . , xn) ∈ Xn not on the diagonal in Xn has an open neighbor-
hood of zero ν-measure. It follows that ν is concentrated on the diagonal in Xn.
Let µ be the projection of ν onto X, defined by µ(E) = ν(E ×X × · · · × X), for
all Borel sets E in X. Then, µ is a finite Radon measure in X, and

F(f1, . . . , fn) =

∫

Xn
f1(x1) · · · fn(xn)dν(x1, . . . , xn)

=

∫

X
f1(x) · · ·fn(x)dµ(x),

for all (f1, . . . , fn) ∈ (C+(X))n, as required. ❐

Corollary 4.4. If F : (C+(Sn−1))n → [0,∞) is an additive, rotation-invariant
functional that vanishes when the supports of two of its arguments are disjoint, then
there is a c ≥ 0 such that

F(f1, . . . , fn) = c

∫

Sn−1
f1(u) · · · fn(u)du,

for all (f1, . . . , fn) ∈ (C+(Sn−1))n.

Proof. By Corollary 4.3, there is a finite Radon measure µ in Sn−1 such that
F has the integral representation (4.2) with X = Sn−1. Then, if A is a Borel subset
of Sn−1, the rotation invariance of F yields

µ(ϕA) =

∫

Sn−1
1ϕA(u)dµ(u) =

∫

Sn−1
1ϕA(u)n dµ(u)

=

∫

Sn−1
(ϕ1A)(u)n dµ(u) = F(ϕ1A, . . . ,ϕ1A)

= F(1A, . . . ,1A) = µ(A).

Thus, µ is rotation invariant, and it follows from the uniqueness of Haar measure
(see, e.g., [23, p. 584]) that µ is a multiple of spherical Lebesgue measure in
Sn−1. ❐

Lemma 4.5. Let Y be a Riesz space, and let n ∈ N. If F is a positive additive
functional on Yn, then

(4.3) |F(v1, . . . , vn)| ≤ F(v1, . . . , vi−1, |vi|, vi+1, . . . , vn),

whenever vi ∈ Y and vj ∈ Y+, j = 1, . . . , n, j ≠ i.

Proof. Using (2.2), we have

− F(v1, . . . , vn)+ F(v1, . . . , vi−1, |vi|, vi+1, . . . , vn)

= F(v1, . . . , vi−1,−vi, vi+1, . . . , vn)+ F(v1, . . . , vi−1, |vi|, vi+1, . . . , vn)

= F(v1, . . . , vi−1,−vi + |vi|, vi+1, . . . , vn) ≥ 0,

since −vi + |vi| ≥ 0.
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Therefore, F(v1, . . . , vn) ≤ F(v1, . . . , vi−1, |vi|, vi+1, . . . , vn), and similarly
one obtains −F(v1, . . . , vn) ≤ F(v1, . . . , vi−1, |vi|, vi+1, . . . , vn). ❐

Theorem 4.6. Let X be a compact Hausdorff space. Suppose that n ∈ N and
that F : (B+(X))n → [0,∞) is additive. Then, there is a finite Radon measure µ in
Xn such that

(4.4) F(f1, . . . , fn) =

∫

Xn
f1(x1) · · · fn(xn)dµ(x1, . . . , xn),

for all (f1, . . . , fn) ∈ (B+(X))n.

Proof. Let F : (B+(X))
n
→ [0,∞) be additive. Then, by using Lemma 3.6

with Y = B(X), F extends to a positive multilinear functional on (B(X))n that we
shall also denote by F . Since F is positive and additive on (C+(X))n, Theorem 4.2
implies that there is a finite Radon measure µ in Xn such that (4.4) holds when
f1, . . . , fn ∈ C+(X). Define

(4.5) F̂(f1, . . . , fn) =

∫

Xn
f1(x1) · · · fn(xn)dµ(x1, . . . , xn),

for all (f1, . . . , fn) ∈ (B(X))n. We have to show that F = F̂ on (B+(X))n.
Let f1, . . . , fn ∈ B+(X), and chooseM such that fi ≤ M for i = 1, . . . , n. Let

ε > 0. Suppose that i ∈ {1, . . . , n}. Let µi be the finite Radon measure in X that
is the projection of µ onto the ith copy of X in the product Xn, that is,

µi(E) = µ(X × · · · ×X × E ×X × · · · × X),

for all Borel sets E in X, where the set E is the ith term in the product. By Lusin’s
theorem, there is a gi ∈ C+(X) and a compact set Ai in X such that gi = fi on
X \Ai and µi(Ai) < ε. We may also assume that gi ≤ M . Then, gi − fi = 0 on
X \Ai and |gi − fi| ≤M on Ai, so

(4.6)
∫

X
|gi(x)− fi(x)|dµi(x) ≤Mµi(Ai) < Mε.

