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SUMMARY

The use of solid-shell elements in explicit dynamics has been so far limited by the small critical time 
step resulting from the small thickness of these elements in comparison with the in-plane dimensions. 
To reduce the element highest eigenfrequency in inertia dominated problems, the selective mass scaling 
approach previously proposed in [G. Cocchetti, M. Pagani and U. Perego, Comp. & Struct. 2013; 
127:39-52.] for parallelepiped elements is here reformulated for distorted solid-shell elements. Two 
objectives are achieved: the critical time step is governed by the smallest element in-plane dimension 
and not anymore by the thickness; the mass matrix remains diagonal after the selective mass scaling. The 
proposed approach makes reference to one-Gauss point, trilinear brick element, for which the maximum 
eigenfrequency can be computed analytically. For this element it is shown that the proposed mass 
scaling can be interpreted as a geometric thickness scaling, obtaining in this way a simple criterion for 
the definition of the optimal mass scaling factor. A strategy for the effective computation of the element 
maximum eigenfrequency is also proposed. The considered mass scaling preserves the element 
translational inertia, while it modifies the rotational one, leading to errors in the kinetic energy when the 
motion rotational component is dominant. The error has been rigorously assessed for an individual element 
and a simple formula for its estimate has been derived. Numerical tests, both in small and large 
displacements and rotations, using a state-of-the-art solid-shell element taken from the literature, confirm 
the effectiveness and accuracy of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Explicit time integration is often preferred for finite element nonlinear analyses of impulsively
loaded shell structures. In view of the conditional stability of this type of integration algorithms,
very small time steps are required for a stable time discretization, the step size being dictated by the
smallest element dimension in the adopted mesh. On the other hand, explicit methods do not exhibit
convergence problems and do not require the cumbersome and time consuming linearizations
necessary in implicit methods, so that they are often preferred even when the load application is not
particularly fast, in the presence of highly nonlinear problems, especially with contact and fracture.
In these cases, analysis duration and small time step size, combined with time consuming internal
force updating due to complex material models, soon lead to prohibitive computing costs.
∗Correspondence to: umberto.perego@polimi.it, Department of Civil and Environmental Engineering, Politecnico di 
Milano, P.zza L. da Vinci, 32, 20133 Milano, Italy.



When the central difference integration scheme is used, a stable time step ∆t must satisfy the
condition

∆t ≤ 2

ωmax
(1)

where ωmax is the maximum eigenfrequency of the assembled mesh. One also has that ωmax ≤
ω̃max = max

e
{ωemax}, ωemax being the maximum eigenfrequency of an individual element of the

mesh, so that a conservative time step bound is given by

∆t ≤ 2

ω̃max
(2)

According to Courant-Friedrichs-Levy, the stability condition may be rephrased saying that a stable
time step must be smaller than the time required by a dilatational stress wave to traverse the smallest
element in the mesh (element traversal time). i.e.

∆t ≤ Le

c
, c =

√
λ+ 2µ

ρ
(3)

where Le is the smallest element dimension, λ and µ are Lame’s constants, ρ is the mass density
and c is the wave propagation speed.

The determination of the stable time step in (1) or (3) is based on the application of the central
difference integration scheme to a model linear differential equation of motion. In the presence of
material nonlinearities implying dissipation, the commonly used argument is that dissipation has a
positive effect on stability, since it acts in the direction of reducing the propagation speed of stress
dilatational waves within the mesh. A possibility in this case is to use the material tangent operator
for a stability analysis of the linearized incremental problem. In this latter case, however, one has to
take into account the possibility of elastic unloading, so that the elastic stable time step is normally
used. Since in the presence of geometric nonlinearities, such as in large deformations, the physical
process can be unstable, the definition of the stable time step in equation (1) is not rigorous, and
a runtime test on energy is always recommended, together with a safety reduction factor, usually
ranging between 0.8-0.98, to be applied to the used time step (see e.g. [1], chapt. 6).

From (2) and (3), one obtains that the maximum element eigenfrequency is strictly related to
the smallest element dimension. This aspect is crucial in the analysis of shell structures, where
the thickness can be significantly smaller than the surface dimensions. A heuristic remedy, which
is often used, consists of artificially adding mass to the system so as to decrease the wave
velocity and, hence, the maximum eigenfrequency. This can be easily obtained by uniformly
increasing the material density (uniform mass scaling). The drawback of this provision is that all
structural eigenmodes are affected by the mass increase, and not just those associated to the highest
eigenfrequencies, altering in this way the dynamic structural response.

