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Abstract

Accurate dynamic modelling of helicopter aeromechanit@tming increasingly important, as pro-
gressively stringent requirements are being imposed amaatft control systems. System identification
plays an important role as an effective approach to the pmlif deriving or fine tuning mathemati-
cal models for purposes such as handling qualities assassmeé control system design. In this paper
the problem of deriving continuous-time models for the dyiws of a small-scale quadrotor helicopter
is considered. More precisely, the continuous-time ptedibased subspace identification approach is
adopted and the results obtained in an experimental stedyrasented and discussed.

1 Introduction

The quadrotor architecture is a very popular one for the ldpweent of rotorcraft UAV platforms (see,
e.g, [CLDO05, BBS07] and the references therein), in view of @gdrable dynamic characteristics (see
[DSL09]): indeed, although they are frequently open-loaystable, like most rotorcraft architectures,
guadrotors exhibit a good degree of decoupling},(unlike conventional helicopters, acting on one of the
controls essentially affects the corresponding degregeefifiom only) which makes them easier to control.
As discussed ine.g, [HMLOO02, PM09, MK12] and the references therein, mathétaatmodels for the
dynamics of quadrotors are easy to establish as far the latiesrand dynamics of linear and angular mo-
tion are concerned. In fact a significant portion of the étare dealing with quadrotor control is based on
such models, probably also because of the elegant matteaatthods which can be deployed to design
feedback controller on this basis. Unfortunately, chamasing aerodynamic effects and additional dynam-
ics such asg.qg, the response of the controlled speed of the individuakrspis far from trivial, and has led
to the development of many approaches to the experimeraedcterisation of the dynamic response of the

guadrotor. Broadly speaking, two classes of methods towihalthis problem can be defined. The first
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class of methods is based on the calibration of the parameteletailed physical models, see for example
[KTO4, DMBO06]. The second class of methods is based on a Hhackidentification approach and as such
aims at extracting the information about the dynamics ofsiystem directly (and solely) from measured
input-output data (see for example [LCMKO02, KCL06, HOBMpS8Ylote, in passing, that system identifi-
cation has been known for a long time as a viable approachetde¢hvation of control-oriented dynamic
models in the rotorcraft field (see for example the surveyepfk97], the recent books [TR06, Jat06] and
the references therein). Black-box identification of rotaft models leads to very specific requirements for
identification methods: it is customary to work with contirus-time models, so that dedicated identifica-
tion methods are needed; most rotorcraft vehicles are tpgmunstable, so that methods for closed-loop
identification are desirable; data is collected in separgperiments for each input channel, so the capabil-
ity to handle separate datasets is important; finally, teatification problem is a multivariable one. To our
best knowledge, none of the above cited references prom@disods compliant with all the above listed
requirements.

In the system identification literature, on the other hame, @f the main novelties of the last two decades
has been the development of Subspace Model Identificatidih) (8ethods (seeg.g, [VODM96, VV07]),
which have proved extremely successful in dealing with #tareation of state space models for multiple-
input, multiple output (MIMO) systems. Surprisingly endyaintil recently these methods have received
limited attention from the rotorcraft community, with tharfial exception of some contributions such as
[VV94, BL97, Lov03]), which however rely on SMI methods assing open-loop operation. SMI methods
are particularly well suited for rotorcraft problems, fonamber of reasons. First of all, the subspace
approach can deal in a very natural way with MIMO problemsddition, all the operations performed by
subspace algorithms can be implemented with numericallylestand efficient tools from numerical linear
algebra. Finally, information from separate data setsh(ssogenerated during different flight experiments)
can be merged in a very simple way into a single state spacelni®ecently, see [LI11], the interest in SMI
for helicopter model identification has been somewhat exViand the performance of subspace methods
has been demonstrated on flight test data. However, so famwmethods and tools which go back 10 to 15
years in the SMI literature (such as the MOESP algorithm @fP4]) have been considered. Therefore,
the further potential benefits offered by the latest develepts in the field have not been fully exploited.
Among other things, present-day approaches can providssd model estimates from data generated

during closed-loop operation, as is frequently the casejeements for rotorcraft identification because



of open-loop instability (sees.g, [CP05, Chi07, HDQO5]) and the direct estimation of contins-time
models from (possibly non-uniformly) sampled input-outgata (see [BL11b] and the references therein).

