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Abstract Anomalous (or ‘‘non-Fickian’’) transport is ubiquitous in the context of tracer migration in geo-
logical formations. We quantitatively identify the origin of anomalous transport in a representative model of
a heterogeneous porous medium under uniform (in the mean) flow conditions; we focus on anomalous
transport which arises in the complex flow patterns of lognormally distributed hydraulic conductivity (K)
fields, with several decades of K values. Transport in the domains is determined by a particle tracking tech-
nique and characterized by breakthrough curves (BTCs). The BTC averaged over multiple realizations dem-
onstrates anomalous transport in all cases, which is accounted for entirely by a power law distribution
�t212b of local transition times. The latter is contained in the probability density function w(t) of transition
times, embedded in the framework of a continuous time random walk (CTRW). A unique feature of our anal-
ysis is the derivation of w(t) as a function of parameters quantifying the heterogeneity of the domain. In this
context, we first establish the dominance of preferential pathways across each domain, and characterize the
statistics of these pathways by forming a particle-visitation weighted histogram,HwðKÞ, of the hydraulic
conductivity. By converting the ln(K) dependence ofHwðKÞ into time, we demonstrate the equivalence of
HwðKÞ and w(t), and delineate the region ofHwðKÞ that forms the power law of w(t). This thus defines the
origin of anomalous transport. Analysis of the preferential pathways clearly demonstrates the limitations of
critical path analysis and percolation theory as a basis for determining the origin of anomalous transport.
Furthermore, we derive an expression defining the power law exponent b in terms of theHwðKÞ parame-
ters. The equivalence betweenHwðKÞ and w(t) is a remarkable result, particularly given the nature of the K
heterogeneity, the complexity of the flow field within each realization, and the statistics of the particle
transitions.

1. Introduction

The transport of dissolved chemicals (‘‘tracers,’’ ‘‘particles’’) in water-saturated geological formations has
been the subject of intense study for several decades. While many efforts to quantify patterns of migration
and dispersion still employ Fickian-based advection-dispersion models, it is now recognized that anomalous
(or ‘‘non-Fickian’’) transport is ubiquitous in the context of chemical transport in porous and fractured geo-
logical formations, and needs to be incorporated in both deterministic and stochastic modeling efforts. Lit-
erature that addresses theoretical and numerical modeling approaches and experimental evidence of such
a behavior is extensive [e.g., Cushman and Ginn, 1993; Berkowitz and Scher, 1997; Dagan and Neuman, 1997;
Haggerty et al., 2000; Cirpka and Kitanidis, 2000; Cirpka and Surabhin, 2004; Sanchez-Vila and Carrera, 2004;
Berkowitz et al., 2006; Morales Casique et al., 2006a, 2006b; Le Borgne et al., 2008; Willmann et al., 2008; Kang
et al., 2011; Rubin et al., 2012, and references therein, to mention only a few].

Anomalous transport manifests itself in different forms, most commonly appearing as long tails in the spa-
tial and/or temporal distributions of solute concentration (or particles) at given locations. These long tails
are typical of solute breakthrough curves (BTCs), which are observed as integral measures along a crossing
surface or a monitoring borehole in the domain. This tailing is typically interpreted as a result of spreading,
which can in turn be associated with effects of medium heterogeneity exhibited at multiple scales. Theoreti-
cal and numerical studies have attempted to explore the origin of this behavior and quantify the effect of
the underlying heterogeneous structure of the hydraulic conductivity (K) distribution on such manifestation
of solute dynamics.
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1.1. Modeling Anomalous Transport
Different modeling strategies could in principle be employed to quantify anomalous transport at the scales
where a porous medium is typically treated as a continuum system. In the present work, we focus on two
well-established approaches, one using theory and the other based on simulations and analysis of preferen-
tial pathways, and unite them. The theory employs the continuous time random walk (CTRW) framework. It
has been shown to offer a remarkably flexible interpretation and prediction of laboratory and field scale
transport settings [e.g., Berkowitz et al., 2006; Ciriello et al., 2013, and references therein]. A synthesis of the
key features and parameters involved in the CTRW formulation is presented in section 2. The parameters in
the governing CTRW transport equation have been related, at least partially, to physical and statistical meas-
ures characterizing geological materials [e.g., Bijeljic and Blunt, 2006; Berkowitz and Scher, 2009].

Dispersion, which results in solute spreading at the scale of observation, is accounted for entirely by a
power-law distribution of local transition times, defined within a probability density function (pdf) w(t),
which is at the core of CTRW. The same quality of CTRW analysis has been manifested in quite a variety of
studies of BTCs [e.g., Berkowitz et al., 2000; Kosakowski et al., 2001; Bromly and Hinz, 2004; Cortis et al., 2004;
Kosakowski, 2004; Bijeljic and Blunt, 2006; Mettier et al., 2006; Berkowitz et al., 2008; Berkowitz and Scher, 2009;
Bijeljic et al., 2011; Kuntz et al., 2011; Rubin et al., 2012]. Moreover, direct measurements of plume propaga-
tion in a highly anomalous range [Bijeljic et al., 2013a, 2013b] display a form that has been determined by
CTRW [Montroll and Scher, 1973; Margolin and Berkowitz, 2002].

The w(t) features a truncation to the power-law distribution (TPL), which introduces the role of the residence
time. Evidence that solute residence time exerts a key influence on macroscale transport behavior is pro-
vided by Berkowitz and Scher [2009]. These authors model BTCs observed during laboratory-scale experi-
ments performed on the same porous medium at three different flow rates. They employ a TPL with a
single set of parameter values. Previous interpretations [Levy and Berkowitz, 2003] that fit the BTCs with
velocity dependent parameters were shown in Berkowitz and Scher [2009] to be a consequence of the shift
in the experimental duration time relative to the truncation time of the w(t). Hence, possibly expecting a
rigid slide of the BTCs along the time axis, one instead encounters a change in shape of the BTCs due to the
change in velocity. This result allows further exploration of subtle effects of the complete form of w(t). The
truncation time, which denotes the transition to Fickian behavior, is virtually impossible to assess only on
the basis of knowledge of the medium hydraulic conductivity distribution.

The numerically determined w(t) from tracer movement, via particle tracking in a pore network model, has
been used to obtain the scaling of the longitudinal dispersion coefficient DL with P�eclet number, in agree-
ment with Darcy scale experimental measurements [Bijeljic and Blunt, 2006]. Such results using CTRW have
been based on a small number of parameters, mainly b and t2 (see section 2). The main challenge now is to
relate these parameters to the source of medium heterogeneity at the scale of interest. More specifically,
here, we examine particle path statistics in a model conductivity field and establish these relationships
between w(t) and subtle features of particle-weighted preferential pathways.