Since Ai is compact, we can choose hi ∈ C+(X) such that |gi − fi| ≤ hi and

(4.7)
∫

X
hi(x)dµi(x) < (M + 1)ε.

By (2.3), Lemma 4.5 with Y = B(X), the fact that F is increasing on (B+(X))n

(given by Lemma 3.2 with Y = B(X)), and (4.7), we obtain
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|F(g1, . . . , gn)− F(f1, . . . , fn)|(4.8)

≤

n∑

i=1

|F(f1, . . . , fi−1, gi − fi, gi+1, . . . , gn)|

≤

n∑

i=1

F(f1, . . . , fi−1, |gi − fi|, gi+1, . . . , gn)

≤

n∑

i=1

F(M, . . . ,M,hi,M, . . . ,M)

=

n∑

i=1

∫

Xn
Mn−1hi(xi)dµ(x1, . . . , xn)

=

n∑

i=1

∫

X
Mn−1hi(xi)dµi(xi) < nM

n−1(M + 1)ε.

Noting that F̂ is additive on (B(X))n by its definition, we can use (2.3) again,
(4.5), and (4.6) to get

|F̂(g1, . . . , gn)− F̂(f1, . . . , fn)|(4.9)

=
∣∣∣
n∑

i=1

F̂(f1, . . . , fi−1, gi − fi, gi+1, . . . , gn)
∣∣∣

≤

n∑

i=1

∫

X
Mn−1|gi(xi)− fi(xi)|dµi(xi) < nM

nε.

Since F(g1, . . . , gn) = F̂(g1, . . . , gn), (4.8) and (4.9) yield

|F(f1, . . . , fn)− F̂(f1, . . . , fn)| < nM
n−1(2M + 1)ε.

It follows that F(f1, . . . , fn) = F̂(f1, . . . , fn), and so that F = F̂ on (B+(X))n. ❐

The following result is obtained from Theorem 4.6 in exactly the same fashion
as Corollaries 4.3 and 4.4 were obtained from Theorem 4.2.

Corollary 4.7. If F : (B+(Sn−1))n → [0,∞) is additive and vanishes when the
supports of two of its arguments are disjoint, then there is a finite Radon measure µ in
Sn−1 such that

F(f1, . . . , fn) =

∫

Sn−1
f1(u) · · ·fn(u)dµ(u),

for all (f1, . . . , fn) ∈ (B+(Sn−1))n. If, in addition, F is rotation invariant, then
there is a c ≥ 0 such that

F(f1, . . . , fn) = c

∫

Sn−1
f1(u) · · ·fn(u)du,

for all (f1, . . . , fn) ∈ (B+(Sn−1))n.
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5. POSITIVE ADDITIVE FUNCTIONALS ON (Sno )
n OR (Sn)n

In this section, we draw conclusions from the results of the previous section by
identifying a star body (or star set) L in Rn with its radial function ρL ∈ C+(Sn−1)
(or ρL ∈ B+(Sn−1), respectively). Various properties of functionals on (Sno )

n or
(Sn)n can now be defined via those of the corresponding properties of functionals
on (C+(Sn−1))n or (B+(Sn−1))n, respectively. Thus, we say that a functional F
on (Sno )

n is additive if

F(L1, . . . , Li−1, Li+̃Mi, Li+1, . . . , Ln)(5.1)

= F(L1, . . . , Li−1, Li, Li+1, . . . , Ln)

+ F(L1, . . . , Li−1,Mi, Li+1, . . . , Ln),

whenever Li,Mi ∈ S
n
o , i = 1, . . . , n, positive if F ≥ 0, and rotation invariant if

(5.2) F(ϕL1, . . . ,ϕLn) = F(L1, . . . , Ln),

for all L1, . . . , Ln ∈ Sno and rotations ϕ of Rn. The corresponding properties of a
functional F on (Sn)n are defined analogously.