In view of the above discussion, the aim of this paper is to aestrate by means of the experimen-
tal case study of a small-scale quadrotor helicopter thdicgiyility of state-of-the-art SMI methods to
the identification of rotorcraft flight dynamics. More preely (see also the preliminary results presented
in [BL11a, SBL12]), the continuous-time predictor-basetbspace identification approach proposed in
[BL11b] is applied to flight data collected during dedicatgentification experiments and a model for the
hovering quadrotor is derived. Particular emphasis isqdam the analysis of the uncertainty associated
with the identified model, both in the frequency domain andhia time domain, which provides useful
information in a control design perspective. To this pugdke bootstrap approach to uncertainty analy-
sis first proposed in [BLOO] for discrete-time SMI is extedde the continuous-time case and applied to
the quadrotor problem. To the best knowledge of the Authussis the first contribution considering the
application of a closed-loop identification method to thentification of a rotorcraft system and providing
a detailed analysis of model uncertainty associated wigintflexperiments, with specific reference to the
issues arising because of closed-loop operation.

The paper is organised as follows. Section 2 provides sorolegbaund on the model identification
technique considered in this paper and on the problem ofsissemodel uncertainty associated with the
identified models. The experimental setup considered mghper, as well as the approach followed in
the identification and validation experiments are preskiteSection 3. Finally, the results obtained in
the estimation of linear models for the hovering quadrotat & the analysis of their characteristics are

presented in Section 4.

2 Approach

2.1 Requirements for quadrotor model identification

The identification of rotorcraft flight dynamics poses a nemdif challenges, which in turn give rise to very
specific requirements in the choice of a suitable methodt Birall, in the rotorcraft community (and, in
general, in aerospace applications) it is customary to wottk continuous-time models rather than with
discrete-time ones, mainly because they are more intuiivehat identification methods for continuous-
time models are needed. In addition, rotorcraft systems terbe open-loop unstable (in this respect the

qguadrotor is no exception and is quite representative habidentification experiments have to be carried



out in closed-loop, either under feedback from a human ¢pem under automatic control (see.g,
[TRO6] for a detailed discussion of the pros and cons of the @approaches), and a model identification
method capable of providing unbiased estimates of the dpgmedynamics from data collected in closed-
loop would be preferable. Furthermore, in view of both therpnop instability and the complexity of some
piloting tasks, data for identification are frequently ectied in separate experiments in which each input
channelis excited separately. The capability to handliéeash separate datasets in a single identification
procedure is therefore desirable. Finally, even taking &mtcount the fact that for a quadrotor the individual
axes can be identified separately, the identification prolskmains a multivariable one as typically more
than one output variable per axis must be considered.

All the above discussed requirements have led to the chéite@dopted approach, as detailed in the

following Section.
2.2 Continuous-time predictor-based subspace model idefitation

As is well known, SMI methods offer a simple way of dealingtwihultivariable identification problems,
so they can take into account the last of the requiremen¢sllia the previous Section. Similarly, dealing
with data collected in multiple experiments is quite naltimathe SMI framework as information from
data is encoded in the form of algebraic equations (the Bedcdata equations), which can be stacked
alongside each other regardless of the number of experinrenthich the data have been collected. As
for, respectively, the requirement to provide unbiasedreges from closed-loop data and the need for
continuous-time models, the two issues have been tackfedaely in a number of publications (seqy,
[LM96, CV97, CPO5, Chi07, HDQO5] for closed-loop SMI and [J99, Hav01, OKY02, OK04, MOGGO08]
for continuous-time SMI) and more recently in a unified ageto(see [BL11b]). In view of this discussion,
the method proposed in the last cited reference has beenealiagp short overview of the key ideas is
provided in the following.

Consider the linear, time-invariant continuous-time syrst

dx(t) = Ax(t)dt+ Bu(t)dt+dw(t), x(0) = xo
dz(t) = Cx(t)dt+ Du(t)dt+ dwv(t) 1)

y(t)dt = datt)

wherex € R", ue RMandy € RP are, respectively, the state, input and output vectorswaa®"” andv € RP



are the process and the measurement noise, respectivalglletbas Wiener processes with incremental

c{[ae] (0]} -8 o

The system matriced, B, C and D, of appropriate dimensions, are such thatC) is observable and

covariance given by

(A,[B,QY?)) is controllable. Assume that a datagett;),y(t)}, i € [1,N] of sampled input/output data
(possibly associated with a non equidistant sequence oplgagninstants) obtained from system (1) is
available. Then, the problem is to provide a consistentredg of the state space matrig®sB, C andD
(up to a similarity transformation) on the basis of the aalali data. Note that unlike most identification
techniques, in this setting incorrelation betweeandw,v is not required, so that this approach is viable
also for systems operating under feedback.