1.2. Conductivity Fields and Preferential Pathways
The general study of conductivity fields and preferential pathways is quite extensive. We discuss these stud-
ies in terms of the features that have been learned and what has emerged. A key goal is the understanding
of the interplay between the correlation structure of the conductivity and velocity fields and their interac-
tion on the features of anomalous transport behavior observed at the continuum scale [e.g., Le Borgne et al.,
2008; Berkowitz and Scher, 2010]. While equations relating velocity correlation parameters to statistical
moments of K are available, the link between these quantities is generally not explicit [e.g., Tartakovsky and
Neuman, 1998; Guadagnini and Neuman, 1999; Rubin, 2003; Panzeri et al., 2013, and references therein, to
mention only a few].

It is difficult to determine a priori solute/particle preferential pathways relying only on information on the K
distribution and it is virtually impossible to know if the domain regions associated with the lowest K values
are even interrogated or recognized during particle transport without solving the flow and transport prob-
lem. Representative values of hydraulic conductivity are known to depend not only on the statistical proper-
ties of the underlying conductivity field but also on the type of flow regime occurring in the system, as
driven by boundary conditions and source terms [Sanchez-Vila et al., 2006, and references therein]. Given
the generally (space-time) nonlocal nature of transport at the continuum scale, all length scales over which
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aquifer heterogeneities are distributed need to be taken into account to provide prediction of solute distri-
bution at a desired process scale together with the associated uncertainty.

The occurrence of preferential pathways in stationary conductivity fields has been shown by, e.g., Cirpka
and Kitanidis [2000] and Willmann et al. [2008]: these pathways are not apparent by analyzing only the con-
ductivity distribution but can be seen clearly in terms of distributions of velocity and solute plumes travel-
ing through the velocity fields. Under these conditions, modification of a mean uniform hydraulic gradient
acting on the system does not alter the flow lines, but the residence time, and thus the possibility of par-
ticles to interrogate low-conductivity regions through the effect of diffusion or local dispersivity, can be
severely affected.

In this context, it has been noted that Lagrangian velocity correlations are relevant in controlling solute
dynamics along flow paths [Berkowitz and Scher, 1998; Le Borgne et al., 2008; Moroni and Cushman, 2010,
and references therein]. This suggests the possibility of directly relating the origin of manifestations of
anomalous transport, as embodied in long-tailed BTCs, to statistical parameters describing the heterogene-
ity of hydraulic conductivity, upon which velocity correlation ultimately depends.

1.3. Tailing of BTCs
It has been shown numerically that the occurrence of connected high-conductivity paths produces large
variations in fluid velocity and significant tailing of solute BTCs. Zinn and Harvey [2003], for example, associ-
ate the latter with mass transfer between less and more mobile regions, and conclude that tailing may
occur in univariate log-Gaussian conductivity fields when conductivity variability is sufficient. Knudby and
Carrera [2005] provide some insights on the relationship between main features of solute transport and
structural properties of the medium through the concept of connectivity indicators. As a key flow connectiv-
ity indicator, which depends solely on the spatial distribution of hydraulic conductivity, these authors con-
sider the ratio between the critical path conductivity, KC, to the spatial geometric mean conductivity of the
system, KC being defined as the lowest value of conductivity along the critical path which is associated with
the highest value of minimum conductivity [Ambegaokar et al., 1971] (see section 1.4). Their numerical
results suggest that flow connectivity and transport indicators (the latter based on the ratio between the
average and early solute arrival times) enable identification of the connected paths in the system. The con-
cept of connectivity has also been explored in the context of multipoint geostatistics [e.g., Strebelle, 2002;
Huysmans and Dassargues, 2009; Mariethoz and Renard, 2010], but has not been linked in a clear and quanti-
tative manner to the features of transport typically observed in BTCs.

Willmann et al. [2008] use numerical investigations in two-dimensional random realizations of hydraulic con-
ductivity fields, under uniform (in the mean) flow, to explore conditions under which heterogeneity leads to
the power law tailing (non-Fickian behavior) observed in solute cross-sectional BTCs. These authors con-
clude that the origin of such behavior lies in the preferential flow paths that form, as evidenced in the spa-
tial distributions of concentration calculated within (statistically) nonstationary fields. Their results suggest
that the slope of the BTC observed within a single realization is insensitive to the (single realization, spatial)
variance of the conductivity field and depends on the connectivity of the system. On the other hand, the
conductivity variance influences the duration of the time interval within which the tailing behavior is visible.
Such behavior can be captured by effective one-dimensional models based on mass transfer between
mobile and immobile regions with memory functions. No theoretical or empirical relationships are provided
to quantify the dependence of effective parameters appearing in the memory function on heterogeneity
parameters (that can be inferred from measurements of hydraulic conductivity).

Tailing observed in cross-sectional or depth-averaged BTCs is shown to be reproducible in a Monte Carlo
(statistical) sense through an ADE-based formulation on the basis of a detailed knowledge of the geostatisti-
cal description of the spatial variability of hydrofacies distribution and associated attributes (hydraulic con-
ductivity and porosity) under diverse field settings [e.g., Salamon et al., 2007; Llopis-Albert and Capilla, 2009;
Riva et al., 2008, 2010].

1.4. Particle Tracking and Critical Path Analysis
Bianchi et al. [2011] investigate the relationship between connectivity and the occurrence of preferential
flow paths at the MADE site. Similarly to Riva et al. [2008, 2010], they start from core-scale estimates of
hydraulic conductivity based on particle size analysis curves and generate three-dimensional (conditional)
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realizations of conductivity fields by means of diverse geostatistical methods. Flow and transport (using par-
ticle tracking) are then simulated under permeameter-like conditions. Their numerical results show that the
first 5% of particles which arrive at the downstream domain boundary (or crossing-plane) are transported
through preferential flow paths which carry a significant fraction (about 40%) of the flow. A similar observa-
tion was made by Fiori and Jankovic [2012] who point out difficulties associated with obtaining field-scale
concentration measurements because there is a small probability that solute particles visit highly conduc-
tive blocks, especially in the presence of large conductivity variance. Bianchi et al. [2011] observe that the
fraction of particle paths falling within the high-conductivity regions ranges between 43% and 69% in their
simulations. Some of their simulated fastest paths occur through regions with low-conductivity values, sug-
gesting that transport connectivity may not require fully connected zones of relatively homogeneous
conductivity.

