
An Expert CAD Flow for Incremental Functional
Diagnosis of Complex Electronic Boards

Cristiana Bolchini, Senior Member, IEEE, Luca Cassano, Member, IEEE, Paolo Garza, Elisa Quintarelli and Fabio
Salice, Member, IEEE,

I. INTRODUCTION AND MOTIVATIONS

Functional diagnosis is used in industry to identify the
source of an observed misbehavior during the operational life
of a device. There are different motivations behind this kind
of investigations, among which we mention 1) the identifica-
tion of the faulty component for possible repair in case of
an expensive board, hosting several subsystems, and 2) the
collection of information on components’ failure rates, to be
able to monitor the quality of suppliers’ products. Moreover,
this second kind of information can also be used to improve
efficiency and accuracy of the diagnosis process.

For diagnosis, a set of tests is executed and their outcomes
are collected (called syndrome); based on the syndrome the
process tries to identify the faulty component. A survey of
approaches using “intelligent techniques” has been presented
in [1], classifying them in rule-based and model-based ones.
Approaches belonging to the former class use a set of rules
in the form “IF syndrome THEN faulty component”, whereas
approaches in the latter class refer to a model of the system
under diagnosis putting into relations faulty components and
syndromes. Rules and models can either be directly specified
by the test/diagnosis engineers or can be acquired by means

This work is partially supported by the Cisco University Research Pro-
gram Fund – Gift #2012-101762 (3696), an advised fund of Silicon Valley
Community Foundation.

Cristiana Bolchini, Luca Cassano, Elisa Quintarelli, Fabio Salice are with
the Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di
Milano. e-mail: firstname.lastname@polimi.it

Paolo Garza is with the Dipartimento di Automatica e Informatica, Politec-
nico di Torino. e-mail: firstname.lastname@polito.it

of knowledge extraction methods, using records of previously
executed diagnoses. In the latter case, an extensive research
has been performed to identify the most effective machine
learning technique, spanning from Bayesian inference [2], to
decision trees [3], from artificial neural networks to support
vector machines [4], [5]. A comparative analysis to evaluate
the effectiveness of these techniques in extracting information
from test-data volumes is proposed in [6]. Indeed it is impor-
tant to be able to extract the knowledge from the previous
historical data; however, we here focus on the subsequent
diagnostic process, and its efficiency, in terms of the amount
of information (test results) needed to identify and isolate the
candidate faulty component. More precisely, we argue that it
is fundamental to minimize the number of executed tests, to
reduce testing time and associated costs. Thus, we propose
an incremental automatic functional diagnosis process, that
starting from a model (extracted or provided by the engineers),
prompts the user to execute one of the available tests and
based on the outcome, either identifies the cause of the failure,
or selects a new test to be executed to proceed towards the
diagnosis. As soon as enough evidence (test outcomes) is
collected the process ends and the diagnosis is provided.
This incremental process is designed to work in a scenario
where traditional functional diagnosis is performed using the
complete syndrome, therefore it faces the same difficulties.
Indeed, the proposal aims at providing a solution that achieves
the same results a diagnosis based on a complete syndrome
would achieve (considered as the “golden” result), but with a
reduced number of executed tests.

Incremental functional diagnosis was first presented in [7]
using an engine based on Bayesian belief networks (BBN),
achieving interesting results in terms of the number of tests
necessary to perform the diagnosis. However, the identification
of an initial set of tests and of a stop condition introduced two
complex aspects, to be empirically determined for each system
under consideration. Furthermore, different policies can be
adopted to select the next test to be executed [8]. Indeed, the
incremental approach is promising, however the use of the
BBN engine does not allow for a systematic and automatic
application and requires a supervised use by the diagnosis
engineer, who drives the diagnosis based on his/her experience.

In this paper we propose a novel incremental functional
diagnosis approach exploiting an automatic engine based
on data mining (DM) achieving the same accuracy as the
conventional diagnosis that uses complete syndrome, indicated
as 100% accuracy. The method autonomously performs the
diagnosis of a faulty system by minimising the number of

tests to be executed; based on the mined knowledge, not
only the diagnosis is performed, but also additional diagnosis-
related feedback is provided, e.g., redundant tests, masked
components. In this paper we start from a model of the system
under consideration provided by the test/diagnosis engineers;
however, the approach can be used also after a preliminary
phase devoted to extracting such model from a log of past
syndromes (using data mining or the approaches proposed in
[3], [4]), as it will be shown. The major contributions of the
proposed methodology and companion framework are:
• a rule-based engine driven by rules putting into relation

test outcomes and faulty candidates, automatically ex-
tracted from the system model;

• a completely automated CAD flow that identifies the can-
didate faulty component(s), without user’s intervention or
the need for empirically defined metrics;

• with respect to previous solutions, the possibility to
achieve a 100% accuracy, lower number of executed
tests to complete the diagnosis, and the possibility to
leverage on such accuracy to further reduce the number
of executed tests;

• information of the relative probability of being the can-
didate if more than one component is identified as faulty;

• feedback on the system model, to be exploited by the test
and diagnosis engineers to improve test coverage and/or
isolation in the system.

The paper is organized as follows. The next section presents
existing approaches tackling the same problem or a similar
one, to highlight their limitations and the open issues the
proposed methodology and flow aims at solving. Section III
introduces the background and the notions at the basis of
the incremental diagnosis approach discussed in Section IV.
The CAD flow implementing the methodology is presented in
Section V, while the subsequent section reports the experimen-
tal results of the analysis and comparison with other similar
solutions. Conclusions and future work close the paper.

II. RELATED WORK

A number of works related to the use of machine learning
and artificial intelligence for both incremental [7] and non-
incremental [3], [4], [5] diagnosis can be found in literature.

The approach presented in [3] relies on decision trees (DTs).
In the training phase, a DT is built starting from a set of
complete syndromes and the associated faulty components
(available from previous testing activities). Syndromes are
represented as nodes in the DT, while candidate faulty com-
ponents as leaves. In the diagnosis phase, the DT is fed with
the actual complete syndrome and then is traversed until a leaf
is reached, identifying the associated faulty component.

In [4] three adaptive functional diagnosis techniques based
on artificial neural networks (ANNs), support-vector machines
(SVMs) and weighted majority voting (WMV) between the
such two techniques are presented. The paper first discusses
how to use ANNs and SVMs to identify faulty components.
Then it presents how to combine the two techniques through
WMV to increase the achieved diagnostic accuracy. For each
technique a weight expressing the confidence of the method on

the considered board is calculated and then the majority voting
uses these weights to rank the answers received from the
two techniques to maximize the diagnostic accuracy. Building
on the good performance of the SVMs-based method, the
same authors propose in [5] a solution based on SVMs for
an incremental learning of the component-test relation for
performing the functional diagnosis process. The body of
work presented in [3], [4] and [5] addresses the problem of
building/learning an accurate model of the relation between
complete syndromes and faulty components leading to the
syndrome with a limited number of available bindings between
the two. The diagnostic accuracy achieved by these methods
is always significantly below 100%, although it is a relevant
result, since it is does not assume the existence of a model.
In [9] a framework based on the Dempster-Shafer theory
for ranking the possible causes of a failure either at the
board- or at the circuit-level is presented. Finally, a number
of techniques (e.g., those presented in [10], [11]) have been
proposed for enhancing the accuracy and effectiveness of the
extracted model by discarding redundant tests and suggesting
the introduction of more selective tests.

A comparative analysis of artificial intelligence-based tech-
niques for extracting the system model from test data volumes
is presented in [6], evaluating the amount of data needed by
the different methods with respect to the achieved accuracy of
the final diagnosis, when considering complete syndromes.

In [7] a first proposal of an incremental diagnosis technique
is presented. The technique builds a Bayesian belief network
(BBN) representing the probabilistic relation between failing
tests and faulty components, starting from a model provided
by the test engineers. Given a partial syndrome the method
determines the probability of each component to be the faulty
one. Based on this information and the inherent information
that the execution of a test may bring, the approach incre-
mentally performs tests until the faulty component(s) can
be considered as “identified”. This technique suffers from
the absence of a test execution order and of an explicit
stop condition. Identifying the next test to be executed and
determining when to stop the diagnostic process are tasks left
to the diagnosis engineer’s experience. In [8], [12], [13] the
same authors address the specific issues to overcome these
problems. However, the solutions to these open challenges are
based on heuristics to be tuned and monitored by the expert
diagnosis engineer, whose contribution is still fundamental,
an aspect we want to overcome, by proposing a solution that
requires no empirical metrics.

Altogether, in the overall diagnosis panorama, the attention
has been devoted to build a solid model of the system starting
from previously collected testing/diagnosis sessions ([3], [4],
[5]), while the challenge of improving the diagnosis process
in terms of reducing the efforts (tests and consequently time)
has been only partially solved ([7]), as the approach requires
a significant effort to drive the BNN engine.

The approach introduced in [14] is a first proposal to
overcome such limitations; it considers an incremental engine
using a set of rules extracted with data mining, and used in
a straightforward manner. The solution achieved promising
results, dealing with a simplified context of syndromes. We

build on such initial framework to present here a complete
methodology and framework, characterized by the following
original contributions:

1) an improved rule-based engine driven by rules mined
from the system model and post-processed to obtain an
efficient set;

2) a strategy for achieving a 100% accuracy;
3) the interaction with a BBN-based tool to a) reduce the

number of executed tests, by leveraging accuracy, and
b) compute the relative probability of being the faulty
component when more candidates are identified.