Theorems 4.2 and 4.6 and Corollaries 4.3, 4.4, and 4.7 immediately yield the
following result.

Theorem 5.1. Let X = Sno or Sn.

(i) If F : Xn → [0,∞) is additive, then there is a finite Radon measure µ in
(Sn−1)n such that

F(L1, . . . , Ln) =

∫

(Sn−1)n
ρL1(u1) · · ·ρLn(un)dµ(u1, . . . , un),

for all L1, . . . , Ln ∈ X.
(ii) If F also vanishes when the intersection of two of the arguments is {o}, then

there is a finite Radon measure µ in Sn−1 such that

F(L1, . . . , Ln) =

∫

Sn−1
ρL1(u) · · ·ρLn(u)dµ(u),

for all L1, . . . , Ln ∈ X.
(iii) If, in addition to the previously assumed properties, F is also rotation invari-

ant, then there is a c ≥ 0 such that F(L1, . . . , Ln) = cṼ (L1, . . . , Ln), for all
L1, . . . , Ln ∈ X.

The assumption in Theorem 5.1 that F is nonnegative will be addressed in the
next section. The following examples show that none of the other assumptions in
Theorem 5.1 can be omitted.
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Example 5.2. For Li ∈ Sno , i = 1, . . . , n (or for Li ∈ Sn, i = 1, . . . , n), define

F(L1, . . . , Ln) =H
n
( n⋂

i=1

Li
)
.

Then, F is rotation invariant, and vanishes when the intersection of two of its
arguments is {o}, but it is not additive.

Example 5.3. For Li ∈ Sno , i = 1, . . . , n (or for Li ∈ Sn, i = 1, . . . , n), define

F(L1, . . . , Ln) =
n∏

i=1

∫

Sn−1
ρLi(u)du.

Clearly, F is additive and rotation invariant. However, it does not always vanish
when the intersection of two of its arguments is {o}. For example, if the Li are
cones whose bases are disjoint spherical caps of positive radius, then we have that
F(L1, . . . , Ln) > 0.

Example 5.4. Let M be any star body that is not a ball with center at the
origin. For Li ∈ Sno , i = 1, . . . , n (or for Li ∈ Sn, i = 1, . . . , n), define

F(L1, . . . , Ln) =

∫

Sn−1
ρL1(u) · · ·ρLn(u)ρM(u)du.

Then, F is additive and vanishes when the intersection of two of its arguments is
{o}, but it is not rotation invariant.

6. REAL-VALUED ADDITIVE FUNCTIONALS

The positivity of F was used in an essential way in Lemma 3.2, in which the fact
that F : Yn+ → [0,∞) is increasing was deduced from its additivity. However,
all the main results in Sections 4 and 5 hold for real-valued functionals if it is
assumed in addition that they are increasing. Indeed, the simple observation that
if F : Yn+ → R is additive and increasing, then F ≥ 0, allows all the proofs to go
through as before. In particular, we have the following result.

Theorem 6.1. Let X = Sno or Sn. If F : Xn → R is additive, increasing, rotation
invariant, and vanishes when the intersection of two of the arguments is {o}, then there
is a c ≥ 0 such that F(L1, . . . , Ln) = cṼ (L1, . . . , Ln), for all L1, . . . , Ln ∈ X.

Note that here F is increasing if it is increasing in each argument with respect
to set inclusion. This is compatible with our previous use of the term, since if
X = Sno or Sn and L,M ∈ X, then L ⊂ M if and only if ρL ≤ ρM .

None of the assumptions in Theorem 6.1 can be omitted. Indeed, all the
functionals in Examples 5.2, 5.3, and 5.4 are increasing, showing that none of the
other assumptions can be dropped. If we define F(L1, . . . , Ln) = −Ṽ (L1, . . . , Ln),
then of course F is not increasing but retains the other properties assumed in
Theorem 6.1.
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However, an intriguing possibility arises, namely, that without assuming F is
increasing in Theorem 6.1, the result holds with the weaker conclusion that there
is a c ∈ R such that F(L1, . . . , Ln) = cṼ (L1, . . . , Ln), for all L1, . . . , Ln ∈ X. The
following example addresses this question.