The analysis of preferential flow paths in heterogeneous media has also been performed through critical
path analysis [Ambegaokar et al., 1971; Kirkpatrick, 1971]. The latter has been linked, using percolation
theory scaling arguments, to anomalous transport and CTRW theory [Hunt et al., 2011; Ghanbarian-Alavijeh
et al., 2012; Sahimi, 2012]. These studies suggest parameter values that can be used in CTRW formulations,
which can then be employed to interpret laboratory and field observations.

1.5. Origins of Anomalous Transport
In this work, we focus on improving our understanding of the nature and key driver of non-Fickian transport
in randomly heterogeneous porous media. In this context, we explore by way of a suite of numerical simula-
tions the correspondence between quantitative metrics associated with such fields and parameters embed-
ded in the CTRW formulation. We show that these parameters can be interpreted as identifiable parameters
that can be estimated from measurements, with clear and profound physical meaning. Our simulations con-
sider spatially correlated hydraulic conductivity and velocity fields, their impact on non-Fickian transport,
and the way their key features can be incorporated within the CTRW formulation.

More specifically, we consider two-dimensional, fluid-saturated domains, generated from a lognormally dis-
tributed and spatially correlated hydraulic conductivity random field. The degree of system heterogeneity is
quantified by r2, the variance of ln(K). We determine the steady state uniform (in the mean) flow and the
transport of tracer particles through the domain, using a standard particle tracking technique. The transport
is characterized by BTCs, which quantify the arrival of an injected plume of particles at crossing planes
located at two distances from the domain inlet. BTCs obtained as averages over a collection of realizations
document anomalous transport. We identify the origins of anomalous transport in such domains, using an
analysis of the particle pathway statistics and particle interrogation of the low-conductivity regions. We
demonstrate clearly that the transport cannot be explained solely by the structural knowledge of the disor-
dered medium, in terms of the spatial arrangement of hydraulic conductivity blocks. By probing the
nuanced dynamic processes, we find that the basic determinant of the distribution of local transition times,
w(t), which defines the anomalous transport, is a conductivity histogram weighted by the particle flux.
Based on the statistical analysis of flux-weighted particle pathways, these findings are then related to geo-
statistical parameters governing the structure of the hydraulic conductivity field and to CTRW parameters.

Clearly, a very wide range of ‘‘permutations and combinations’’ of geostatistical parameters (e.g., mean and
variance of ln(K), correlation length, anisotropy ratio) and flow conditions (e.g., hydraulic head gradient,
boundary conditions, two-dimensional and three-dimensional systems) could be considered; they are linked
in multiple, complex ways to the overall transport dynamics and structural aspects. In the current study, we
focus on specific parameter combinations that enable us to focus deeply on the underlying dynamics and
develop, for the first time, a clear connection between CTRW parameters and physically defined quantities.

Studies of heterogeneous conductivity fields have shown that there are preferential pathways, and that the
low-conductivity regions contribute to anomalous transport. We examine these features in detail, so that
we can relate quantitative descriptions of BTCs to the interplay of the structure of the conductivity field and
the dynamics of the associated flow field. Precisely what is the direct connection between CTRW key param-
eters and the underlying description of the hydraulic conductivity field and the flow patterns? Can this con-
nection be determined strictly by metrics quantifying the structure of the disordered medium? How does
the full range of the low-conductivity regions (including ones that solute particles do not enter) play their
role? What is the spatial distribution of these key regions, especially in relation to the preferential pathways?
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Are they contained in the preferential pathways? Do these regions account for the power-law in w(t)? Does
the transport homogenize over the medium when it evolves to Fickian behavior and an ADE description? Is
critical path analysis a viable link between the heterogeneous structure of the conductivity field and solute
transport, as embodied in BTCs? Answering these questions represents our approach to discerning the ori-
gin of anomalous transport.

2. The CTRW Framework

We briefly review the basic CTRW formulation as considered in this current study; a detailed exposition of
the background and development is given in Berkowitz et al. [2006].

The CTRW continuum transport equation for the normalized concentration c(s, t) for an ensemble-averaged
system, in Laplace space, is

u~cðs; uÞ2c0ðsÞ52~MðuÞ½vw � r~cðs; uÞ2Dw : rr~cðs; uÞ� (1)

where ~MðuÞ � �tu~wðuÞ=½12~wðuÞ� is a memory function, �t is a characteristic time, w(t) is the probability rate
for a transition time t between sites, and �tvw and �tDw are, respectively, the first and second moments of
p(s), defined as the probability distribution of the length of the transitions (with s the position vector). The
Laplace transform of a function f(t) is denoted by ~f ðuÞ. In contrast to the classical advection-dispersion
equation (see below), the ‘‘transport velocity,’’ vw, is in principle distinct from the ‘‘average fluid velocity,’’ v.
Solutions of (1), to analyze solute BTCs, are readily available in Cortis and Berkowitz [2005].

A key feature of (1) is the choice of w(t). We employ here a functional form that has been particularly suc-
cessful in interpretations of a number of laboratory and field observations, namely, a truncated power law
(TPL) distribution of the site-to-site transition times which enables an evolution to Fickian behavior:

wðtÞ5 n
t1

exp ð2t=t2Þ=ð11t=t1Þ11b; (2)

where n � ðt1=t2Þ2b exp ð2t1=t2Þ=Cð2b; t1=t2Þ is a normalization factor (for large t2, n � b, see (37) and
Appendix B in Berkowitz et al. [2008]) and Cða; xÞ is the incomplete Gamma function [Abramowitz and Stegun,
1970]. Here we set the characteristic time �t , appearing in (1), equal to t1; this represents the onset of the power
law region. This form of w(t) behaves as a power law / ðt=t1Þ212b for transition times t1< t< t2. For t> t2, w(t)
decreases exponentially, so that a finite t2 enables smooth evolution from non-Fickian to Fickian transport.

Significantly, specifying a pure exponential form wðtÞ5kexp ð2ktÞ reduces the CTRW transport equation (1)
to the advection-dispersion equation (ADE), given in a general form:

@cðs; tÞ=@t52vðsÞ � rcðs; tÞ1r � ½DðsÞrcðs; tÞ� (3)

where v(s) is the velocity field and D(s) is the dispersion tensor.