III. BACKGROUND

We here recall some notions at the basis of our proposal.

A. Data Mining

Data Mining is the process of analyzing large volumes of
data for extracting not so self-evident and previously unknown
information from it. Different algorithms have been proposed
in the literature, e.g., itemset and association rule extrac-
tion [15], [16], classification [?], [17], and clustering [18].
In this paper we deal with association rules, that describe
the frequent co-occurrence of sets of items in a large amount
of collected data [15]. They have been initially exploited to
identify correlations among items in the market basket data
analysis context. However, they have been exploited also in
other contexts (e.g., network traffic data analysis). The input
data, in the association rule mining context, is a dataset D
composed of a set of transactions of arbitrary length, where
each transaction d in D is a set of items. In our context, a
transaction d in D is the complete outcome of a diagnosis pro-
cess, composed by the set of test outcomes and the associated
faulty component(s). Given an arbitrary dataset D as input, the
association rule mining problem consists in mining the set of
rules of the form X ⇒ Y that are frequent in D (i.e., it consists
in mining the most frequent correlations among items in D).
More formally, an association rule R is usually represented
as an implication in the form X ⇒ Y , where X and Y are
two arbitrary itemsets (i.e., sets of items), called Antecedent
and Consequent of R respectively, such that X ∩ Y = ∅ (i.e.,
X and Y are disjoint sets). The quality of an association rule
is usually measured by means of support and confidence. The
Support measure corresponds to the frequency of the set X∪Y
in the dataset D (i.e., the percentage of transactions in D
that contain both X and Y) while the confidence measure
corresponds to the conditional probability of finding Y in D,
having found X and is given by sup(X∪Y)/sup(X) (i.e., the
confidence of the rule X ⇒ Y is the percentage of transactions
containing both X and Y among those transactions containing
X). The association rule mining problem is a well-known
problem in the data mining community and various efficient
algorithms have been proposed to perform the mining, among
which we mention FP-growth-like algorithms [16], and we
refer to them.

In some contexts, each item is also associated with a
weight. In this case, each transaction d in D is a set of pairs
(itemi, weighti), where itemi is an item and weighti is its

weight in d. The association rules mined from these type of
datasets are called weighted association rules. These rules,
similarly to the traditional ones, are in the form X ⇒ Y ,
where X and Y are two arbitrary set of items. However, a
set of weighted measures that take into consideration also
the weights associated with each item, are used to assess
the quality of weighted rules. The weighted support of a
rule is computed by combining the weights of the items in
the transactions matched by the rule (i.e., the transactions
containing both X and Y) and is given by

W. Sup(X ⇒ Y) =
∑

d∈D|(X∪Y)⊆d

f weight(X ∪ Y, d)

where f weight(I, d) is a function that computes the weight
of the set of items I in d, by combining the weights in d of
the items in I . Different functions can be used to compute
the weight of a set of items I in a transaction d. Similarly to
Cagliero et al [19], we used the minimum function

f weight(I, d) = min(itemi,weighti)∈d|itemi∈Iweighti.

Hence, the weight of an arbitrary set of items I in a transaction
d is given by the minimum weight among those of the items
I in d. The weighted confidence of a rule X ⇒ Y is given
by W. Sup(X ∪ Y)/W. Sup(X)

In our scenario the “items” are failing tests and components
and each transaction in the input dataset D is associated with
one component Ci and contains the set of tests Tj than can
fail if Ci is faulty and Ci itself. Each item related to a test Tj

is associated with a weight representing the probability that Tj

fails if Ci is faulty. Hence, we use association rule mining to
infer correlations between failing tests and faulty components,
thus the rules have the form {T1 . . . Th} ⇒ Ci, where
T1 . . . Th are tests and Ci is a component. The rule states
that IF {T1 . . . Th} fail THEN Ci is the faulty component. In
Section IV we describe how such rules are mined from the
system model and exploited to support functional diagnosis.

B. Functional Diagnosis

Through the life cycle of a device, from the design phase
to the final operative product, there are two activities with the
goal of correlating the desired behavior and the observed one:
testing and diagnosis.

Testing designates an activity whose purpose is to verify
that the behavior of the system/sub-system does not deviate
from what is expected (deviations between “pre-defined golden
results” and “actual results”). It is worth noting that testing
does not aim at identifying the cause and/or location of fault
leading to the deviation from the expected behavior; the goal
is to detect the presence of a problem, that is fault detection.

Diagnosis, on the other hand, designates an activity whose
goal is to identify the cause or location of the fault because a
misbehaviour has been detected. Therefore, diagnosis aims at
identifying the cause and/or the location of a fault by means
of interpreting the information provided by the test applied to
the system. The degree of accuracy is called “resolution of
the diagnostic test” and it depends on the ability of the test
to isolate a fault. In general, it can occur that a fault cannot

be isolated, given the available test set. The cause could be
controllability/observability problems related to the integration
of different independent components on a board, such that test
sets designed to fully exercise a component are not effective
when the component is reachable through a chain of other
components, or unforeseen interactions become manifest.

The sets of tests used for fault detection and diagnosis
can coincide although in the former case the aim is to be
able to stimulate the system so that a generic mismatch in
the expected outcomes is obtained, while in the latter the
user is interested in gathering as much information on the
misbehaviour to be able to trace back the source of the
problem. More precisely, test pattern generation aimed at fault
detection identifies the minimal set of tests that allow to
discover all possible faults. The higher the number of faults
a test covers, the better. When performing diagnosis, it is
important to distinguish among faults, therefore ideally, there
should be a unique relation between a fault and a syndrome.
However, this would imply that, in the worst case, all tests
should be executed to find the faulty component. Therefore,
the diagnosis test suite is usually bigger than the one used
for testing purposes only. Finally, when performing functional
diagnosis, the test procedure works by considering components
as black-boxes, with no knowledge about their internals and
usually performed at a high abstraction level, thus not taking
into account manufacturing defects at a low-abstraction level.

Within this context, two working hypotheses are adopted.
• At least a test fails. This assumption refers to the con-

cept of diagnosis, where the board is being investigated
because a misbehaviour has been detected during the
operational life of the device.

• Single component failure. It allows one to adopt an
incremental diagnostic approach, stopping as soon as one
faulty component is identified, otherwise it would be
necessary to execute the entire test suite to identify all
faulty components. The diagnosis, yet, may point to a set
of possibly faulty components, called faulty candidates,
due to limited isolation. In such a situation, even the
complete syndrome is compatible with more than one
component being faulty and it is not possible to exactly
determine which one is the faulty one.

IV. THE PROPOSED INCREMENTAL DIAGNOSIS APPROACH

The incremental approach we propose, dubbed FIND (Func-
tional INcremental Diagnosis), starts from a system model
defined by the test/diagnosis engineer and automatically ex-
tracts from it (by means of data mining) a set of rules
putting into relation the failure of the tests and the components
being faulty. The incremental process starts from a processed
sorted set of such rules (RS) and iteratively selects the top
ranking rule and requests the execution of the tests involved
in the rule. Each outcome is collected and used to update the
partial syndrome PS, the set of candidates that – based on
such outcome – cannot be faulty (not faulty components set,
NFCS), and the set of rules RS. During the execution of the
tests involved in the rule, it may happen that a rule does not
hold anymore, and thus it is discarded, moving to the next rule

Rules
Set diagnosis

Report

test/
diagnosis
engineer RL

diagnosis
engineer

Te
st

En

vi
ro

nm
en

t

CTM

previous
diagnosis

results R
ul

e
ex

tr
ac

tio
n

(D
at

a
M

in
in

g)

In
cr

em
en

ta
l

D
ia

gn
os

is

Fig. 1. The proposed incremental diagnosis approach.

(after all updates are performed). When all tests involved in
the rule are performed without invalidating it (i.e., all tests in
its antecedent fail), the rule is satisfied and it is exploited to
determine the component (or sets of faulty components, FCS)
identified as faulty, concluding the process.

Figure 1 shows the proposed methodology, highlighting two
alternative inputs for the extraction of the rules: the engineer’s
knowledge used to create a model or the log of past diagnoses.
The extracted set of rules is strictly related to the Data Mining
approach, as well as the strategies adopted in the incremental
engine to process and exploit the rules according to their
semantics. The pseudocode of this iterative algorithm based
on the knowledge extracted with data mining is reported in
Algorithm 1; all involved aspects are now discussed in detail.