Consider the family of Laguerre filters, defined as

A(9) = Jaals=a) @)

(S+ a>i+l
and denote with;(t) the impulse response of thi¢h Laguerre filter. Then, it can be shown that the set
{lo,01,...,4i,...} is an orthonormal basis a¥»(0,»). The continuous-time algorithm employed in this
paper is based on the results first presented in [OK04, Oht0fs] further expanded in [KO10, Ohtlla,
Oht11b], which allow to obtain a discrete-time equivalemidal starting from the continuous-time system
(1), along the following lines. Under the stated assumgtisgstem (1) can be written in innovation form

as

dx(t) = Ax(t)dt -+ Bu(t)dt + Kde(t)
dZt) = Cx(t)dt+ Du(t)dt+ de(t) 3)

y(t)dt = dzt).

Considering now the sequence of sampling instanits= 1, ..., N, the inputu, the outputy and the innova-

tion e of (3) are subjected to the transformations

Gi(k) = /Oooék(r)u(ti—i—r)dr, Gi(k) = /:Ek(r)y(ti—irr)dr, &(K) = /oooék(r)de(ti+r)dr )

whereti(k) € R™, & (k) € RP andyj(k) € RP. Then the transformed system has the state space representa



tion

&i(k+ 1) = Aodi(K) + Bolii (k) + Ko (K), & (0) = X(ti)

Yi(K) = Coéi (K) + Dot (K) + & (k) )
where the state space matrices are given by

Ao=(A—al)"Y(A+al), B,=+2a(A—al)™'B, K,=+2aA—al)"K (6)

Co=—v2aC(A—al)™!, D,=D-C(A—al)'B.

From this point on, one can turn to the problem of estimafiggB,, C, and Dy in the discrete-time
model (5), which is dona fidediscrete model identification problem (even though inkldees not refer to
time sampling but rather to projection orgt)), to which SMI algorithms for discrete-time identification
can be applied. Once estimates fy, B,, C, and D, have been worked out, it is possible to recover
estimates for the continuous-time state space mathd8sC andD by inverting the bilinear (and, therefore,
well posed) transformations (6). In view of the requirenterdperate with data generated under feedback,
the discrete-time PBSI{): SMI method proposed in [Chi07] is employed for the estimatdA,, By, Co
andD,, which can guarantee unbiasedness of the estimates evertiehieputu and the noise processes
andv are correlated. A detailed description of the algorithmnstted for brevity, the interested reader can
check either [BL11b] for a complete presentation of the twus-time version of PBSIg): or [Chi07]

for the original discrete-time formulation.
2.3 Quantifying model uncertainty: a bootstrap-based appoach

For the purpose of control design it is desirable to haverin&gion about the reliability of the identified
model. In this Section a procedure for the evaluation of theettainty associated with the frequency re-
sponse of the estimated models is proposed. The statistimalve will resort to is the bootstrap method
[ET93, ST95], along the lines of the results in [BLOO]. Theokstrap is a computational statistical method
which was originally introduced to solve the following ptein ([ET93, ST95]): given a random, indepen-
dent, identically distributed (i.i.d.) sampie= (X1, X2, ...,%n) drawn from an unknown distributio, one
computes an estimateof the parametef = t(F) = t[x] on the basis of the available data, and would like
to assess the accuracy of the obtained estimate, in terrtssstndard deviation or its variance.

Various approaches have been proposed to apply the bgofetr&ariance estimation in time series

analysis ([ST95]), signal processing ([Sha98]) and systemtification ([BLOO, TL02]).



For the present purposes and with reference to the problavatdtfiating the standard deviation for the
frequency response of the estimated model, the method d$tbapping residuals can be synthesized as

follows:

estimate for the points of interest of its frequency resp@(&j ox), k=1,...,N.
2. Compute the optimal prediction error for the identifieddalo
e(t) = y(t) - 9(t). @)
3. Obtain an estimate. for the distributiorF of the prediction error. In this work a parametric estimate
will be considered and the normality assumption for theritigtion of the residual will be made.

4. Generat® replicationsu*¥), y*()) i = 1,...,B of the original data se,y), with u*() = u andy*()

stochastic inpue*®, i = 1,... B wheree*() is constructed by resampling (with replacement) from

the distribution.

5. EstimateB replications of the identified model and of the points of it for the frequency response

GW(jw), k=1,...,N.