The parameters appearing in w(t) can in some cases be derived from the physical structure of the system,
i.e., they are more than simple calibration/tuning quantities. The most important of these parameters is b,
and physical models exist for its exact determination [Pfister and Scher, 1978; Scher et al., 1991], as well as
for the entire w(t) [Scher and Lax, 1973]. One prime example is a multiple trapping model in a disordered
semiconductor, containing localized energy levels with an exponential distribution qðEÞ � exp ð2E=kT0Þ,
where T0 is the width of the energy distribution in temperature units (k is Boltzmann’s constant) and the
particle trap release rate has a Boltzmann activation form W0exp ð2E=kTÞ, where T is the temperature. The
exact determination is b 5 T/T0, which has been observed in experimental time-of-flight measurements in
amorphous semiconductors, molecularly doped polymers [Scher et al., 1991, and references therein]. This
result can have general application, e.g., for chemical absorption in a disordered medium, as long as the
absorption-site density varies as exp ð2E=kT0Þ.

Another exact derivation results from an ensemble average that has been obtained for the entire w(t) for a
particle hopping among a random distribution of sites (the so-called g function) [Scher and Lax, 1973]. The
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site density controls the disorder. This derivation of w(t), from a physical model, has become the prototype
form for w(t) for disordered systems, clearly showing power-law like behavior for sufficient disorder and a
cutoff; e.g., it is the basis for using the TPL (2).

The TPL has been used to determine b and t2, in conjunction with determination of the distribution of times
for, e.g., the North Sea field site [Di Donato and Blunt, 2004] and for a pore network model (see Berkowitz
et al. [2006] for more discussion). For the latter model, t2 was calculated from LDm/Pe [Bijeljic and Blunt,
2006], where Dm is the molecular diffusion coefficient, L is a characteristic length, and Pe is the P�eclet num-
ber. To date, it is the only linkage of t2 to parameters governing physical processes, except for an approxi-
mation to the g function.

3. Numerical Methods and Particle Tracking

Our numerical study considers a setting associated with uniform (in the mean) saturated flow within a two-
dimensional domain measuring 300 3 120 (all quantities are expressed in the same space-time units) dis-
cretized into grid cells of uniform size D 5 0.2. Permeameter-like boundary conditions are imposed, with a
deterministic head drop (5100) across the upstream (left) and downstream (right) boundaries, and no-flow
conditions along the two remaining boundaries of the domain. Values of ln(K) in each cell are set equal to
those generated at cell centers through a widely tested sequential Gaussian simulator (GCOSIM3D) [G�omez-
Hern�andez and Journel, 1993], with mean ln(K)5 0. We generate random realizations of statistically homoge-
neous and isotropic Gaussian fields of ln(K) associated with exponential covariance (see section 4.2 for a
typical realization). For this first study, we consider fields associated with a unit correlation length, ‘5 1,
exploring the impact of different values of the variance of ln(K), i.e., 3 � r2 � 7, on anomalous solute trans-
port behavior, as manifested in BTCs. As noted by Fogg [2010], values even as large as r2 5 10–15 are realis-
tic in natural geological formations. The combination of these values renders log-conductivity fields ranging
from mild to strongly heterogeneous conditions (in terms of their variogram sill) and enables us to (a) ana-
lyze transport within a region of the domain where the statistics of the underlying velocity field are not sig-
nificantly influenced by the imposed boundary conditions, as well as (b) consider large solute travel
distances relative to the log-conductivity correlation scale. We solve the corresponding deterministic flow
problem for each realization of ln(K) through the code of Guadagnini and Neuman [1999] which is based on
finite elements with Galerkin weighting functions. We obtain hydraulic head values throughout the domain,
which are then converted to local velocities, and thus streamlines. For the system considered here, we used
the representative porosity value h 5 0.3 [e.g., Levy and Berkowitz, 2003]. A detailed discussion of the con-
nection between correlations in individual realizations, the subsequent ensemble average, and CTRW is
given in Appendix A.

On the basis of these calculated streamlines, solute movement in each realization is modeled by a standard
Lagrangian particle tracking method, to generate the BTCs [e.g., Le Borgne et al., 2008; Bianchi et al., 2011].
The selected values of D and ‘ assure that D/‘< 5.0 for all scenarios examined, thus rendering an accurate
description of small-scale fluctuations of the generated ln(K) fields and advective transport features [e.g.,
Ababou et al., 1989; Riva et al., 2009, and references therein]. Particles are injected along the left boundary,
according to flux-weighting, and move by advection and diffusion. The displacement vector d for each par-
ticle is given by the Langevin equation, starting from a known location of the particles at time tk:

d5v xðtkÞ½ �dt1dD (4)

where v is the fluid velocity, dt is the time step magnitude, and dD denotes the diffusive displacement; n is
a N[0, 1] random number and the modulus of dD is n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dmdt
p

. A value of Dm 5 1025 cm2/s was chosen to
correspond to the diffusion coefficient of many ions in water [Domenico and Schwartz, 1990]. The velocity at
x is used to compute the advective displacement in (4). Local values of velocity are computed upon apply-
ing the methodology proposed by Cordes and Kinzelbach [1992]. A uniform spatial step, ds, is fixed along
each particle trajectory. The magnitude of the time step dt in (4) is calculated as dt 5 ds/v, v being the mod-
ulus of v. Reflection boundary conditions are imposed at no-flow boundaries. Preliminary numerical tests
confirmed that consideration of 105 particles provided representative results (i.e., simulations were per-
formed by increasing the number of particles tracked up to 106 and the results were qualitatively insensi-
tive), and that choosing ds 5 D/10 did not introduce significant numerical dispersion.
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Breakthrough curves are determined
by generating different realizations of
the heterogeneous domain, solving
for the fluid flow, and then tracking
solute particle migration. The BTCs
represent cross-sectional temporal
distributions of particles reaching dif-
ferent crossing planes, averaged
(cumulative) over 100 realizations.
Here BTCs are determined at two dis-
tances from the domain inlet, at the
domain midpoint and outlet (x 5 150,
300 length units, respectively), with a
head drop across the domain of 100.
One hundred simulations were per-
formed for each variance of log
hydraulic conductivity; the resulting
BTCs were averaged over the collec-
tion of realizations. Preliminary
numerical simulations confirmed that,
in the setting we consider, 100 real-
izations provide representative aver-
age values over a wide range of
relative particle concentrations.