1: procedure FIND(CTM)
2: FCS← ∅
3: NFCS← ∅
4: PS← ∅
5: RS← GenerateRules(CTM)
6: repeat
7: Ri ← SelectTopRule(RS)
8: TSRi RetrieveTestSet(Ri)
9: while Ri AND (TSRi

6= ∅) do
10: Tj SelectTest(TSRi

)
11: oj ExecTest(Tj)
12: PS UpdatePS(PS, oj)
13: NFCS← updateNFCS(NFCS, oj)
14: RS UpdateRS(RS,NFCS, oj)
15: TSRi

TSRi
\ {Tj}

16: end while
17: until NOT satisfied(Ri)
18: FCS← RetrieveFaultyCandidates(Ri)
19: return FCS,PS
20: end procedure

algorithm 1: FIND – Functional INcremental Diagnosis

A. System Model

For diagnosis purposes, a complex electronic board can be
represented in terms of its components (e.g., microprocessors,
DSPs, ...) and the set of tests that have been created to detect
if faults have occurred. These tests are often defined for the
specific component, in terms of sequences of input vectors
and corresponding expected output responses. In general, for
each component Ci a set of tests {Th . . . Tk} is defined to

verify the various functionalities implemented by Ci. When a
test Tj is applied to the board inputs, the test fails when the
values observed at the output are different from the expected
ones; otherwise the test passes. Test engineers provide sets
of tests such that if Ci is faulty, one or more of the tests in
{Th . . . Tk} fail. However, when component Ci is integrated in
a complex board, controllability/observability issues may rise,
and furthermore, unforeseen interactions between components
may occur, so that a test designed for a given component
fails when a different component is faulty. As a consequence,
test engineers can only provide a qualitative evaluation of the
probability that a test will fail when a component is faulty. This
model is similar to the one the diagnosis/test engineers define
when using commercially available tools such as Agilent’s
Automatic Fault Detective tool (now discontinued) [20] and
MonteJade [21]; thus the proposed approach can fit in a
consolidated industrial diagnosis environment.

Based on these considerations, [7] introduces the
Components-Tests Matrix (CTM) model we here adopt,
that puts into relation components and tests. More precisely,
rows represent components C and columns represent tests
T. Given a board having nc components and nt tests, CTM
has nc × nt elements ctmi,j , each one representing the
probability that test Tj fails when component Ci is faulty.
A discrete, qualitative scale is used for this information
provided by test/diagnosis engineers. More precisely, they
are required to specify how probable is that the test Tj fails
when the component Ci is faulty, using a value in the set
{High, Medium, Low, None}. Note that it is very difficult, or
even impossible, to determine a quantitative estimation of
this probability. Indeed, the reasons that may cause test Tj ,
designed for component Ci, not to fail when Ci is faulty or to
fail when Ci is not faulty are related not only to component
Ci itself but also to how the test is driven to the inputs of Ci

and how test results are read back, e.g., if a JTAG interface
is used to stimulate the component under test and to read
back the results, and the JTAG interface itself is faulty, the
outcome of the test execution will be FAIL even in case the
component under test is not faulty. Furthermore, faults on
the power supply or defective solderings on the board may
interfere with the correct execution of the tests. It also worth
noting that, as it has been demonstrated in [22], having a
six-level set ({High, MidHigh, Medium, MidLow, Low, None}),
instead of the previously presented four-level one, does not
bring benefits to the analysis. The qualitative scale is then
converted into a quantitative one:

ctmi,j ∈ {0.9, 0.5, 0.1, 0}

Value 0.9 (0.1) instead of 1.0 (0.0) allows to maintain a
degree of uncertainty due to components’ interaction. This
tolerance was designed for the BBN probabilistic reasoning
engine of the original proposal. In our context it can be
useful to model situations that rarely deviate from the expected
behaviour (outliers, in the data mining scenario). On the other
hand, should it be possible to define a model without such
uncertainties, the performance of the proposed approach would
even improve. Although arbitrary, the adopted quantitative
scale has a limited impact on the methodology; a sensitivity

Tests
T1 T2 T3 T4 T5 T6

Components

C1 0.9 0.9 0.5 0.1 − −
C2 0.5 − 0.9 0.1 0.5 −
C3 − 0.5 0.1 0.9 0.1 0.5
C4 0.1 0.1 − − 0.9 0.9

Fig. 2. Sample Components-Tests Matrix used as a running example.

analysis has been performed and reported in the experimental
section, to show that the impact is limited to less than a 3%
increase in the number of tests to be executed.

Throughout the paper we will refer to a running example
CTM, shown in Fig. 2. Moreover, to exemplify the steps of the
proposed approach we will behave as if the execution of the
complete suite of tests would produce syndrome PPPFFP.

B. Association Rules Generation
The first step of our methodology is the use of data

mining algorithms to extract association rules of the form
{T1 . . . Th} ⇒ Ci from a CTM. We will indicate the antecedent
{T1 . . . Th} of a rule R with Ant(R) and the consequent
Ci with Cons(R); moreover we refer to the cardinality of
Ant(R) as length of a rule (i. e., the number of involved tests).
We mine a special type of association rules called weighted
association rules [23], that also consider the importance of
each item in a given dataset. The weights associated with the
items of the input datasets are used to compute a weighted
support measure that combines the frequency of a rule with the
weights of its items. In particular, we use ctmi,j to assign an
appropriate weight to each item, and to compute the weighted-
measures (weighted support and confidence) according to the
formulation presented in Section III-A. The input dataset D,
from which the rules are mined, is composed of a number
of transactions (i.e., rows) that is equal to the number of
components. More specifically, for each component Ci there
is one transaction di ∈ D containing Ci and the set of tests
Tj that should fail if Ci is faulty according to the CTM (i.e.,
the set of tests with a probability ctmi,j 6= 0). Each test Tj in
dj is characterized by a weight equal to ctmi,j .

As an example, consider tests T1 and T2. There are two
rows where they appear at the same time, corresponding to
C1 and C4 where they both have ctmi,j 6= 0. The unweighted
support of the pair {T1, T2} is equal to 2. However, to take into
consideration the probability values represented by ctmi,j , we
use them as weights: by summing 0.9 (the minimum between
the probability value associated with T1 and T2 in the C1

row) and 0.1 (the minimum in the C4 row) we obtain a
weighted support equal to 1.0. Moreover, the mined itemsets
are combined to generate association rules and compute their
confidence value. For instance, the confidence of the rule {T1

T2} ⇒ C1 is 90%, whereas the confidence of {T1 T2} ⇒ C4

is 10%, because the weighted support of {T1, T2} is 0.9 in the
C1 row and 0.1 in the C4 row.

The mining process, which infers the set of association rules
RSinit, consists of two steps:

1) find all the sets of items (itemsets) whose weighted
support exceeds a given threshold, and

2) generate the rules with a confidence greater than a given
threshold, starting from the mined itemsets.

By enforcing thresholds for the minimum weighted support
and the minimum confidence, the mining process is focused
on the subset of rules that are “statistically” relevant, avoiding
infrequent and not-representative rules. In our framework, the
weighted association rule mining task is performed by means
of a standard algorithm [19]; it mines all the association rules
satisfying both thresholds, i.e., it is sound and complete with
respect to the two enforced thresholds/constraints.

The set of association rules RSinit is used, as described in
the next section, to generate a rule set RS that includes col-
lapsed, sorted rules that will be exploited by the incremental
engine to identify the faulty component. Note that for each
rule {T1 . . . Th} ⇒ Ci, we also compute the average and the
variance of the weights in the CTM, between component Ci

and tests Tj involved in the rule. More formally, the average
of {T1 . . . Th} ⇒ Ci is given by

Avg.Weight({T1 . . . Th} ⇒ Ci) =

h∑
j=1

ctmi,j/h

and the variance is computed on the same set of weights. These
measures, together with rule confidence and length, are used
during the rule ranking step.

76 association rules (some of which are shown in Fig. 3)
are initially extracted from the running example CTM of Fig. 2.

As previously discussed, this approach differs from others
in the same field (e.g., [3], [4]) because it focuses on the
diagnostic process rather than on the identification of the
relations between tests and components (i. e., the system
model, here provided as an input). Indeed, we also investigated
the possibility to extract the rules directly from the logs
of previous diagnosis sessions, obtaining interesting results.
In particular, we used data mining to directly extract the
{T1 . . . Th} ⇒ Ci rules, obtaining a set that is different from
the one extracted from the CTM, but that leads to similar results
in terms of accuracy and average number of executed tests.
Thus, the approach can work even if a model is not provided
and future work will further pursue this direction.

C. Rule collapsing and ranking

Once the association rules have been mined, a collapsing
step is performed to group all rules with an Equivalent
Antecedent, EA(·). The collapsed rules are built to populate
a compact rule set RS by performing the following steps:

1) While RSinit is not empty, starting from the first rule
Ri ∈ RSinit, compute set

EA(Ri) = {Rj ∈ RSinit|Ant(Rj) = Ant(Ri)}

2) Build an implication (hereafter called rule without ambi-
guity, although it represents an aggregation of association
rules) with the form:

Rcoll = Ant(Ri)⇒
⋃
Cons(Rj) ∀Rj ∈ EA(Ri)

Rcoll inherits the confidence, weighted support, average
weight, and variance of rule Rk ∈ EA(Ri) with the
highest confidence.

Rules Conf. W. Avg. Var.
Supp. Weight
1 {T4 T6} ⇒ C3 100.00% 50% 70.00% 400%
2 {T1 T6} ⇒ C4 100.00% 10% 50.00% 1600%
3 {T3 T6} ⇒ C3 100.00% 10% 30.00% 400%
4 {T1 T2 T3} ⇒ C1 100.00% 50% 76.66% 355%

. . .
9 {T2 T4 T5} ⇒ C3 100.00% 10% 50.00% 1066%
10 {T1 T2} ⇒ C1 90.00% 90% 90.00% 0%
11 {T5 T6} ⇒ C4 90.00% 90% 30.00% 400%

. . .
34 {T4} ⇒ C3 81.81% 90% 90% 0%

. . .
70 {T1 T2} ⇒ C4 10.00% 10% 10% 0%
71 {T4} ⇒ C1 9.09% 10% 10% 0%
72 {T4} ⇒ C2 9.09% 10% 10% 0%

. . .
76 {T5} ⇒ C3 6.67% 10% 10% 0%

Fig. 3. Portion of RSinit: association rules mined from the sample
Components-Tests Matrix.