When classical or degenerated shell elements, i.e. elements based on middle surface displacement
and rotation degrees of freedom (dofs), are used in conjunction with lumped mass matrices, a larger
stable time step is usually obtained by artificially increasing the inertia associated to rotational
degrees of freedom [2, 3] (see also [4]). Conversely, the inertia associated to middle plane nodal
displacements is not altered, so that the element inertia associated to translational rigid body motions
is not modified, which represents the basic requisite for the preservation of the most significant
part of the dynamic structural response in inertia dominated problems. This way of proceeding
is currently defined selective mass scaling, i.e. the element mass is artificially increased only for
selected dofs.

Solid shell elements, i.e. shell elements based on solid elements kinematics, therefore making
use of displacement degrees of freedom only, are becoming increasingly popular in view of the
computational advantages that they can provide in some applications (see e.g. [5, 6, 7, 8]). However,
these elements exhibit an inherently bad aspect ratio due to the small thickness compared to the in-
plane dimensions. For this reason, they are preferably used in implicit dynamics approaches, to
avoid the small critical time step produced by the high maximum eigenfrequency, and only recently
their usage in explicit dynamics approaches seems to have been attracting a specific attention (see



e.g. [7, 9, 10, 11]). Systematic studies on the computational effectiveness of solid-shell elements in
explicit dynamics have also been recently presented in [12, 13].

Since solid-shell elements do not make use of rotational dofs, direct application of the selective
mass scaling proposed in [2, 3] is not possible. Another possibility to reduce the element highest
eigenfrequency is to modify the mass matrix by adding to it the stiffness matrix multiplied by
a scaling parameter [14, 15]. It can be shown that in this way the highest eigenfrequencies can
be reduced with negligible modifications of the lowest ones. In particular, this type of scaling
leaves the inertia forces unmodified for rigid body motions, since in this case no internal forces are
produced. As in large deformation problems the stiffness matrix changes during the deformation
process, in [15] it has been proposed to add to the stiffness matrix a suitably constructed constant
matrix producing zero inertia forces for rigid body translations. Other mass scaling techniques have
been discussed in [16], while a new bipenalty approach, whereby both the stiffness and the mass
matrix are selectively scaled, has been proposed in [17]. A rigorous variational framework has
been presented in [18], where different types of selective mass scaling formulations, preserving
both translational and rotational inertia in rigid body motions, are obtained from a penalized
mixed Hamilton’s principle. In the functional, displacements, velocities and momenta appear as
independent fields and are discretized using different trial functions. The relations between the three
fields are enforced by means of penalization factors in the functional. It is shown how the approach
in [15] can be obtained as a special case, therefore proving its variational consistency. At the same
time, other forms of selectively scaled consistent mass matrices are derived, which are shown to
provide superior performances in the investigated examples. Both local and global selective mass
scaling strategies, have been studied in [19]. Rigorous criteria for optimality have been formulated,
both in terms of accuracy and in terms of computational effectiveness in the case of linearized
elasto-dynamics and a mass scaling preserving eigenmodes while leading to only small fill-in of the
scaled mass matrix has been proposed.