4. Results and Discussion

4.1. Breakthrough Curves (BTCs)
We probe transport behavior in heter-
ogeneous systems by first detailing
systematics of the overall domain-

wide behavior. The BTC curve is a key measure of the cumulative response of all particle transitions that
comprise the transport within the domain. The determining ‘‘geometric’’ features are the value of r2, which
drives the heterogeneity, and the domain length and hydraulic head gradient, which contribute to the resi-
dence time. The mean BTCs obtained over 100 realizations are seen in Figure 1a, with r2 5 3,5,7, and fits
with 1-D solutions of the CTRW (using (2)) and the ADE. Evaluation of (1) with (2) is detailed in Berkowitz
et al. [2006]. The distinguishing feature is the broadness of the BTCs, which increases with increasing r2.
Overall, the CTRW effectively captures the tails as well as the peaks of the BTCs. Here the cutoff time t2 is
established by examining two BTCs (from x 5 150, 300 length units; see also Figure 1b), to capture the tran-
sition from non-Fickian to Fickian transport behavior. We note that the oscillations in the BTC tails are
caused by the formation of a limited set of preferential channels (see Figure 2), leading to variations in the
distribution of small numbers of particles arriving at the outlet; increasing the number of realizations and/or
particles moves the oscillations to even lower relative particle concentrations in the BTC tail.

It is to be emphasized that we are using the BTCs with the CTRW fits here to establish that transport via the
flow field in our setting results in anomalous transport. As discussed above there is a large and growing lit-
erature demonstrating quantitative accounting for a variety of data sets (e.g., BTCs) with the CTRW frame-
work. A key aspect of the w(t) determined in Figure 1 will be its relation directly to the statistics of particle
pathways.

The fitted values of b appearing in (2) show a clear trend to decrease (from 1.77 to 1.57) with increasing r2

(from 3 to 7), as expected. This emphasizes the physical meaning of b: it is a generalized dispersion parame-
ter that captures the entire shape of the BTC curve and not only a width of a normal curve (i.e., as opposed
to, for example, the effect of D(s) in the ADE (3)). Moreover, as expected, the value of Dw increases with
increasing r2. Below, we quantify the subtle interplay among the parameters b, t1, and t2, which determine
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Figure 1. Breakthrough curves (points) for three ln(K) variances (r2 5 3,5,7; 100 real-
izations each), (a) at the domain outlet (x 5 300 length units), and (b) at the domain
midpoint (x 5 150 length units), and corresponding CTRW fits (curves), with values
of vw, Dw, b, t1, t2 in (2) of, respectively, [6.0, 15.8, 1.77, 0.055, 101.6], [5.5, 46.7, 1.63,
0.04, 102.5], [3.8, 60, 1.57, 0.063, 103.0]. Also shown in Figure 1a is a fit of the
advection-dispersion equation (dashed-dotted curve), for r2 5 5 with v 5 3.4,
D 5 39. All values are in consistent, arbitrary length, and time units.
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the shape of (2), in terms of the parti-
cle paths. A ubiquitous feature of
transport induced by heterogeneity is
a power law that gives the correct
weighting of the particle transition
times, providing a slowly decreasing
access to a wide time base. The tail
includes those particles that encoun-
ter some relatively lower conductiv-
ities. These encounters are less
frequent events but have a large
effect on the arrival time. An impor-
tant question is: what part of the con-
ductivity spectrum yields the range
t1< t< t2?

Note that for the case r2 5 5, the ADE
solution deviates significantly from
the tail of the BTC. The ADE is fit with
two free parameters, namely velocity
v and dispersion D. Significantly, the
value of v 5 3.4 for the ADE fit does
not correspond well to the mean
effective velocity (51.1, calculated as
the ratio between the mean Darcy
flux and the porosity), nor to the
average fluid velocity �v55:6
(calculated as the average of the
average velocities determined for
each particle trajectory), in contrast to
the vw values in the CTRW fits. The
coincidence with �v is an important
constraint in the fitting parameters,
which captures the faster pathways;
the contribution to the tail emanates
from those particles that encounter
relatively lower conductivities (see
section 4.2).

In Figure 1b, for the same values of
r2, we show a comparison between
simulations and fitted CTRW BTCs,
determined at the midpoint along
the domain (x 5 150 length units);
compare to Figure 1a, corresponding
to BTCs at the domain outlet (x 5 300
length units). As before, the fit with a
TPL is good. The only change in the
TPL fits between these curves is the
time (i.e., all of the parameter values
vw, Dw, t1, t2, b are the same).
Although the extent of the power law
of the TPL does not change (fixed b),
the time window sampling the entire
shape of the TPL does change. The
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Figure 2. Spatial maps showing (a) full K field, (b) critical path analysis
(ln(K)<20.63), (c) particle paths, (d) preferential particle paths, defined as
paths through cells that each contain a visitation of a minimum of 100
particles (5 0.1% of the total number of particles in the domain), (e)
‘‘lower conductivity transition jumps’’ (see text). Note that the color bars
are in ln(K) scale for Figures 2a and 2b, and log10 number of particles for
Figures 2c–2e.
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larger residence time is closer to the cutoff time t2. Hence, two different dispersive BTC curves are fit with a
single TPL. The fits capture a subtle physical feature of the change in averaging over key particle trajectories
with residence time. How this happens will be discussed in section 4.2.

4.2. Path Analysis
In a heterogeneous porous medium, how much of the domain is actually interrogated by tracer particles as
they migrate through it? This seemingly innocuous question is key, and turns out to be rather complex. We
explore in Figure 2 the statistics of particle pathways. This analysis provides important clues as to how het-
erogeneity affects transport, more specifically the development of the dynamics of non-Fickian behavior,
and the onset of Fickian behavior, as evidenced in the BTCs discussed above.

Figure 2a shows the heterogeneity of the K-field with r2 5 5. The mean ln(K) is 0.26 with a 7 decade spread
in K over a statistically homogeneous map of this particular single realization. The lowest values of ln(K)
tend to appear as local patches with a concentric region (the size of which is governed by the field correla-
tion scale) of moderately low conductivity. We investigate how this map manifests the preferential path-
ways of the particles.

As a reference, Figure 2b shows a path constructed by excluding cells where the conductivity is lower than
a given threshold; the threshold value is lowered iteratively until a connected (percolation) path is formed.
This type of critical path analysis [Ambegaokar et al., 1971; Kirkpatrick, 1971] has been linked, using percola-
tion theory scaling arguments, to anomalous transport and CTRW theory [Hunt et al., 2011; Ghanbarian-Ala-
vijeh et al., 2012; Sahimi, 2012].

In Figure 2c, we superimpose on the full conductivity field (Figure 2a) the number of particles visiting each
cell. The striking feature that emerges is the occurrence of particle preferential pathways from inlet bound-
ary to outlet boundary, which are so dominant that the difference in particle visitation in various cells
ranges from 0% to 10% of the total number of particles in the simulation. The white areas in this figure,
where particles do not enter, have an effect on the surrounding areas, confining the preferential pathways
to converge between low conductivity areas.