3) Compute RSinit \ EA(Ri) then goto Step 1.

The rationale behind the definition of Rcoll is that the
best predictive rule is the one with the highest confidence,
since confidence represents an estimate of the conditional
probability that if all tests in the antecedent of the rule fail,
the faulty component is the one in its consequent. Moreover,
the collapsed rules are equivalent w.r.t. the set of tests to be
performed to reach a prediction; indeed, when all the tests
in Rk fail the rule is valid, thus our approach identifies as
possible faulty components all the consequents of Rcoll.

By referring to the running example in RSinit (Fig. 3),
association rules #34 : {T4} ⇒ C3, #71 : {T4} ⇒ C1 and
#72 : {T4} ⇒ C2 are collapsed into rule #34 of Fig. 4
{T4} ⇒ C1∪C2∪C3. Hereafter, we use the ; symbol instead
of ∪ in the rule consequent to compact the notation.

After the collapsing phase, a ranking algorithm is applied to
identify the “best” predictive rules. In particular, an ordering
based on confidence, rule length, support, average and variance
is adopted. The best predictive rules are those with a high
confidence, thus, we use that criterion first and if two rules
have the same confidence value, the shortest one is preferred,
to limit the number of test to be performed. The weighted sup-
port, the average and variance of weights are then subsequently
used, in the reported order, to sort rules having the same values
for the confidence and length measures. The shorter a rule is,
the lower the number of tests to be executed is. However, a
short rule is typically less discriminative/precise than a longer
one, because the failure of a test is usually associated with
many potential faulty components. For example, Rule #34
of Fig. 4 has in its antecedent the unique item T4. Based
on this rule, if test T4 fails there are three potential faulty
components (i.e., C1, C2, and C3). To discriminate among
these components, at least one additional test is required
(e.g., T6). In fact, when considering test T6, if it fails we
can conclude that only C3 is the faulty component, because
Rule #1 of Fig. 4, with confidence 100%, has only C3 in
its consequent. Thus, when ordering the mined rules, we first
consider confidence and only when two rules have the same

Rules Conf. W. Avg. Var.
Supp. Weight
1 {T4 T6} ⇒ C3 100.00% 50% 70.00% 400%
2 {T1 T6} ⇒ C4 100.00% 10% 50.00% 1600%
3 {T3 T6} ⇒ C3 100.00% 10% 30.00% 400%
4 {T1 T2 T3} ⇒ C1 100.00% 50% 76.66% 355%
5 {T1 T3 T5} ⇒ C2 100.00% 50% 63.33% 355%
6 {T1 T2 T5} ⇒ C4 100.00% 10% 36.66% 1422%

. . .
18 {T1 T2 T3 T4} ⇒ C1 100.00% 10% 60.00% 1100%
19 {T1 T2 T5 T6} ⇒ C4 100.00% 10% 50.00% 1600%
20 {T1 T3 T4 T5} ⇒ C2 100.00% 10% 50.00% 800%

. . .
34 {T4} ⇒ C1; C2; C3 81.81% 90% 10.00% 0%
35 {T6} ⇒ C3; C4 64.28% 90% 50.00% 0%

. . .
41 {T1 T4} ⇒ C1; C2 50.00% 10% 50.00% 1600%
42 {T2 T5} ⇒ C3; C4 50.00% 10% 30.00% 400%
43 {T4 T5} ⇒ C2; C3 50.00% 10% 30.00% 400%

. . .
48 {T3 T4} ⇒ C1; C2; C3 33.33% 10% 30.00% 400%

Fig. 4. RS: collapsed and ranked rules generated from the RSinit of Fig. 3.

confidence, we prefer the shortest one.
The outcome is a compact ranked rule set RS used by the

engine to perform the incremental diagnosis process; the one
for the adopted running example is partially shown in Fig. 4.

D. Rule and Test Selection

Given the list of collapsed and ranked rules RS, FIND
always selects the highest ranking rule Rtop and the tests in its
antecedent are executed, one at a time. Since the antecedent
of an association rule is a conjunction of items, the strength
of the rule is based on the “entire” set of involved tests, and
it holds only if all tests fail. Therefore, it is not useful to
impose an ordering in the execution of the tests involved in
the rule. Once a test is executed, based on its outcome one of
the following three alternatives occur: i) another test in the
same rule needs to be executed, ii) the iterative process stops
according to the conditions presented in Subsection IV-F, or
iii) RS is updated as discussed in Subsection IV-E and the
new top ranking rule is selected.

E. Not-Faulty Components Identification and Rules Pruning

After the outcome of a test has been collected, two activities
can be carried out: i) rules pruning, and ii) not-faulty
components identification.

Rules pruning is carried out after a test passes. This activity
consists in invalidating all those rules involving the test that
passes, because they will never hold.

RS = RS \ {Ri|Ty ∈ Ant(Ri) ∧ Ty = PASS}

After every test execution, not-faulty components identification
is carried out to populate the set of components that are not
faulty (NFCS, not-faulty component set). When the collected
outcome is FAIL, all components having no relation (ctmxy =
0) with such test can be considered as not faulty:

NFCS = NFCS ∪ {Cx|ctmxy = 0 ∧ Ty = FAIL}

When a test passes, following rule pruning, those components
involved only in rules that have been pruned can then be
considered as not faulty, and added to NFCS.

Let us consider the first step of the iterative process, refer-
ring to the running example CTM, RS and selected PPPFFP
syndrome. Rule #1 in Fig. 4 is the top ranking one, and test T4

is executed, with outcome FAIL. Because ctm4,4 = 0, compo-
nent C4 cannot be the faulty component, thus NFCS = {C4}.
Furthermore, C4 is removed from all consequents and all rules
with on C4 in the consequent are pruned, causing an update
of RS. Then, test T6 is executed, with outcome PASS. As a
consequence, Rule #1 does not hold and all rules involving
T6 in the antecedent are pruned. The updated RS, reported in
Fig. 5, is then used and the new top ranking rule is selected
to proceed with the process. The partial syndrome at this step
is PS = ---F-P.

F. Stop Condition Evaluation

The process should stop as soon as i) enough information
has been collected to take a decision, or ii) additional test
outcomes do not add useful knowledge to take a more accurate
decision. A main issue with the BBN approach presented in
[7] is the ability of the system to automatically identify such
a condition, letting the user decide empirically. In this work
we have adopted two stop conditions: a rule-based one and a
BBN-based one.

Rule-based stop condition: This is a systematic condition
that leads to a diagnosis with a 100% accuracy and refers to
the fact that each rule extracted by the data mining process
intrinsically states that IF the antecedent is satisfied THEN
the consequent is true, with a certain level of confidence.
Therefore, since FIND always works on the top ranking rule,
this stop condition guarantees that no additional knowledge
is necessary to take a decision when a rule is satisfied. More
precisely, an antecedent is satisfied when all tests FAIL, thus
the iterative mechanism is interrupted when, given the top
ranked rule

Rtop : {T1 . . . Th} ⇒ Cx;Cy (1)

all T1 . . . Th fail and, as a consequence, Cx and Cy are
considered as the faulty candidate components.

If there is a single component in the consequent, the process
is concluded without further ado. If more components are
involved in the consequent, the satisfied rule is of the form
represented in Eq. 1.

Either Cx or Cy is the faulty component, but the executed
tests involved in the rule (T1 . . . Th) do not allow to discrim-
inate further.

With respect to the running example, the satisfied rule (with
PS = PPPF-P) is

{T4} ⇒ C1;C2;C3

However, there could be longer rules (having more tests in
the antecedent), with a lower confidence (thus not being the
top rule), offering a more refined diagnosis that identifies only
a subset of the candidate components involved in the satisfied
rule. If the process stops here, we possibly erroneously identify
a faulty component which is fault free (false positive), losing

Rules Conf. W. Avg. Var.
Supp. Weight
1 {T1 T2 T3} ⇒ C1 100.00% 50% 76.66% 355%
2 {T1 T3 T5} ⇒ C2 100.00% 50% 63.33% 355%
3 {T1 T4 T5} ⇒ C2 100.00% 10% 36.66% 355%
4 {T2 T3 T5} ⇒ C3 100.00% 10% 23.33% 355%
5 {T2 T4 T5} ⇒ C3 100.00% 10% 50.00% 1066%
6 {T1 T2} ⇒ C1 90.00% 90% 90.00% 0%
7 {T1 T5} ⇒ C2 83.33% 50% 50.00% 0%
8 {T2 T3} ⇒ C1; C3 83.33% 50% 70.00% 400%
9 {T2 T4} ⇒ C1; C3 83.33% 50% 50.00% 1600%
10 {T3 T5} ⇒ C2; C3 83.33% 50% 70.00% 400%
11 {T4} ⇒ C1; C2; C3 81.81% 90% 10.00% 0%
12 {T1} ⇒ C1; C2 60.00% 90% 90.00% 0%
13 {T2} ⇒ C1; C3 60.00% 90% 90.00% 0%
14 {T3} ⇒ C1; C2; C3 60.00% 90% 50.00% 0%
15 {T5} ⇒ C2; C3 60.00% 90% 50.00% 0%
16 {T4 T5} ⇒ C2; C3 50.00% 10% 30.00% 400%