6. The estimate of the standard error for the frequency respof the model is finally given by:

R 1 B

O'é(ij) = ﬁ(lz(é*(l)“%) — é*(lasz)% (8)
where
3 (] Lo &
G'(ja) = E_;G (jax)- 9)

In a similar way one can obtain estimates of the standarctenifor the poles and zeros of the estimated

model.
3 Identification-oriented quadrotor flight testing

The aim of this Section is to provide some information abbateéxperimental set-up used in this study and
a description of the identification and validation expenitsevhich have been carried out to characterise the

dynamic response of the hovering Mikrokopter. In the follagwve will refer to the body coordinate frame



attached to the quadrotor and defined according to FigurbelXg axis is aligned with the longitudinal

axis, pointing forward).

Uped

Ucol

Ulon

Ulat /
XB7 aX

Figure 1: Definition of the control inputs (left) and of thedyoreference frame and measured outputs
(right).

3.1 The experimental setup

The quadrotor used in this work is a modified version of thergklopter platform, an open source project
developed and distributed by HiSystems GmbH (Germany) Mikeokopter consists of a frame composed
by four tubes held together by a metal cross as shown in FRyuséth the four motors placed at the end of

the tubes. The onboard electronics are piled up at the cehthe cross in order to maintain a symmetric

Figure 2: The Mikrokopter quadrotor used in this study.

mass distribution. The size of the quadrotor is approxiiyatd x 45 x 20 cm and its mass is about 1

kg (with battery). The quadrotor is powered with a Lithiuoripolymer battery (11 V, 2200 mAh) that



guarantees an autonomy of about 15 minutes. The originarmipsovides three electronic boards:

Flight-Ctrl It is the main board of the quadrotor. It includes the AVR Alr@ebit microcontroller (20
MHz), a set of three MEMS accelerometers and a set of threesggpes. This board is the flight
controller, indeed it uses the measurements of the sensdthia command inputs taken through the
receiver to set the motors speed rates in the proper way. @ifgoss outputs are sampled using the

internal ADC with a 10 bits resolution.

BL-Ctrl (x4) It is the driver of the motor. The microcontroller mountedtbris board is an AVR Atmel
8-bit (8MHz) and it is dedicated to the generation of the PWihal in order to control the motor
angular rate according to the set-point communicated tifrdhbe Inter Integrated Circuit3C) bus

by the Flight-Ctrl board. It is able to provide upto 5 Aat 15 V.

Navi-Ctrl Itis dedicated to record the flight data. This board mount&\dr Atmel 16-bit microcontroller

(25 MHz) and it communicates with the Flight-Ctrl througle tBerial Peripherical Interfac&pl).

The original firmware has been modified in order to genergtatisequences for the identification and to
obtain flight data at a sampling frequency of 100 Hz. This d&&tored in a microSD card during flight

and downloaded for processing after landing.
3.2 Input-output variables selection

In view of identifying a model of the hovering quadrotor favntrol design, in this paper the variables
considered as inputs and outputs are the ones commonlysponding to control and measured variables
in a typical quadrotor control architecture.

Concerning the inputs, quadrotors are mostly (though ndusively) controlled by varying the angular
rates of the four rotors. However, it is well known that thecks and moments generated by the rotors are
guadratic functions of the rotors angular rates (geg, [CLDO05]), so adopting the rotor angular rates as
inputs for the model would entail both a strong nonlineairityhe equations (due to the quadratic depen-
dence) and a strong coupling between the inputs and thenesjpdthe individual axes (as the angular rates
of the four rotors are always varied simultaneously, relgasiof which degree of freedom of the quadrotor
is to be controlled). To avoid these difficulties, a chang®asfables is usually adopted in the literature

on quadrotor modelling and control to define control inpuksolr enter linearly the equations of motion,



namely
Qf+ Q5+ Q3+ Q3
u= [Ucol Uon Uat UpecﬂT = gg_ g§ )
374
Q3+Q2-0Q2-Q3
whereQ;, i = 1,...,4 are the angular rates of the four rotors. Up to a scale fagtgr(wherecol stands
for collective) can be interpreted as a force along the e@rthody axis and is therefore the control input
used to control the vertical motion of the quadrotor (see Blgure 1). Similarlyyjat, Uion @ndupeq can be
interpreted as, respectively, a rolling, pitching and yayinoment around the body axes and therefore can
be used to control the three attitude degrees of freedmraténding for lateralon for longitudinal ancped
for pedal, in analogy with the rotorcraft literature). Wtttely,uon, anduyy also control the longitudinal
and lateral motion of the quadrotor (see, again, Figure 1@hB®05] for details).
The output vector, on the other hand, includes the measuntsrpeovided by the available inertial sen-
sors,i.e, y= [ax ay a; p ¢ r]T, whereay, ay anda; are the measurements of the components of
the acceleration of the quadrotor along the three body axeép,aq andr are, respectively, the measure-