Figure 2d shows a sparser set of preferential pathways than Figure 2c, generated by recording only those
cells which have been visited by at least 100 particles (i.e., at least 0.1% of all particles). The color contrasts
show an admixture of the higher conductivities in the paths, although low conductivity cells are still present
in the paths. Significantly, though, the particle flux is not spatially uniform across the domain cross sections,
as commonly envisaged for application of the advection-dispersion equation; rather, the flux is still, largely,
in limited preferential pathways. As noted in section 1, such behavior was reported by, e.g., Bianchi et al.
[2011], who found that some of the simulated fastest paths included regions with low conductivity values.

It is illuminating to observe deviations from the particle pathways defined by the critical path analysis. Fig-
ure 2e shows the ‘‘lower conductivity transitions’’—defined for convenience as cells with K values less than
the critical path threshold—taken from the paths shown in Figure 2c. Clearly, a critical path analysis is insuf-
ficient to predict or estimate the actual particle movement. Indeed, critical path analysis and percolation
scaling arguments, based entirely on the K field structure [Sahimi, 2012], do not include the significant influ-
ence of the transitions below the threshold and residence time effects. It is clear that low K links connect
and enhance the number and pattern of preferential pathways, so that, e.g., the tail of the BTC contains the
transits of particles through these lower K value regions. Moreover, as we show below, one must incorpo-
rate a particle-flux weighting of the K histogram to properly characterize the transport.

Finally, referring again to Figure 2c, and to the BTC fit by the ADE in Figure 1c, the question arises as to how
far particles must travel to eventually reach Fickian behavior. The flow becomes increasingly channeled
with distance from the inlet, at least over the domain length considered here. While one might expect that
the preferential pathways ‘‘dissipate’’ and achieve a more uniform flow pattern at some distance, we note
that this does not occur in our simulations. Instead, Fickian transport can arise from particle transport
through a limited number of preferential pathways, at long distances/times, and not necessarily because of
particle ‘‘homogenization’’ over the entire domain. Rather, the particle flux evolves with distance (or time),
and can be envisioned as incorporating a sufficient number of encounters (‘‘statistical homogeneity’’) to
yield a steady, relatively narrow range of dominant velocities (which can be described by a single parameter
D). The Fickian limit is reached by the cutoff time t2. However, in this limit the particle flux is not uniform
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spatially across the domain cross
section as commonly envisaged;
it is still largely in an augmented
preferential pathway region.

4.3. Weighted K Histogram and
CTRW
Two histograms are shown in Fig-
ure 3, together with a quantitative
measure of the particle transitions
in lower conductivity regions. One
histogram corresponds to the
conductivity field in Figure 2a,
while the other, which we desig-
nateHwðKÞ, derives from the
preferential pathways of Figure 2c
weighted by the particle visitation
in each cell. Note thatHwðKÞ
determined from weighted parti-
cle visitation only in cells lying
within the preferential pathways

shown in Figure 2d yields an essentially identical result; only 0.5% of the particles visit cells that do not lie on
these preferential pathways. The mean and skewness of the population associated withHwðKÞ are signifi-
cantly larger than those for the full K field (Figure 3). The mean value associated withHwðKÞ is a quantitative
measure of the particle selectivity of the higher conductivity cells. The fraction of the weighted conductivities
considered as lower conductivity transitions is 16.7%; recall that these transitions lie below the critical path
threshold. Hence, these lower conductivity transitions are significant, and as we show below, are responsible
for the long tail in the BTC. TheHwðKÞ in Figure 3 is obtained from one realization; averaging the weighted
mean over 100 realizations for the same r2 follows this pattern closely. Moreover, a similar behavior was
observed for a variety of realizations with different ln(K) variances (see below).

The observedHwðKÞ is the basic characterization of transport in our model. This is seen clearly by convert-
ing the ln(K) axis to time t. Based on Figure 3, for each ‘‘K-bin’’ withinHwðKÞ, we determined the hydraulic
head gradient (along the average flow direction) over each associated cell in the flow field, and obtained an
average hydraulic head gradient (weighted by the relative number of particles passing through these cells).
We then determined the average residence time in these associated cells, using Darcy’s law for flow,
Dt5hðDxÞ2=ðK	Dh	Þ, where h is porosity, Dh* is the weighted average hydraulic head difference, and K* is
the weighted average of the ‘‘K-bin’’. Note that modifying the value of h simply scales Dt. Determining these
average times for cells in all K-bins, we obtain a frequency (weighted by the number of particles) of particle
residence times in all cells in the domain. Dividing by Dt to normalize yields the probability density result
for 100 realizations, shown in Figure 4; the entire density is coincident with (2) using b 5 1.63. Significantly,
the b, t1 and t2 values of (2) used here are the same as those obtained by fitting the BTC in Figure 1 (r2 5 5).
Figure 4 is a juxtaposition of this determined w(t) andHwðKÞ. The statistical analysis of particle paths, which
renders the sample probability densityHwðKÞ, leads directly to the CTRW framework of the probability den-
sity w(t); indeed, they are the same.

By equating the logarithmic derivatives of both curves, we can develop an analytic expression for b in terms
ofHwðKÞ parameters. The points in Figure 4 are determined from the numericalHwðKÞ for each realization.
The K values in Figure 3 are matched by f 5nk exp ½2ðln K2lÞ2=ð2r2Þ�=t, where l is the mean ofHwðKÞ, and
the variance associated withHwðKÞ is �r2 (confirmed numerically); nk is a normalization constant. We com-
pute the logarithmic derivative dlog f=dlog t, and obtain (see Appendix B)

b5ðl2ln KÞ=r2 (5)

by equating it to 212b, i.e., to the log derivative of (2). This result has a slow time dependence for b, as can be
seen by the slight curvature appearing in the power law region in Figure 4. The value for b is determined near
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Figure 3. Conductivity histogram normalized by the number of cells (open circles), corre-
sponding to Figure 2a, with mean ln(K) of 0.26 and skewness of 0.03. Conductivity histo-
gram of the preferential particle paths (filled squares) (see Figure 2c), weighted and
normalized by the number of particles visiting in each conductivity cell, HwðKÞ; with
weighted mean of 1.43 and skewness is 3.89. Bars (denoted in red) indicate the frequency
of lower conductivity transitions (see Figure 2e) in the weighted histogram of the prefer-
ential particle paths.
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the end of the range of small ln(K)
(large time). Using representative
ensemble values (r2 5 5, l 5 1.5)
and choosing ln(K) 5 26.5 (the low
end (large time) of the lower con-
ductivity transitions in Figure 3)
yields b 5 1.6 (see Figure 1). The
range of detection for b (the
straight line region in Figure 4) is
determined between t1 and t2,
which corresponds to 26.5< ln(K)
<21 in Figure 3. Furthermore,
referring again to Figure 3, note
that the range of variance of
HwðKÞ is not necessarily identical
to that of the entire ln(K); these his-
tograms are plotted on a log scale,
for a specific realization, r2, and cor-
relation length. The skewness values
provide an indication of the true
disparity between the two plots.