Fig. 5. RS after executing T4 = FAIL, T6 = PASS; NFCS = {C4}, PS =
---F-P.

accuracy. To achieve 100% diagnostic accuracy an additional
mechanism, called rule look-ahead has been designed. This
mechanism is triggered when the rule-based stop condition
is satisfied and more than one component is involved in the
consequent. It consists of the following steps:

1) Given the satisfied rule Ri, build the set of rules SRi

containing all the rules in RS involving a super-set of Ri

antecedent and a sub-set of the Ri consequent.
2) If SRi is empty, then stop.
3) If SRi is not empty, then identify the top-rule Ri top of

SRi.
4) Execute all the tests in Ri top until either Ri top is

satisfied or a test passes.
a) if Ri top is satisfied, then go to step 1 with Ri =
Ri top.

b) if a test in Ri top passes, then invalidate Ri top and
go to step 3

Indeed, it may occur that other rules exist (with a lower
confidence) of the form

Rn : {T1 . . . Th Tz} ⇒ Cx (2)

This rule highlights the presence of a tests (Tz) that may
allow identifying Cx as the faulty component if its outcome
is FAIL. Trying to satisfy such rules may refine the diagnosis
at the cost of a higher number of executed tests.

With respect to the running example, the above discussed
rule look-ahead mechanism leads to process rule

{T4 T5} ⇒ C2;C3

Thus, by executing one additional test (T5), the diagnosis is
further refined.

BBN-based stop condition: This condition exploits infor-
mation gathered from a Bayesian belief network, fed with
the current partial syndrome and the set of not faulty compo-
nents. More specifically, a BBN is built from the CTM model
putting into relation components and tests, as proposed in
[7] and shown in Fig. 6, where a network is created, with
components being the root causes and tests the evidence,

0.9

0.50.5 0.1
0.1

C1 C2

T1= T2= T3= T4=FAIL

0.9 0.9

Fig. 6. BBN (portion of) built from the Components-Tests Matrix of Fig. 2.

observed variables, and CTM entries are used to compute the
conditional probabilities. Because the BNN is a complete
model for the variables and their relationships, it can be used
to answer probabilistic queries, such as the relative probability
of each component to be the faulty one, with respect to the
partial syndrome being observed (i.e., the subset of observed
variables). Rather than using this information as the basis of
the incremental engine (as in [7]), we here exploit it only to
compute these probabilities. More precisely, we feed the BBN
Evaluator with the CTM, NFCS and the PS and retrieve the
probabilities. From the performed experiment, we observed
that at the beginning of the diagnosis process, when few
outcomes are known, the network is not stable and the sum
of all these probabilities is higher than 1. However, as the
information increases, the BBN computes probabilities such
that the sum equals 1. Additional outcomes will further refine
the diagnosis, and the computed probabilities may also change
significantly, but the sum will remain 1. Thus, we defined the
BBN-based stop condition to be satisfied as soon as the sum
of the probabilities of all components not in NFCS equals 1.

Empirically, the amount of information gathered when the
sum of all probabilities is 1 suffices to determine a diagnosis.
Indeed, it may happen that components with a probability of
being faulty greater than 0 could be ruled out by running
further tests (false positives). This mechanism can be enabled
if the user prefers to limit the number of tests, betting on
an anticipated interrupt of the incremental process, with a
reasonable confidence not to point out to too many false
positive faulty components. Being it an empirically defined
stop condition, the estimation of benefits and costs can be
computed in general for a board, and may vary significantly.
It is up to the user to decide whether to use it or not. We
report in Sec. VI the effects of this additional stop condition.

G. Faulty Candidate Components Identification

When the process is completed, the identification of the
faulty candidate set is performed by selecting all components
involved in the satisfied rule, following the execution of the
look-ahead mechanism, if the ruled-based stop condition is
adopted. Indeed, if more than one component is identified,
it is possible to query the BBN Evaluator with the CTM,
the NFCS and the PS to retrieve a relative probability of
each candidate. If the BBN-based stop condition is adopted,
the faulty candidate set includes all components having a
probability of being the faulty one higher than 0.

For the running example, the process stops according to
the rule-based condition when PS = PPPFFP and FCS =
{C2;C3}. The query to the BBN Evaluator returns the addi-
tional information FCS = {C2[1.23%];C3[98.77%]}.

V. THE PROPOSED EXPERT CAD FLOW

The proposed methodology is supported by a CAD flow,
presented in Fig. 7, consisting of various tools, namely the
SyndromeMaker tool, the FIND tool and the BBN-Evaluator
all implemented in C/C++. The flow is organised into two
sub-flows: the analysis sub-flow and the diagnosis sub-flow.

A. The Analysis Sub-Flow

The analysis sub-flow is intended to be executed just once
for a given board, to gather information on the diagnostic
capability of the designed suite of tests and to prepare the
sorted list of rules RS used by the incremental engine in
the diagnosis sub-flow. More in detail, the analysis sub-flow
consists of the execution of the SyndromeMaker tool and
of the FIND tool working in a special batch mode. The
SyndromeMaker, starting from the CTM, generates the list of
all the legal syndromes, without any interaction with the user.
For each legal syndrome the tool computes the probability of
occurrence ps, and the faulty component(s) associated with it.
This information allows one to evaluate the average number
of components that can be considered as faulty for every legal
syndrome and identifies the components that cannot be isolated
and the tests that are not useful for diagnostic purposes, i.e.,
tests that are never executed. If the process is performed at
design time, it is possible to exploit the output of the analysis,
i.e., the system analysis report, to improve tests’ effectiveness
and/or observability to increase the diagnostic resolution, as
well isolation. As for the list of rules, this batch run can be
used to remove from the initial RS all those rules that are
never used, to work on a more compact RS list.

By referring to the running example (CTM in Fig. 2), rule

{T1 T2 T6} ⇒ C4, 100.00%, 10%, 36.33%, 1422%

mined in the RSinit is never used because it ranks below rule

{T1 T6} ⇒ C4, 100.00%, 10%, 50.00%, 1600%

When either T1 or T6 passes, both rules are pruned; when
both T1 or T6 fail, the shorter rule is satisfied and thus the
diagnostic procedure stops. Since there is a single component
in the consequent (C4) no rule look-ahead would be triggered.
Thus the rule is removed.

In this perspective, mining rules and processing them to
obtain RS is an off-line activity, performed once; therefore
the computational cost has a limited impact on the overall
methodology. Finally, recall that if no CTM model is defined
and only previous diagnosis outcomes are available, activities
in the shaded area of Fig. 7 are replaced by the mining of
rules directly from that information, to produce RS.

sy
nd

ro
m

eM
ak

er

Syndromes
List

Compact
Rules
Set

system
analysis
Report

BB
N

ev
al

ua
to

r

diagnosis
Report

diagnosis sub-flow

analysis sub-flow

FI
N

D
to

oltest/
diagnosis
engineer

SL RL FI
N

D
to

ol

diagnosis
engineer

Te
st

En

vi
ro

nm
en

t

CTM

Fig. 7. The proposed CAD flow based on FIND.

B. The Diagnosis Sub-Flow

The diagnosis sub-flow is intended to be used by the
engineers to perform diagnosis when a faulty board is brought
back from service. During the execution of the diagnostic
sub-flow, the FIND tool is used in interactive mode; at each
step, the tool selects the test to be executed and waits for
the engineer to provide the outcome. If the tool is integrated
in an Automatic Test Environment, test request and outcome
collection are performed automatically.

The process is iterated until a diagnosis is obtained, and, if
the procedure leads to more than a single faulty component,
a BBN Evaluator is invoked to get, based on the partial
syndrome and the set of not-faulty components, the relative
probability of each candidate to be the faulty component.

VI. EXPERIMENTAL VALIDATION

This section introduces the evaluation approach for the pro-
posed methodology, followed by the setup for the experimental
campaigns, reporting an in-depth discussion of the results.

A. Methodology evaluation

The relevance of the proposed methodology depends on two
main aspects: i) the number of executed tests (#T), and ii) the
accuracy of the diagnosis (Acc.).

In fact, the goal is to reduce the effort for identifying the
faulty component, possibly without compromising the accu-
racy. While the first aspect is intuitive, it is worth clarifying
how accuracy is evaluated. Let us consider the complete syn-
drome selected as a running example: PPPFFP. According to
the CTM of Fig. 2 the syndrome can occur when either C2 or C3

fail. The diagnostic outcome based on the complete syndrome
would point to {C2, C3} (we define them as components
associated with that syndrome). The incremental approach we
propose cannot further discriminate, either it computes the
same diagnosis (possibly without executing all tests) or is
inaccurate by finding a) a subset of the two associated compo-
nents, or b) additional ones. Thus, the accuracy of the method
is evaluated with respect to what a traditional diagnosis based
on complete syndromes would find. It is possible to extract
the outcomes of diagnosis based on complete syndromes by
generating from the CTM all and only the legal syndromes,
i.e., those combinations of test outcomes corresponding to a
single component being faulty. For instance, in our running

example syndrome FFFFFF is not legal, since there is no
single component that when faulty causes all tests to fail
according to the CTM of Fig. 2.