ments of the components of the quadrotor’s angular rategegpd in the body frame according to the sign

conventions depicted in Figure 1.
3.3 Identification experiments

The problem of defining suitable approaches to the expeteahtasting of a rotorcraft platform has been
studied extensively in the literature of piloted rotortrake for example [HK97, TR06]. The key aspect
when planning the class of inputs to be applied to the velsttee domain in which data will be processed in
the identification procedure. Indeed, for frequency-damagproaches such as the ones proposed in [TR06]
periodic excitation is desirable g, frequency sweeps, so as to minimise leakage in the conputait
frequency spectra). For time-domain identification, ondbetrary, this requirement is not necessary so it
is possible to employ input sequences which can excite albvayaye of frequencies in shorter experiments
than swept sines or multi-sines. Concerning the execufimfeatification experiments in flight, they can be
carried out either manually, with the pilot exciting the dymics of the helicopter using the remote control,
or automatically, by implementing on-board functions togete the input sequences for the experiments.
In the case of a small-scale helicopter, manual excitatiorot sufficiently fast, so an automatic command
generation function has been implemented.

In view of the application of the time-domain identificatimethod described in Section 2, the input sig-

10



nal adopted for identification experiments is the so-ca2til piece-wise constant sequence. The numbers
used in the designation refer to the relative time interialsveen control reversals, see as an example the
top part of Figure 3 where a double 3211 sequence is depigtediscussed in [HK97], this input sequence,
developed at the German Aerospace Center DLR for flight dyecstesting, excites a wide frequency band
within a short time period, so it is also suited for modenateistable systems. Guidelines for the design of
3211 sequences can be derived by the analytical computstibe spectrum of the sequence as a function
of its duration. Details can be found ia.,g, [KMO06], where it is recommended to select the duration ef th
second (2) step as half the period of the expected dominadembthe response to be identified. As it is
known from prior knowledge and time-domain analysis of cfmap responses that the dominant dynamics
of the quadrotori(e., the pitch and roll responses) is located in the frequenaoyado at about 5 rad/s, this
guideline led to a choice for the duration of the first (3) s8€p.9 seconds, which is also close to the max-
imum operable on a quadrotor without it flying too far awaynfrtsim. Furthermore, the amplitude of the
steps has been chosen to achieve a satisfactory tradea#drethe conflicting requirements of ensuring
that attitude changes during the experiments remain léhdted of achieving a satisfactory signal-to-noise
ratio in the measured outputs. Asymmetry between the amdglibf positive and negative steps has been
also introduced, to obtain tests ending with almost nulbeiy (see the top panel of Figure 3). For the
identification phase multiple datasets have been usede ttoable 3211s (the 3211 maneuver has been
repeated to collect more data) for an overall duration ofeximately 20 seconds. For the cross-validation
phaseite., the choice of the model order as well as of the tuning pararaébr the identification algorithm)

a double 3211 has been used for a duration of approximatelegonds.

Finally, the input signal used for the validation test is a&catied doubleti.e., a sequence of two opposite
steps of equal duration and amplitude. More precisely, ®dowith a duration of approximately 4 seconds
has been used. All the data has been filtered with a lowpassiith a cutoff frequency of 5 Hz.

It is important to point out that while experiments exciting, have been carried out in open-loop, the
identification of the response to the other control inputstieen carried out using closed-loop data because
of the open-loop unstable nature of the platform under stNidye, however, that the identification method
considered in this study (see Section 2) can provide unthiasémates of the dynamics of the system

regardless of the input/output correlation introduceddsdback control.

11



4 Experimental results

4.1 Time-domain data

As an illustrative example of the collected flight data, igltie 3 the response of the vertical acceleration
to a double 3211 applied ta.o is shown (the input command is expressed in terms of pergembthe

trim value). As can be seen from the time history of the inpWEigure 3, the actual input sequence applied

Collective Command - [%]

Vertical Acceleration - [g]

Figure 3: Example of identification data. Top: ideal (gregfaeal (black) 3211 collective excitation;
bottom: response of vertical acceleration.

by the on-board electronics is not exactly equal to the ddsine, still the (double) 3211 profile is clearly
visible. Figure 4, on the other hand, shows the time hissasfeall the measured outputs during the same
experiment, to motivate the choice of developing uncoupiedels for individual DOFs of the quadrotor.
Indeed, it is apparent from the figure that the excitationgf has a significant effect only on the vertical
acceleration, while all the other outputs are essentialbffected. Similar considerations can be made for
the other input variables - the details have been omittetfevity. Finally, correlation analyses between
inputs and outputs have been used to assess the possi@agerex delays in the quadrotor’s response.