A picture emerges from the path analysis of high particle flux through the preferential pathways, with
encounters of relatively low conductivities (aided by diffusion). The lower conductivity transitions with high-
est particle flux occur in or near the preferential pathways. The inclusion of these lower conductivity transi-
tions in the context of the preferential pathway template is sufficient to provide toHwðKÞ a power law
behavior of w(t); this is the origin of non-Fickian transport. It derives from a particular selection of lower con-
ductivity transitions—a reduced part of the spectrum. There is a subtle interplay, where the high-
conductivity part of each preferential pathway acts as a funnel into the lower part of the conductivity spec-
trum. An arrow demarks the start of the power law region t1< t< t2 of Figure 4; this region corresponds to
a ln(K) range �21 in the lower conductivity transition region (red bars in Figure 3). The role of the spatial
distribution of K is to set up the flow field, which forms the dynamical basis of the preferential pathways. It
is the range of lower conductivity transitions within this context that accounts for the anomalous transport,
as demonstrated here with the quantitative relationHwðKÞ $ wðtÞ. Note also, with regard to critical path
analysis, that the power law region lies below the critical path threshold. Indeed, many of the lower conduc-
tivity transitions are an integral part of the preferential pathways (recall Figure 2e).

5. Summary and Conclusions

We have quantitatively identified the origin of anomalous transport in a representative model of a heterogeneous
porous medium. We proceeded via two levels. In the first, we determined the BTCs, which document the anoma-
lous nature of the transport by the power law dependence of late times tails. The BTCs were fit with solutions of
the advection-dispersion equation and the CTRW transport equation (1) using the form (2) of w(t). The truncated
power law accounts for the full shape of the BTCs, with the b parameter decreasing with enhanced disorder
(larger r2) as expected. This w(t) hence serves as a characterization of anomalous transport. The CTRW accounts
for (velocity) correlations in each realization (recall Appendix A), which leads to a single w(t).

In the second level, we examined the nature of the particle pathways across the domain and established
the dominance of preferential pathways. We assessed the dynamic statistics of these paths by forming a
particle-visitation weighted histogramHwðKÞ. We showed that these paths were, mainly, linked high-
conductivity cells with an important, sparse mix of a relatively small number of lower conductivity transi-
tions. We converted the ln(K) dependence ofHwðKÞ into time and demonstrated the equivalence ofHwðKÞ
and the w(t) in (2). In effect, we show that one can derive (2) directly from the statistical analysis of the
actual particle pathways. We further pinpointed the range of the lower conductivity transitions as corre-
sponding to the power law region of (2) and derived a simple expression (5) for b in terms of r2 and l. Thus
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Figure 4. Particle-weighted conductivity histogram (r2 5 5) for 100 realizations (points),
based on histograms such as shown in Figure 3, yielding a particle transition time distri-
bution within cells, representing w(t) versus t. The solid curve shows (2) with b 5 1.63,
t1 5 0.04, and t2 5 102.5, identical to the values for the fit shown in Figure 1. The arrow is
at t1, the onset of the power law region t1< t< t2 corresponding to ln (K)<21. The
important part of the juxtaposition is the power law region; the small times t< t1 do not
influence the anomalous long-time tailing behavior of the BTCs.
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all the information associated with transport is contained inHwðKÞ—including all correlations in the transi-
tions—and directly yields the values of b as well as t2 in the CTRW framework. This is a remarkable result,
particularly given the nature of the K heterogeneity, the complexity of the flow field within each realization,
and the statistics of the particle transitions.

To conclude, the aim of this study was to understand and probe the physical role of different elements in
the CTRW equation and the interplay between them and the heterogeneity of the domain (quantified in
terms of (statistical) parameters describing the spatial distribution of hydraulic conductivity). The fundamen-
tal insights and conclusions of our study are:
� The ‘‘origin’’ of anomalous transport in geophysical and other porous media has been an outstand-

ing question for many years. We develop for the first time a direct connection between CTRW
parameters and the randomly heterogeneous hydraulic conductivity field, under uniform (in the
mean) flow conditions.

� We show that transport cannot be explained solely by the structural knowledge of the disordered
medium (i.e., dynamic/flow controls are critical factors). We point out the critical role of low-
conductivity transition zones in controlling transport patterns, and the nature of preferential flow
paths.

� We demonstrate that a basic determinant of the distribution of local transition times, which defines
the underlying transition time pdf used in the CTRW description of anomalous transport, is a con-
ductivity histogram weighted by the particle flux. We show why this transition time pdf arises, and
how to estimate the parameters of such probability distribution. The agreement between the simu-
lations, pdf parameters, and fits to the resulting BTC is convincing.

� We develop a quantitative relationship between the key parameter in the transition time pdf, i.e.,
the power law exponent b, and the statistics of the underlying (correlated) hydraulic conductivity
field.

� We identify the nature of transport (Fickian or anomalous) at a given observation scale by simply
solving the flow field and using particle tracking to obtain a weighted particle visitation histogram.
The computational effort is not unreasonable, and this point is critical for practical implications.

� We demonstrate that proposed models based on critical path analysis and percolation theory are
not applicable. Significantly, the power law region of the transition times that controls the anoma-
lous transport behavior lies below the critical path threshold.

� We highlight limitations of the oft-applied advection-dispersion equation showing that particle
plume convergence to this model is not due to ‘‘homogenization’’ of the plume sampling in the
domain, but rather to focusing of flow in a limited number of relatively uniform preferential
pathways.

Finally, as noted in section 1, many geostatistical parameters and flow conditions are intimately linked, in
terms of their effects on overall transport behavior. With the results presented here, which focused on specific
parameter combinations, future studies will be directed to systematic and extensive analyses that consider,
for a range of values of r2, variability in (i) correlation length, (ii) hydraulic gradient across the domain (also to
more fully examine the role of diffusion and possible relevance of the P�eclet number for characterization, and
(iii) longer times (to further delineate the transition to Fickian behavior and the evolution of preferential path-
ways). Such analyses may facilitate further refinement of a quantitative relation between b and r2, and quanti-
fication of theHwðKÞ $ wðtÞ relationship as a function of r2 and the transition to Fickian behavior.