Finally, given the CTM model, not all syndromes are equally
likely to occur. For instance, according to our running ex-
ample, when C1 is faulty, syndrome FFFPPP is more likely
to occur than PPPFPP, based on the estimated probabilities.
Indeed, syndrome PPPFPP can also be caused by a failure
in component C2 or in C3. Therefore, the total probability
of occurrence of the syndrome is altogether not so low.
Indeed, the lower the probability of a syndrome, the more
difficult its diagnosis (especially if manually performed based
on experience) and the more important the accuracy of the
approach; we here anticipate that the proposed method always
achieves a 100% accuracy, possibly with longer test sequences,
although always well below the complete syndrome.

To evaluate the performance of the proposed methodology,
we adopted the two mentioned indices #T and Acc., weighted
on the relative probability of occurrence of the syndrome;
the impact of the behaviour of the approach for syndromes
that very seldom may occur is less relevant than that of very
frequent syndromes. We calculated these two indices as:

Acc =

nLS∑
s=1

(accs × ps) (3)

#T =

nLS∑
s=1

(num testss × ps) (4)

where accs is the accuracy achieved by the method when
analysing syndrome s, computed as follows:

accs =
NCorrs

NTots +NNotCorrs

(5)

where NCorrs is the number of components correctly diag-
nosed, NTots is the total number of components associated
with syndrome s and NNotCorrs is the number of components
wrongly diagnosed (either false positive or false negative);
num testss is the number of tests employed by the method
when analysing syndrome s; finally, ps is the probability of
occurrence of syndrome s, computed as follows:

ps =

nc∑
i=1

AFPi ·
nt∏
j=1

pi,j

 (6)

where AFPi is the a-priori failure probability of component
Ci (note that for the sake of simplicity, but without loss of
generality, we are assuming that components have all the same
a-priori failure probability) and pi,j is defined as:

pi,j =

{
1− ctmi,j if s[Tj] = PASS

ctmi,j if s[Tj] = FAIL

Where s[Tj] represents the outcome of test Tj in syndrome s.
In other words, pi,j represents the probability of test Tj having
outcome s[Tj] when the faulty component is Ci. Recall that
it may occur that a given syndrome points to multiple faulty
candidates that cannot be isolated. In such a situation, accuracy
is 100% when the incremental approach identifies all and only

TABLE I
BOARDS CHARACTERISTICS.

ID nC nT nLS nFS nSS nRS

1 4 9 98 17 36 45
2 5 13 415 19 66 330
3 7 17 2383 26 132 2225
4 10 14 1090 27 143 920
5 10 18 1678 56 94 1528
6 15 25 1249 19 109 1121
7 19 29 1339 22 134 1183
8 22 32 953 25 183 745
9 25 40 3063 18 141 2904
10 32 55 4677 15 196 4466
11 51 78 3292 16 189 3087
12 64 110 9354 2 212 9140

the faulty candidates associated with such a syndrome, just as
an approach using the complete syndrome would do.

B. Experimental Setup

The accuracy and effectiveness of the proposed methodol-
ogy and the efficiency of the CAD flow have been evaluated on
a set of 12 synthetic (although realized according to realistic
scenarios) boards of various sizes and complexity, whose
characteristics are reported in Table I, in terms of number
of components (column nC), number of tests (column nT)
and number of legal syndromes (column nLS) compatible
with the CTM defining the board model. Legal syndromes have
been clustered according to their occurrence probability to
gather a more detailed idea of how the tool behaves when
common and very unusual situations arise. The distribution of
the syndromes is reported in the second part of Table I, where
each entry indicates the number of frequent (column nFS),
sporadic (column nSS) and rare (column nRS) syndromes,
having a probability of occurrence higher than 1%, between
1% and 0.1% and lower than 0.1%, respectively. The number
of components ranges from 4 to 64, the number of tests from
9 to 110, and the list of legal syndromes (compatible with the
CTM) has a cardinality varying from 98 to 9354.

C. Experimental Results and Discussion

The initial off-line application of the FIND flow allows
to gather information on the board under test. We retrieve
information (Table II) on the average number of faulty com-
ponents associated with a syndrome (avgFC), the number of
components that are not isolated from others (niC) and the
number of tests that are never used during the diagnosis (nuT).

All experiments have been run by considering a complete
syndrome at a time and knowing which one is the faulty
component(s) causing such syndrome. Given such “hidden”
syndrome, we used FIND to determine a diagnosis, by fol-
lowing the requested sequence of tests to be executed until
the tool deems the diagnosis is reached.

As an example from CTM in Fig. 2, we consider syndrome
FPPPFF, which has a probability of occurrence equal to
ps = 1.8225%. When running the FIND tool for diagnosis,
starting from rule #1 {T4 T6} ⇒ {C3} we execute test
T4 which, according to the hidden syndrome, passes (PS =

TABLE II
ANALYSIS SUB-FLOW RESULTS.

ID avgFC niC nuT
1 1.49 1 0
2 1.72 2 0
3 1.84 3 0
4 2.22 0 0
5 2.46 0 0
6 2.29 5 0
7 2.44 6 0
8 2.11 3 0
9 2.34 12 0
10 2.03 4 0
11 2.41 15 0
12 2.03 8 0

TABLE III
EXPERIMENTAL RESULTS FOR THE PROPOSED AND EXISTING APPROACHES.

ID DM (basic) [14] BBN [7] Proposed Approach
Acc. #T T[%] Acc. #T T[%] Acc. #T T[%]

1 100.00% 4.96 55.11% 75.04% 3.34 37.11% 100.00% 4.96 55.11%
2 100.00% 6.61 50.85% 83.62% 3.25 25.00% 100.00% 6.61 50.85%
3 99.99% 8.05 47.36% 93.29% 6.98 41.06% 100.00% 8.07 47.47%
4 99.96% 10.58 75.58% 90.10% 9.35 66.79% 100.00% 10.66 76.14%
5 99.72% 6.89 38.28% 76.19% 7.42 41.22% 100.00% 6.90 38.33%
6 98.67% 12.93 51.72% 95.69% 16.22 64.88% 100.00% 13.24 52.96%
7 99.09% 15.39 53.07% 94.79% 21.64 74.62% 100.00% 15.65 53.97%
8 99.72% 15.93 49.78% 95.22% 25.08 78.38% 100.00% 16.00 50.00%
9 99.87% 18.84 47.10% 93.67% 31.06 77.65% 100.00% 18.94 47.35%
10 99.63% 23.96 43.56% 92.98% 43.26 78.65% 100.00% 24.09 43.80%
11 99.33% 34.75 44.55% 97.69% 75.49 96.78% 100.00% 34.92 44.77%
12 96.62% 43.09 39.17% 80.45% 104.96 95.42% 100.00% 43.22 39.29%
avg 99.38% - 49.68% 89.06% - 64.80% 100.00% - 50.00%

---P--). Based on this outcome, RS is updated and rule
{T1 T6} ⇒ {C3} is then considered, requesting the execution
of test T1, that fails (PS = F--P--). The rule still holds and
test T6 is executed, failing. The rule is satisfied, the look-
ahead mechanism does not find any other matching rule and
the process stops, with the following outcome: PS = F--P-F,
FC = C4, number of executed tests #T = 3.

The process has been repeated for all legal syndromes,
computing accuracy and number of executed tests. Table III
reports these values and the ratio T (%) between #T and the
total number of tests for the proposed approach, as well as, for
the same incremental approach using reasoning engines based
on Data Mining (DM, [14]) and Bayesian belief networks
(BBN, [7]), respectively. Note that we compare against the
only existing alternative incremental approaches because other
solutions (e.g., [3], [4]) focus on model extraction.

As a first comment, the proposed approach achieves 100%
accuracy, outperforming the previous solutions. This is ob-
tained thanks to the so-called look-ahead mechanism intro-
duced to remove false positives that were observed when
running the DM approach proposed in [14] with the entire
set of legal syndromes, rather than only the most frequent
ones. To achieve perfect accuracy, the length of the test
sequence slightly increases w.r.t. DM (0.36% on average).
When compared against the BBN solution, test sequence
length is comparable, for small boards, but scales much better
for larger boards (6.94% is the average reduction).

On average, the proposed approach requires the execution
of half of the diagnosis tests clearly leading to a significant
reduction of the whole diagnosis time. Nevertheless, the ac-
tual saving depends on the specific tests being avoided and
therefore cannot be estimated. For example, the execution of
an exhaustive main memory test may take from ten minutes
to one hour, while a CPU stability test may take some hours
up to a day. Moreover, the overall time required to carry out a
test often depends more on the time for set-up/instrumentation
of the test environment than on the actual test execution.

A second campaign has been executed to evaluate the
benefits of the BBN-based stop condition, in reducing test
sequence length, leveraging on accuracy. Results are reported
in Table IV. The first part of the table shows test information,
and more specifically the absolute average number of tests

TABLE IV
BBN-BASED STOP CONDITION: TEST LENGTH IMPACT.