Example 6.2. Let X = Sno or Sn. Assuming the Axiom of Choice, there is an
additive function h : R → R that is not linear (see, e.g., [4, Section 7.3]). Define
F : Xn → R by

F(L1, . . . , Ln) = h(Ṽ(L1, . . . , Ln)),

for Li ∈ X, i = 1, . . . , n. It is easy to check that F is additive, rotation invariant,
and vanishes when the intersection of two of its arguments is {o}. (The latter
property requires h(0) = 0, a consequence of the additivity of h.) However, there
is no c ∈ R such that F(L1, . . . , Ln) = cṼ (L1, . . . , Ln). If there were, then given
t ≥ 0, we could choose L1(t), . . . , Ln(t) ∈ X such that Ṽ (L1(t), . . . , Ln(t)) = t
(e.g., by taking Li(t) = (t/Hn(Bn))1/nBn, for i = 1, . . . , n, where Bn is the unit
ball in Rn), leading to h(t) = F(L1(t), . . . , Ln(t)) = ct, for all t ≥ 0. Then, for
t < 0, we have h(t) = h(0)−h(−t) = ct by the additivity of h, so h is linear on
R, a contradiction.

We remark that the previous example may be adapted to form a small ob-
servation regarding the paper [19] by Milman and Schneider on characterizing
the mixed volume. Namely, with h as in the previous example, the functional F :
(Kn)n → R defined onn-tuples of compact convex sets inRn by F(K1, . . . , Kn) =
h(V(K1, . . . , Kn)), for Ki ∈ Kn, i = 1, . . . , n, is additive and vanishes if two of
its arguments are parallel line segments, but F is not a real constant multiple of
the mixed volume. This shows that this weaker conclusion to [19, Theorem 2]
cannot be obtained in ZFC if the assumption that F is increasing is omitted.

Additive nonlinear functions from R to R can be constructed via a Hamel
basis, which in turn is constructed using the Axiom of Choice. It is known, how-
ever, that it is consistent with Zermelo-Fraenkel set theory ZF that all additive
functions from R to R are linear. This follows from Solovay’s model [24] of ZF
in which every set of reals is Baire measurable, together with the fact that any
additive, Baire-measurable function from R to R must be linear. (The latter fact
is proved in the same way as the well-known result that any additive, Lebesgue-
measurable function from R to R must be linear.) We leave open the question
as to whether it is consistent with ZF that Theorem 6.1 holds for some c ∈ R

without the assumption that F is increasing, as well as the corresponding question
regarding [19, Theorem 2].

We close this section with a short discussion on the possibility of obtaining
a characterization of the mixed volume via our results in Section 4. The concept
in the classical Brunn-Minkowski theory corresponding to the radial function of a
star set or star body in the dual Brunn-Minkowski theory is the support function
hK of a compact convex set in Rn. However, as Milman and Schneider note in
[19, p. 670], the mixed volume V(K1, . . . , Kn) of compact convex sets K1, . . . , Kn
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in Rn cannot be represented in the form

V(K1, . . . , Kn) =

∫

(Sn−1)n
hK1(u1) · · ·hKn(un)dµ(u1, . . . , un),

when µ is a finite signed Borel measure in (Sn−1)n; this is a consequence of [22,
Theorem 5.2.2]. It was also noted in [19, p. 671] that Weil [27] proved that there
is a sequence {fk} of functions in C∞(Sn−1) such that

∫

(Sn−1)n
hK1(u1) · · ·hKn(un)fk(u1, . . . , un)d(u1, . . . , un)→ V(K1, . . . , Kn),

as k →∞, for allKi ∈Kn, i = 1, . . . , n, where integration is with respect to the n-
fold product of spherical Lebesgue measure in Sn−1. However, it is not clear how
to use this result in our context, taking into account also that support functions
of compact convex sets, restricted to Sn−1, form a strict subclass of functions in
C(Sn−1), despite the fact that it is known that differences of support functions are
dense in C(Sn−1).