Unlike what occurs typically in full scale helicopters, trdelays in this case are negligible.
4.2 Identification of uncoupled models for the individual DOFs

Both model order and the tuning parameters of the identificaigorithm (.e., the position of the Laguerre

polea and the parameters of the PBSpalgorithm) have been selected using a cross-validatioroagp.

12
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Figure 4: Response of measured variable to 3211 colleckgigation. Left: pitch and roll rates; right:
acceleration components.

Input Model orderif) Laguerre poled)
Collective 3 16
Pedal 3 16
Longitudinal 3 21
Lateral 3 15

Table 1: Selected tuning parameters of the algorithm foid@etification of each model.

More precisely, as is the case with all SMI algorithms, theich of model order can be based on the
inspection of the singular values of the estimated stateessze for the identified model, while the selection
of a and of the parameters of the PBg}palgorithm has been carried out by checking the norm of the
simulation error over the cross-validation dataset. Thslte of this step are shown in Table 1 for the
model order and the position of the Laguerre pml&efore the validation step, the identified models have
been simplified by removing zeros occurring at frequenciel above the excitation bandwidth. For the

sake of completeness, the identified models are reportedtter in equations (10)-(13).

a 1.2498s+0.3451)

= — = 1
CeallS) = 4 = (57 16.49)(s+ 5.309 (5+ 1.933 (10)
Gyanls) = _r_ 0.077646s+5.475)(s—0.2086) (11)
YA Uped  (S+11.03)(s?+0.283&+ 0.06947)

q 0.220165+0.2579 (s—0.2596
Uon (s+1.865)(s>—1.285+8.067)

Gion(s) = = (12)
on(®) A —0.0116595—-3.271)(s+3.681)
Uion (5+1.865)(*—1.2855+8.067)
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p —0.2019452+0.09235%+0.2532)

( Ulat (s+1.82)(?—1.3885+10.02)
Giat(s) = = : (13)
¢ = —0.003595—9.182) (s+4.164)

Ujat (5+1.82)(s2—1.388+10.02)

As can be seen from equation (10), the response of the quadrothe vertical axis is asymptotically stable
and non-oscillatory, being characterised by real poleg. drile dominant mode is located at about 2 rad/s,
corresponding to a dominant time constant of approximd&é&s. Similarly, as can be seen from (11) the
response of the yaw rate is also asymptotically stable, ihtam oscillatory dominant mode. As expected,
on the other hand, the response of the roll and pitch axesaiscterised by an unstable, oscillatory mode.
Note, in passing, the significant symmetry between the nsoftellateral and longitudinal response. In
particular, the models have the same structure (up to traitotof the zeros, on which more comments
will be made in subsections 4.4 and 4.5) corresponding tovkeall symmetry of the quadrotor platform,
which therefore has been successfully captured by theifeehinodels. Small differences in the numerical
values of the poles positions can be attributed to asymessttich as.g, different inertial properties due
to the mounting of the battery on the quadrotor (aligned withroll axis, which therefore has a smaller
moment of inertia and, accordingly, a slightly faster rexg® as can be seen by comparing the poles of

Giat(S) andGion(9)).
4.3 Time-domain validation

The performance of the identified models has been checkedmparing the simulated outputs with the
measured response to a doublet excitation applied on eable abntrol variables, as discussed in Section
3.3. The results of the validation experiments are preseinté&igure 5 for the response of the vertical
acceleration to the collective input, Figure 6 for the resmof the yaw rate to the pedal input and Figures
7 and 8 for, respectively, the response of the pitch (roth emd of the longitudinal (lateral) acceleration to
the longitudinal (lateral) input. As for the identificatiphase, the validation experiments for the response
to changes iy, Ujon andupeq have been carried out in closed-loop.

As can be seen from the figures, the identified models captaredsential features of the response of
the quadrotor along all the axes.

Finally, to complete the analysis of the results the boapstvased approach to uncertainty analysis
summarised in Section 2.3 has been applied to both the fneguesponses associated with the transfer
functions in equations (10)-(13) and the correspondingtipos of poles and zeros in the complex plane.