Furthermore, in the above context, it should be recognized that the occurrence of preferential pathways
has a major influence on reactive transport processes, where local variations in reactant concentrations lead
to significant spatial variations in formation of the reaction products. The use of BTCs to establish parame-
ters for conservative species, for example, in laboratory experiments, is in general not sufficient for analysis
of a reactive transport system because such measurements do not provide detailed information on the flow
patterns that determine the amount of reaction. This remains the subject of future investigations.

Appendix A: Correlations in the CTRW Framework

The essential feature of applying the CTRW to a diffusive or an advective-diffusive transport problem is the
determination of the ensemble average of a form of the Master equation over realizations of the system.
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The result of the ensemble average is w(s, t), the basic pdf governing the random walk. The ensemble aver-
age hence converts a transport problem in a heterogeneous system to one with statistical homogeneity,
with a single density function w(s, t), i.e., it is a measure of the weighted full spectrum of all the local transi-
tions in the system.

If the consistent result is a single pdf, then how can one account for correlations in the motion along a path-
way, in which a transition depends on the previous one? The correlations must be introduced in each real-
ization of the system and thus incorporated into the single w(s, t). Such a procedure can be followed with
our model, where a correlation length ‘ is specified for the examined K-fields. The natural transition of par-
ticles in this system is based on the displacement and transit time associated with a change in velocity (due
to a change in conductivity). An increase in ‘ tends to increase the displacement for a velocity change and
can be accommodated in w(s, t), as will be shown in a future study.

We can explicitly relate the introduction of correlations in each realization to the subsequent ensemble average
[Curtin and Scher, 1988]. We consider again the (above) model of a particle hopping among a random distribu-
tion of sites, which presents a clear model for anomalous diffusion. The transition rate wðrn2rn0 Þ between sites
depends only on the distance rn2rn0 between sites n; n0. The probability Pðrn; tÞð� PnðtÞÞ that the particle is at
site rn can be determined by solution of the Master equation with initial condition Pnð0Þ5dn;0:

dPnðtÞ
dt

5
X
n0 6¼n

wnn0Pn0 ðtÞ2CnPnðtÞ; (A1)

where Cn5
P

n0 6¼n wn’n. The solution involves the inversion of a N 3 N matrix, where N is the total number of
sites ðN 
 1Þ. We choose to limit the size of the matrix and consider a small finite cluster of sites. All of the
transitions (back-and-forth) are retained as well, through Cn, representing the hops from each cluster site to
all the other (background) sites in the system. This is called the cluster approximation. In this solution, the
details of which are given in the following paragraph, one includes all the dynamics and correlations within
the cluster, and yet the background remains as a sink.

The calculation of the probability Pðrn; tÞð� PnðtÞÞ that a particle is at site rn starts with solving the Master
equation (with initial condition Pnð0Þ5dn;0):

dPnðtÞ
dt

5
X
n0 6¼n

wnn0Pn0 ðtÞ2CnPnðtÞ; (A2)

where Cn5
P

n0 6¼n wn’n. We simplify the notation wðrn2rn0 Þ � wnn0 . Taking the Laplace transform of (A1),
with LðPnðtÞÞ5PnðuÞ and adding wnnPnðuÞ to both sides we obtain the matrix equation

PnðuÞ5ðu1CnÞ21
X

n0
wnn0Pn0 ðuÞ1ðu1CnÞ21dn;n0 : (A3)

The size of the matrix is N 3 N, where N is the total number of sites ðN 
 1Þ. We apply a cluster approxima-
tion to the solution of (A3). In this solution, one includes all the dynamics and correlations within the cluster,
and yet the background sites remains as a sink. We illustrate with the two-site cluster 1ð5n0Þ; 2: solve the
matrix equation, expand the denominators, invert the Laplace transform, and sum the series to obtain

P1ðtÞ5exp ð2C1tÞ1
ðt

0
ds exp ð2C1s2C2ðt2sÞÞ (A4)

3½w12w21s
t2s

�
1
2 I1ðrÞ;

P2ðtÞ5
ðt

0
ds exp ð2C1s2C2ðt2sÞÞw21I0ðrÞ (A5)

where r � ½w12w21sðt2sÞ�
1
2 and I0, I1 are modified Bessel functions of the first kind. The ensemble

average of the time derivative of the first term of P1(t) is the g function [Scher and Lax, 1973]
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mentioned above. The appearance of the C-functions, which contain all of the coupling to the
background sites, in the exponentials, occurs for all size clusters. The exact ensemble average of
the cluster forms are carried out in two stages, the first over the configuration of background sites
and the next over the geometry within the cluster. The function hhP0ðtÞii (simplified to P0(t)) con-
tains these two averages and is plotted in Figures 1 and 2 in Curtin and Scher [1988] in comparison
to an exact simulation. These plots clearly show a systematic improvement with increasing compact
cluster size.

Based on the above, the main result (Figures 1 and 2 in Curtin and Scher [1988]) shows hP0ðtÞi, for an
exact ensemble average and for different cluster sizes, in comparison to an exact simulation. The size
of the cluster modifies the time to remain on the initial site and improves the agreement with the
exact simulation. The pdf –w(t) is the time derivative of hP0ðtÞi (see (11) in Scher and Lax [1973]).
Hence, correlations in every realization of the system can be incorporated into the ensemble average
determining the density function w(t). The CTRW utilization of the cluster-size dependent w(t) will be
contained in a future study.

Appendix B: Equation (5) Derivation

The weighted histogramHwðKÞ is interpreted by a probability density, which is then converted to time
using K	5hDx2=ðDh	DtÞ, with the understanding that the time associated with each K* is the average
transit time across a ‘‘K-bin.’’

The K values in Figure 3 can be plotted as

f 5nk
exp ð2ðln K2lÞ2=2r2Þ

t
(B1)

where l is the mean ofHwðKÞ and the variance ofHwðKÞ is �r2; nk is a normalization constant.

We compute the logarithmic derivative of (B1), dlog f=dlog t. First, we have

log f 5log nk1
2ðln K2lÞ2

2r2
log ðeÞ2log t: (B2)

Then

dlog f=dlog t5
ðln K2lÞ

r2
log ðeÞ ln ð10Þ21 (B3)

so that

dlog f=dlog t5
ðln K2lÞ

r2 21 (B4)

because

log ðeÞ ln ð10Þ51: (B5)

The above is equated to 212b, the log derivative of the truncated power law (2), in the power law region,
to obtain (5) in the text.

The result in (5) has a slow time dependence for b, implicit in K (which is weighted by particle visi-
tations, with times then determined by Darcy’s law). In Figure 4, there is some curvature in the
power law region. The value for b is determined near the end of the range of small ln (K) (large
time).
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