APPENDIX A. A DIRECT APPROACH TO A CASE OF THEOREM 5.1

It is perhaps worth remarking that Theorem 5.1(iii) can be proved directly, that is,
without using Proposition 2.2, at least in the case when X = Sn and the slightly
stronger assumption is made that F vanishes when the intersection of two of its
arguments has Hn-measure zero. Here, we outline how this may be done. A little
terminology is needed.

As in [15], we define the star hull of a set A in Rn by

stA = {tx : x ∈ A, 0 ≤ t ≤ 1}.

If α > 0 and A is a Borel set in Sn−1, the set C = α stA will be called a cone of
base A and radius α. Note that C is a star set and ρC = α1A.

A polycone is a finite union of cones. If P is a nontrivial polycone, there are
unique αj > 0 and disjoint Borel sets Aj ⊂ Sn−1, j = 1, . . . ,m, such that

ρP =
m∑

j=1

αj1Aj .

(Compare [15, Proposition 2.12]. No proof is given, but the argument is straight-
forward.) If Cj = αj stAj , then P =

⋃m
j=1 Cj expresses the polycone P as the

union of cones Cj , j = 1, . . . ,m, that meet only at the origin.
With this in hand, we can sketch the proof. If F : (Sn)n → [0,∞) is additive,

then via Lemma 3.2 and Proposition 3.5, F may be assumed to be also increasing
and positively homogeneous whenever these properties are required. Suppose that
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F vanishes whenever the intersection of two of its arguments is {o}, and define
µ(A) = F(stA, . . . , stA), for each Borel set A in Sn−1. Then, one can show that
µ is a valuation, that is, that

µ(A∪ B)+ µ(A∩ B) = µ(A)+ µ(B),

for all Borel sets A,B ⊂ Sn−1. Now, if F vanishes when the intersection of
two of its arguments has Hn-measure zero and is rotation invariant, then µ is
a rotation-invariant valuation on the Borel sets in Sn−1 that vanishes on sets of
Hn−1-measure zero. The restriction of µ to the spherical convex polytopes in
Sn−1 is therefore a nonnegative, rotation-invariant valuation that is also simple,
meaning that it vanishes on spherical convex polytopes in Sn−1 that are not full
dimensional. A result of Schneider [21, Theorem 6.2] implies that there is a λ ≥ 0
such that µ(A) = λHn−1(A) whenever A is a spherical convex polytope in Sn−1.
As is shown in [18, p. 226], this also holds whenever A is a Borel set in Sn−1.
From this and the positive homogeneity of F , it is easy to conclude that there is a
c ≥ 0 such that

(A.1) F(L, . . . , L) = cHn(L),

for any polycone L.
The next step is to show that if Ai is a Borel set in Sn−1, αi > 0, and Ci is the

cone with base Ai ⊂ Sn−1 and radius αi, i = 1, . . . , n, then

(A.2) F(C1, . . . , Cn) =
α1 · · ·αn

(min{α1, . . . , αn})n
F(L, . . . , L),

where L =
⋂n
i=1 Ci. In fact, if L = {o}, then (A.2) clearly holds. Otherwise, a

standard argument shows that there are disjoint nonempty Borel sets Bj ⊂ Sn−1,
j = 1, . . . ,m, such that for each i = 1, . . . , n, Ai =

⋃
j∈Ii Bj , where the index set

Ii ⊂ {1, . . . ,m}; we also have

Ci = αi
⋃

j∈Ii

stBj , for i = 1, . . . , n,

and, by assuming that m is minimal, L = min{α1, . . . , αn}Bj0 , where we have
{j0} =

⋂n
i=1 Ii. Then, (A.2) follows easily, using the positive homogeneity of F .

The rotation invariance of F is not needed to obtain (A.2), but may now be
invoked, together with (A.1) and (A.2), to yield that there is a c ≥ 0 such that

(A.3) F(C1, . . . , Cn) = cṼ (C1, . . . , Cn),

for cones C1, . . . , Cn.
Now, using (A.3) and the additivity of F , it is routine to show that (A.3)

holds when the Ci are polycones. The final step is to show that (A.3) holds when
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Ci is replaced by a general star set Li, i = 1, . . . , n. This is achieved by the
usual uniform approximation of the nonnegative, bounded Borel function ρLi by
simple nonnegative Borel functions (see, e.g., [20, Theorem 1.17]), and using the
fact that F is increasing, and the monotone convergence theorem.
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