The results are reported in the following subsections.
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Figure 5: Response of vertical acceleration to collectiveldet (measured: solid line; estimated: dashed
line).
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Figure 6: Response of yaw rate to pedal doublet (measurédlise; estimated: dashed line).
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Figure 7: Response of pitch rate (top) and longitudinal kcation (bottom) to longitudinal cyclic doublet
(measured: solid line; estimated: dashed line).
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Figure 8: Response of roll rate (top) and lateral accel@ngthottom) to lateral cyclic doublet (measured:
solid line; estimated: dashed line).
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4.4 Uncertainty analysis: frequency responses

The results of the uncertainty analysis for the frequenspaases of the identified models are reported
in Figures 9-14, where the frequency responses correspgtaithe identified models are compared with
1000 replications computed using the bootstrap.
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Figure 9: Frequency response of vertical acceleration tective (black line: nominal model; grey lines:
bootstrap replicas).

As can be seen from Figure 9, the response of the verticalisudaptured by the model with very
good accuracy, the uncertainty band having a very limiteglémde both in magnitude and phase over
the excitation bandwidth (approximately 1-10 rad/s). @leaome uncertainty is to be expected at low
and high frequency, however since for the purpose of cdetrdiesign what is really relevant is model
accuracy around the crossover frequency, this level of inac®iracy can be considered adequate. The
reader, however, should recall that the response of thieakaixis is asymptotically stable and therefore its
identification has been carried out in open-loop.

Uncertainty analysis is particularly informative in theseaof unstable models generated from closed-
loop data. Indeed, in such a case gathering accurate infemrebout the low frequency response is harder
than in open-loop identification, due to both limitationstlre duration of the experiments and the low-
frequency action of the feedback controller which "mask& true dynamics of the open-loop system. As

a consequence, one expects significant uncertainty apgearthe low frequency part of the frequency
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Figure 10: Frequency response of yaw rate to pedal (blagk lmominal model; grey lines: bootstrap
replicas).
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Figure 11: Frequency response of pitch rate to longitudigelic (black line: nominal model; grey lines:
bootstrap replicas).
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Figure 12: Frequency response of longitudinal accelaratiolongitudinal cyclic (black line: nominal
model; grey lines: bootstrap replicas).
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Figure 13: Frequency response of roll rate to lateral cyblack line: nominal model; grey lines: bootstrap
replicas).
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Figure 14: Frequency response of lateral accelerationtévabcyclic (black line: nominal model; grey
lines: bootstrap replicas).

response of the identified model. Fortunately, howeveichasight in the dynamics of the system can be
exploited to reduce such uncertainty: for example, if thyn 9if the gain is knowm priori in view of the
physical interpretation of the control inputs, one can eomfvhether the nominal identified model, in spite
of the spread of the low-frequency uncertainty, is esskytiarrect.

This effect is clearly visible in the response of the yaw adispicted in Figure 10, which is captured
quite accurately by the identified model starting from abbuad/s but is not equally accurate at lower
frequencies.

Figures 11 and 12 on the other hand represent the frequesiggnses for the longitudinal response
of the quadrotor. In the responses one can readily recogjmsenstable complex conjugate poles which
dominate the response. In addition, note that in this casenleertainty associated with the identification
procedure is concentrated at low frequency for the respofitiee pitch rate and at high frequency for
the response of the longitudinal acceleration. The latarspponse of the quadrotor, reported in Figures
13 and 14, is qualitatively similar to the longitudinal oregéin, confirming the essential symmetry of
the considered configuration), except for the low frequdmslyaviour of the roll rate frequency response
(Figure 13). Indeed in this case, the low frequency dereatharacter of the response is captured in the
model by means of a complex conjugate pair of zeros, whidlisléa a significantly different phase curve

with respect to the pitch rate one. Note however that evenghaohis portion of the estimated response is
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associated with large uncertainty, there is no ambiguituathe sign of the gain of the response, which is
knowna priori from physical considerations and coincides with the oneoafiimal model. This can be also
confirmed by the histogram of the values of the low-frequeatise for the 1000 bootstrapped models, see

Figure 15. As can be seen, more than 75% of the models extpbiase close enough t6180° to validate

Histogram of the identified models at the first considered frequency
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Figure 15: Histogram of the low-frequency phase for the decy response of the 1000 bootstrapped
models of the roll rate.

the prior knowledge of a negative gain. A very small numbédrarftstrapped models exhibit a phase close to
0°, while less than 10% of the bootstrapped models show aalipitiase aroungt 180°.Over the excitation
bandwidth, however, the identified model appears to be ateatso in this case.