Test information Accuracy information
ID #T T[%] TLR[%] Frequent Sporadic Rare
1 3.34 37.11% 18.11% 80.16% 67.99% 52.56%
2 4.94 38.00% 12.85% 92.04% 83.49% 70.63%
3 7.36 43.30% 4.06% 100.00% 98.19% 94.50%
4 10.13 72.38% 3.76% 96.89% 93.09% 90.56%
5 6.34 35.22% 3.11% 93.75% 84.85% 72.43%
6 12.68 50.72% 2.24% 99.12% 98.38% 91.30%
7 14.89 51.34% 2.63% 94.90% 93.53% 91.34%
8 15.66 48.94% 1.06% 96.28% 97.31% 91.47%
9 18.31 45.78% 1.57% 95.09% 93.17% 90.95%
10 23.26 42.29% 1.51% 93.52% 92.17% 88.40%
11 33.13 42.47% 2.30% 82.95% 73.12% 77.31%
12 40.85 37.13% 2.16% 66.67% 69.28% 66.99%
avg - 45.39% 4.61% 90.95% 87.05% 81.54%

(column #T), the percentage of tests (column T[%]) and the
test length reduction (column TLR[%]) with respect of the
basic approach. Average test length reduction is 4.61%. The
second part of the table reports accuracy information, for
frequent, sporadic and rare syndromes. For frequent syndromes
the approach behaves much better than for sporadic and
rare ones; in particular, average accuracy values are 90.95%,
87.05% and 81.54%, respectively.

To better perceive the actual loss of accuracy, in Table V
we report the number of syndromes (N) and their cumulative
probability (CP) for which the Bayesian-based stop condition
achieves a 100% diagnosis (0 false positives, 0FP), incurs
in 1 false positive (1FP), and incurs in more than 1 false
positives (> 1FP). The average cumulative probability for the
above values are 80.91%, 13.74% and 5.59%, respectively,
which means that in 13.7% of cases, the diagnosis identifies
an additional fault-free component, rarely more than one.

Although it goes beyond the scope of the work here
presented, we also explored the behaviour of the proposed
methodology and DM engine in the situation where the CTM

model of the board under analysis is not provided, and only
previous diagnosis logs are available. In this context, rules are
directly mined from the logs, producing – for all boards –
sets of rules with slightly different weights, usually leading to
a sorted RS different from the one extracted from the CTM.
We observed an average diagnostic accuracy of 99.72%, with

TABLE V
BBN-BASED STOP CONDITION: ACCURACY LOSS ANALYSIS.

ID 0FP 1FP > 1FP
N CP N CP N CP

1 22 56.05% 76 43.96% 0 0%
2 170 79.99% 245 23.01% 0 0%
3 2059 97.23% 324 2.77% 0 0%
4 842 89.29% 244 10.01% 4 0.61%
5 819 73.65% 859 26.35% 0 0%
6 805 93.15% 430 6.67% 14 0.18%
7 1187 87.33% 133 10.23% 19 2.44%
8 865 93.58% 80 4.14% 8 2.28%
9 2466 87.26% 577 5.36% 20 7.38%
10 3358 85.91% 1253 8.12% 66 5.97%
11 2308 68.34% 838 9.44% 146 22.22%
12 5236 59.13% 3769 14.83% 349 26.04%
avg - 80.91% - 13.74% - 5.59%

an average percentage of executed tests of 51.92% (the same
values for the experiment based on the CTM are 100% average
accuracy and 50.00% average number of executed tests).
These outcomes confirm that the approach can be adopted
also starting from existing logs of previous testing/diagnostic
activities, and possible tuning is current ongoing work.

D. Robustness Analysis

Three campaigns have been carried out to analyse the
sensitivity of the approach to 1) the adopted qualitative scale,
2) model inaccuracies related to erroneously estimated H, M
and L values, and 3) model incompleteness related to missing
component-test relations.

1) Sensitivity to the quantitative scale {0.9, 0.5, 0.1, 0}.:
For each CTMi we defined two new CTMs CTMi0.8 and CTMi0.7 ,
obtained from CTMi by changing the 0.9s into 0.8s and 0.7s,
respectively and the 0.1s into 0.2s and 0.3s, respectively; 0.5s
are left unaltered. We performed the same kind of experimental
campaign with these new models (results are reported in
Table VI). It can be observed that the adopted scale does
not significantly affect the FIND behaviour. In particular, the
accuracy is always 100% (therefore it is not reported), whereas
the difference in terms of number of executed tests is very
small in most cases: the average values are 1.27% for the
< 0.8, 0.2 > case and 2.40% for the < 0.7, 0.3 > case.
High differences can be observed only for the smallest CTMs
characterised by several component-test dependencies.

2) Sensitivity to model inaccuracies.: We were interested in
understanding how the method behaves when the engineer has
erroneously estimated test-component relationships, having
provided erroneous qualitative values (for instance a High

instead of a Medium). To evaluate the impact of possible
inaccuracies, we randomly corrupted a percentage of the
entries; we defined two campaigns, one with a 10% of inac-
curate values (CTMi10%), the other with a 20% of inaccuracies
(CTMi20%). We only considered erroneous estimations (High
and Low turned into Medium and viceversa), not contemplating
the possibility of a missing/extra entry. The effect is a different
order in RSinit and different RS with respect to the one
corresponding to the real board, which could lead to loss of
accuracy and/or increased number of executed tests. We ran

TABLE VI
SENSITIVITY ANALYSIS TO CTM SCALE.

ID < 0.8, 0.2 > < 0.7, 0.3 >
#T ∆T[%] #T ∆T[%]

1 5.24 3.11% 5.48 5.78%
2 6.73 0.92% 6.86 1.91%
3 8.32 1.47% 8.58 3.00%
4 10.55 0.78% 10.44 1.57%
5 7.97 5.95% 8.95 11.39%
6 13.14 0.40% 13.01 0.92%
7 15.54 0.39% 15.48 0.59%
8 15.92 0.25% 15.94 0.19%
9 19.03 0.23% 19.24 0.75%
10 23.64 0.82% 23.41 1.24%
11 34.89 0.04% 34.90 0.03%
12 42.31 0.83% 41.71 1.37%
avg - 1.27% - 2.40%

TABLE VII
ROBUSTNESS ANALYSIS AGAINST MODEL INACCURACIES.

ID 10% Inaccuracies 20% Inaccuracies
#T T[%] ∆T[%] #T T[%] ∆T[%]

1 4.89 53.33% 0.78% 4.99 55.44% 0.33%
2 7.20 55.38% 4.54% 6.41 49.31% 1.54%
3 8.34 49.06% 1.59% 8.93 52.53% 5.06%
4 10.73 76.64% 0.50% 11.00 78.57% 2.43%
5 7.64 42.44% 4.11% 8.00 44.44% 6.11%
6 13.40 53.60% 0.64% 14.14 56.56% 3.60%
7 15.53 53.55% 0.41% 15.82 54.55% 0.59%
8 15.86 49.56% 0.44% 14.72 46.00% 4.00%
9 18.83 47.08% 0.28% 19.64 49.10% 1.75%
10 24.05 43.73% 0.07% 23.18 42.15% 1.65%
11 34.57 44.32% 0.45% 35.72 45.79% 1.06%
12 42.39 38.54% 0.75% 42.64 38.76% 0.53%
avg - 50.60% 1.21% - 51.10% 2.39%

the previously presented experiments on CTMi but we evaluated
the obtained results by calculating the Acc and #Tests indices
with the syndrome occurrence probabilities (ps) calculated
from CTMi10% and CTMi20% . Table VII shows the results: once
more, accuracy is not affected (and therefore not reported) and
the difference in the number of executed tests is very small:
the average values are 1.21% and 2.39% for the 10% and the
20% inaccuracy cases, respectively, while the highest values
are 4.54% and 6.11% in the two situations.

3) Sensitivity to model errors.: Finally, we analysed how
the approach behaves when the engineer omitted some
component-test relationships. To evaluate this impact, we
randomly removed a percentage of the entries; two cam-
paigns have been executed, one removing 10% of the entries
(CTMi10%), the other removing 20% (CTMi20%). The process
takes as input a CTM with missing entries, leading to the
extraction of RSinit and RS differing from the “correct” ones.
The modelled reality is the one where there are a number of
existing syndromes that are not consistent with the CTM taken
as input, and others for which a diagnosis can be performed,
but potentially with inaccurate results. More specifically, all
syndromes that cannot be explained by the erroneous CTM are
identified, therefore – as soon as one occurs – the diagnosis
engineer has a feedback on the erroneous model. Column 6
and 11 in Table VIII report the percentage of such illegal
syndromes that allow such inconsistency identification, thus

TABLE IX
INDUSTRIAL CASE STUDIES CHARACTERISTICS.

ID nC nT nLS nFS nSS nRS

Board1 5 18 11788 14 72 11702
Board2 14 24 12290 16 20 12254
Board3 25 44 13261 17 39 13205

TABLE X
RESULTS FOR THE INDUSTRIAL CASE STUDIES.

ID Acc T[%]
Board1 100.00% 52.50%
Board2 100.00% 57.46%
Board3 100.00% 58.09%
avg 100.00% 56.01%

providing a suggestion on how fast it will be possible to
detect the presence of the error (but not the specific error).
We computed the accuracy with respect to the behaviour
corresponding to having the correct CTM (columns 2 and 7),
and with respect to a traditional approach using a complete
syndrome on the same erroneous model; the accuracy is
identical and therefore our solution achieves 100% accuracy
with respect to the outcome using the complete syndrome, still
requiring a reduced number of tests.

E. Industrial Case Studies

Finally, we applied the proposed methodology to three
industrial boards (whose characteristics are summarized in
Table IX in terms of number of components, tests, syndromes
classified into frequent, sporadic and rare syndromes). One of
this board is a micro-processor board, equipped with shared
memory, arbiters, DMA controller, JTAG and other compo-
nents. The other two are telecom medium-size boards whose
CTMs have been designed at Cisco for systems diagnosis, using
the Automatic Fault Detective tool [20].

We analysed all the legal syndromes of the three case
studies. Results from this experiment are reported in Table X.
It is worth noting that the proposed approach achieves a
100% diagnostic accuracy for all the considered industrial case
studies. Furthermore, the number of tests needed to achieve a
correct diagnosis is substantially reduced. More in detail, for
all the considered boards the percentage of tests required to
achieve the stop condition is about 50% (56.01% on average).
The results collected on synthetic boards mimicking real ones
to fully exercise the methodology are confirmed in the real-
world industrial boards environment; the proposed approach
successfully performs the diagnosis with a reduced number of
executed tests, without compromising the diagnostic accuracy.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed an automatic incremental
methodology and a CAD flow, based on data mining, to
perform functional diagnosis of complex systems. The in-
cremental approach allows to identify the faulty component
with a 100% accuracy by performing a subset of all available
tests. To further reduce the number of executed tests (and

thus limiting costs) we also introduced an empirical condition
based on Bayesian belief networks, leveraging on accuracy.
An extensive experimental campaign has been performed,
analysing the achieved results from different perspectives, to
evaluate the efficiency of the proposed solution with respect to
previous ones, showing significant improvements in terms of
accuracy and of test length when leveraging on accuracy. The
approach can also be used to gather information on the system
being modelled with respect to diagnosis-related aspects (i. e.,
isolation) providing feedback to the test/diagnosis engineer.

Ongoing work is investigating the opportunity to mine the
rules driving the incremental engine directly from existing
diagnosis logs, either to support the engineers in providing
the CTM model or as the starting point for the incremental
functional diagnosis process. Furthermore, we plan to extend
the analysis subflow to increase the amount of information
provided to designers in the system analysis report.

REFERENCES

[1] W. G. Fenton, T. M. McGinnity, and L. P. Maguire, “Fault diagnosis of
electronic systems using intelligent techniques: a review,” IEEE Trans.
Systems, Man, and Cybernetics, Part C: Applications and Reviews,
vol. 31, no. 3, pp. 269–281, Aug. 2001.

[2] Z. Zhang, Z. Wang, X. Gu, and K. Chakrabarty, “Board-level fault
diagnosis using bayesian inference,” in Proc. VLSI Test Symp., 2010,
pp. 244–249.

[3] F. Ye, Z. Zhang, K. Chakrabarty, and X. Gu, “Adaptive board-level
functional fault diagnosis using decision trees,” in Proc. Asian Test
Symp., 2012, pp. 202–207.

[4] ——, “Board-level functional fault diagnosis using artificial neural net-
works, support-vector machines, and weighted-majority voting,” IEEE
Trans. CAD Integrated Circuits and Systems, vol. 32, no. 5, pp. 723–
736, 2013.

[5] ——, “Board-level functional fault diagnosis using multikernel support
vector machines and incremental learning,” IEEE Trans. CAD Integrated
Circuits and Systems, vol. 33, no. 2, pp. 279–290, 2014.

[6] H. Wang, O. Poku, X. Yu, S. Liu, I. Komara, and R. D. Blanton, “Test-
data volume optimization for diagnosis,” in Proc. Design Automation
Conf., 2012, pp. 567–572.

[7] L. Amati, C. Bolchini, L. Frigerio, F. Salice, B. Eklow, A. Suvatne,
E. Brambilla, F. Franzoso, and M. Martin, “An incremental approach to
functional diagnosis,” in Proc. Int. Symp. Defect and Fault Tolerance in
VLSI Systems, 2009, pp. 392–400.

[8] L. Amati, C. Bolchini, and F. Salice, “Test selection policies for faster
incremental fault detection,” in Proc. IEEE Intl Symp Defect and Fault
Tolerance in VLSI Systems, Oct 2010, pp. 310–318.

[9] H. Fang, K. Chakrabarty, Z. Wang, and X. Gu, “Diagnosis of board-
level functional failures under uncertainty using dempster-shafer theory,”
IEEE Tran. CAD Integrated Circuits and Systems, vol. 31, no. 10, pp.
1586–1599, Oct 2012.

[10] F. Ye, K. Chakrabarty, Z. Zhang, and X. Gu, “Information-theoretic
framework for evaluating and guiding board-level functional-fault diag-
nosis,” IEEE Design & Test, vol. 31, no. 3, pp. 65–75, 2014.

[11] Z. Sun, L. Jiang, Q. Xu, Z. Zhang, Z. Wang, and X. Gu, “Agentdiag: An
agent-assisted diagnostic framework for board-level functional failures,”
in Proc. Int. Test Conference, Sept 2013, pp. 1–8.

[12] L. Amati, C. Bolchini, F. Salice, and F. Franzoso, “Improving fault
diagnosis accuracy by automatic test set modification,” in Proc. Int. Test
Conf., November 2010.

[13] ——, “A formal condition to stop an incremental automatic func-
tional diagnosis,” in Proc. Euromicro Conf. Digital System Design,
Architectures, Methods and Tools, 2010, pp. 637–643.

[14] C. Bolchini, E. Quintarelli, F. Salice, and P. Garza, “A data mining ap-
proach to incremental adaptive functional diagnosis,” in Proc. Int. Symp.
Defect and Fault Tolerance in VLSI and Nanotechnology Systems, 2013,
pp. 13–18.

[15] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules
in large databases,” in Proc. Int. Conf. Very Large Data Bases, 1994,
pp. 487–499.

TABLE VIII
ROBUSTNESS ANALYSIS AGAINST MODEL ERRORS.

ID
10% Errors 20% Errors

complete syndromes complete syndromes complete syndromes complete syndromes
on correct CTM on erroneous CTM on correct CTM on erroneous CTM

Acc.[%] Acc.[%] #T T[%] # Illegal Syn. Acc.[%] Acc.[%] #T T[%] # Illegal Syn.
1 82.44% 100% 6.29 69.89% 12 (12.24%) 75.00% 100% 5.37 59.67% 32 (32.65%)
2 73.47% 100% 7.73 59.46% 120 (28.92%) 49.26% 100% 7.38 56.77% 201 (48.43%)
3 77.18% 100% 9.22 54.24% 1492 (62.61%) 50.62% 100% 9.24 54.24% 1189 (49.90%)
4 83.94% 100% 10.55 75.36% 318 (29.17%) 63.88% 100% 10.25 73.21% 445 (40.83%)
5 69.99% 100% 8.01 44.50% 564 (33.61%) 35.35% 100% 7.86 43.67% 990 (59.48%)
6 71.47% 100% 14.60 58.40% 428 (34.27%) 68.67% 100% 13.41 53.64% 649 (51.96%)
7 76.26% 100% 15.72 54.21% 283 (21.14%) 68.89% 100% 13.59 46.86% 688 (51.38%)
8 84.89% 100% 15.87 49.59% 168 (17.63%) 69.26% 100% 15.53 48.53% 433 (45.44%)
9 79.98% 100% 19.63 49.08% 934 (30.49%) 63.24% 100% 18.74 46.85% 1243 (40.58%)
10 79.31% 100% 23.69 43.07% 1719 (36.75%) 66.89% 100% 23.37 42.49% 3012 (64.40%)
11 78.16% 100% 33.50 42.95% 588 (17.86%) 64.05% 100% 33.00 42.31% 1644 (49.94%)
12 76.52% 100% 42.83 38.94% 2523 (26.97%) 55.69% 100% 41.59 37.81% 5168 (55.25%)
avg 77.80% 100% 53.31% 60.90% 100% 50.50%

[16] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in Proc. Int. Conf. Management Data, 2000, pp. 1–12.

[17] E. Baralis, L. Cagliero, and P. Garza, “Enbay: A novel pattern-based
bayesian classifier,” IEEE Trans. Knowledge and Data Engineering,
vol. 25, no. 12, pp. 2780–2795, 2013.

[18] J. Huang, H. Sun, Q. Song, H. Deng, and J. Han, “Revealing density-
based clustering structure from the core-connected tree of a network,”
IEEE Trans. Knowledge and Data Engineering, vol. 25, no. 8, pp. 1876–
1889, 2013.

[19] L. Cagliero and P. Garza, “Infrequent weighted itemset mining using
frequent pattern growth,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 4,
pp. 903–915, 2014.

[20] Fault Detective, 4.0, Agilent Technologies. [Online]. Available:
www.agilent.com/find/fd

[21] L. Bardford, V. Kanevsky, and L. Kamas, “Bayesian fault diagnosis
in large-scale measurement systems,” in Proc. Instrumentation and
Measurement Technology Conf., 2004, pp. 1234–1239.

[22] L. Amati, “Test and Diagnosis Strategies for Digital Devices: Method-
ologies and Tools,” Ph.D. dissertation, Politecnico di Milano, 2012.

[23] W. Wang, J. Yang, and P. S. Yu, “Efficient mining of weighted associ-
ation rules (WAR),” in Proc. Int. Conf. Knowledge discovery and data
mining. ACM, 2000, pp. 270–274.