In summary, it can be concluded that the performance of teetifled model is adequate for control
systems design provided that the control loops are clostinithe above mentioned excitation bandwidth.
In order to further reduce the residual uncertainty in thelet®, additional experiments ought to be carried
out, trying to maximise the length of the available dataset&s to improve the low frequency content.
Note, however, that limited performance in the identificatof the low frequency portion of the response

is intrinsic in the closed-loop operation during experinsen
4.5 Uncertainty analysis: poles and zeros

A similar analysis, again based on the bootstrap methodhyea@arried out for the location of poles and ze-
ros of the identified models. Note in particular that for thieditudinal and lateral responses we focus on the

zeros of the individual transfer functions rather than anNiMO ones in view of the fact that conventional
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control architectures for quadrotor control would lead éparate loop closures on the individual transfer
functions (angular rate for attitude control, accelerafmr position control). As is well known, the position
of zeros and poles in the complex plane plays a major roleteraening the achievable closed-loop perfor-
mance. In particular, for the case of unstable and/or namirmim phase systems, the position of right-half
plane zeros and poles imposes, respectively, upper and lmovends to the closed-loop bandwidth (see,
e.g, the classical papers [FL85, Ste03]). Along the lines offifevious subsection, the bootstrap method
has been applied and 1000 replicas of the identified modetstieen obtained. For the vertical response of
the quadrotor, the results are depicted in Figure 16, wineréeft panel shows a histogram of the position
of the 1000 replicas of the poles, while the right one showsstime results for the zeros. It appears that
all the 1000 replicated models remain asymptotically stabid the two dominant poles (nominal loca-
tions at—1.933 and—5.309) are estimated with a very low uncertainty, while thestfgole located in the
nominal model at-16.49 has a much more significant uncertainty associated witgéin, not surprising
as its location is above the excited bandwidth). Similatg zero of the transfer function appears to be
estimated very accurately and, most importantly, remaimgnum phase for all the bootstrapped replicas.
For the response of the yaw axis, in Figure 17 the histogramhé natural frequencies and the damping
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Figure 16: Histograms of poles (left) and zero (right) of thensfer function from collective to vertical
acceleration.

factors of the poles are depicted, while the zeros are iifitestl in Figure 18. Concerning the poles, the
peaks in the histograms associated with the complex cotgymdes and the real pole are clearly visible;
again, the dominant complex conjugate mode is capturedsaiidll dispersion, while the faster real pole
is determined with larger uncertainty. As for the zerossitniteresting to note that the (low frequency)

non-minimum phase one is actually characterised by an taingrrange which lies across the imaginary
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axis, which reflects the high level of uncertainty in the ghaessponse of the yaw rate apparent from Figure

10.
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Figure 17: Histograms of poles of the transfer function freedal to yaw rate. Left: natural frequencies;
right: damping factors.

Finally, the results for the response of the longitudinad axe presented (the lateral response is omitted
for brevity) in Figures 19-20 (poles) and 21 (zeros). Conuey the poles, it appears form Figure 19
that the dominant, unstable complex conjugate mode isiftghtvith great accuracy, while there is some
uncertainty associated with the real pole, for which a lgiston is presented in Figure 20. The natural
frequency of the unstable mode, which can be placed8t éad/s therefore provides information about
the minimum bandwidth for the control of the longitudinaspense. As for the zeros of the two transfer
functions associated with the longitudinal axis, FigurecBarly shows the non-minimum phase of the
responses, confirming also in a statistical sense the diesistics of the identified model. Note in particular

that the estimation of the right-half plane zeros is quiteLaate.

5 Concluding remarks

The problem of black-box model identification of the dynasnid a quadrotor helicopter has been con-
sidered. In view of the open-loop instability of the quadrotlosed-loop experiments have been carried
out and a continuous-time subspace model identificationoegh capable of dealing with such experimen-
tal conditions has been adopted. Furthermore, a complelgsis of the uncertainty associated with the
identified model has been performed, using tools from thd fiflcomputational statistics. The results of
the study show that the considered approach is an effectigeas far as the characterisation of the local

dynamics of the quadrotor is concerned and can also prowdiibuncertainty information for the pur-
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Figure 18: Histogram of zeros of the transfer function fromdal to yaw rate.
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Figure 19: Poles of the transfer functions from longitudioentrol to pitch rate and longitudinal accelera-
tion.
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Figure 20: Histogram of real pole of the transfer functiorenf longitudinal control to pitch rate and
longitudinal acceleration.
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pose of robust control system design, both in the frequenayain and in the time domain. Future work

will deal with the problem of optimising the input sequenased in the identification experiments (some

preliminary results are available in [BBL11]), which in fuwill allow the analysis of the platform in more

general flight conditions, and to consider additional semsothe model identification.
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