A common problem of all these formulations is that they lead to a non-diagonal mass matrix,
thus compromising the fully explicit nature of the algorithm. The issue of preserving the diagonal
structure of the mass matrix after selectively scaling its entries has been addressed in [20].
Starting from a classical 8-node brick element with trilinear displacement interpolation, the solid-
shell displacement dofs are linearly transformed into average displacements (i.e. representing
displacements of the middle surface) and difference displacements (i.e. representing the difference
between displacements of the shell upper and lower surfaces). The resulting element is kinematically
equivalent to the original brick and possesses the same eigenfrequencies. The advantage is that it
is now possible to artificially increase the masses pertinent to the difference dofs while leaving
unaltered those relative to the average ones. In this way, the inertia of the resulting element
associated to translational rigid body motions does not change, while the highest eigenfrequencies
decrease. In the case of an arbitrarily distorted element, the mass matrix of the transformed element
is not diagonal even when the mass matrix of the original element is lumped. However, it is almost
diagonal (i.e. extra-diagonal entries are small if compared to the diagonal ones) so that it can be
easily lumped. This mass scaling approach is conceptually similar to what is usually done with
classical shell elements, as mentioned above, and to what has been proposed in [21] for solid-like
shells. The advantage of the procedure proposed in [20] is that it provides a consistent transformation
also for the stiffness matrix, allowing for the formulation of the element eigenvalue problem that is
required for the accurate computation of the maximum eigenfrequency. The positive effects of the
selective mass scaling approach presented in [20] have been assessed also in the study discussed in
[13]. It is also worth mentioning the geometric scaling approach used in several works [22, 23, 24]
to improve the conditioning of the stiffness matrix of thin solid-shells in implicit approaches and
to reduce in this way the computational burden associated to the use of iterative solvers. In these
works, the scaling consisted of increasing the thickness so as to make it reach a length comparable to
the element in-plane dimensions. As it will be discussed later, selective mass scaling and thickness
scaling can be shown to produce similar effects on the element highest eigenfrequency.

After mass scaling is applied, one remains with the problem of computing the largest stable time
step, i.e. the largest element eigenfrequency, in an efficient way. For uniform density elements (i.e.,



without selective mass scaling), the largest eigenfrequency is usually estimated using Gershgorin’s
theorem [25], which provides a rigorous upper bound, or using one of the strategies specifically
devised for explicit finite element applications (see e.g. [26, 27]). However, in [20] it has been
shown that these simple estimates cannot be satisfactorily used when the mass matrix has been
selectively scaled, since they lead to overly large upper bounds on the largest eigenfrequency.
To address this issue, in [20] the eigenvalue problem of a solid-shell element of parallelepiped
shape was solved analytically. For a parallelepiped, ωemax has been shown to correspond to the
uniform normal-strain deformation mode [26] given by a uniform thickness contraction/expansion
(assuming that the thickness is the element smallest dimension), while an analytical solution for
an arbitrarily distorted element could not be achieved. The value computed for a parallelepiped
was used to obtain a reasonable estimate also for slightly distorted elements, but for arbitrarily
distorted solid-shell elements with selectively scaled masses, the problem of the determination of
the maximum eigenfrequency remained open.

In explicit finite element analyses, elements based on reduced integration are preferred in most
cases in view of their smaller computational cost. To better represent the bending behavior, in solid-
shell elements reduced integration is applied only in in-plane directions, while several Gauss points
are commonly used in thickness direction. Since reduced integration has the effect to reduce the
element stiffness with respect to certain deformation modes, a modification of the eigenfrequency
spectrum is expected when compared to the corresponding fully integrated element. In the case of
arbitrarily distorted elements, simple estimates of the element maximum eigenfrequency have been
provided in [26] for uniform density, constant strain (i.e. with one quadrature point) quadrilaterals
and hexahedra. However, these estimates are not accurate enough when masses are selectively scaled
and need be revised.

The selective mass scaling approach proposed in [20] for parallelepiped or slightly distorted
elements is here generalized to arbitrary distortions and its connection with element thickness
scaling is shown in a rigorous way. A procedure for a computationally effective estimate of the
largest eigenfrequency for a solid-shell element with masses selectively scaled according to this
approach, is also proposed. The procedure closely follows the original approach of Flanagan and
Belytschko [26] for constant strain brick elements, adapting it to the case of scaled masses.

The considered mass scaling preserves the element translational inertia, while it modifies the
rotational one, leading to errors in the kinetic energy when the motion rotational component is
dominant. The error has been rigorously assessed for an individual element and a simple formula
for its estimate has been derived. In applying selective mass scaling, one also has to devise a strategy
for the definition of the scaling parameter, accounting for the conflicting objectives of preserving
accuracy (i.e. small scaling) and maximizing the critical time step (i.e. large scaling). This issue
has been dealt with in [13], where a simple empirical strategy has been proposed, based on the
asymptotic computation of the maximum eigenfrequency that would be obtained for an infinite
value of the scaling parameter. The issue of the definition of the optimal choice of the scaling
parameter is also discussed in this paper and a simple procedure is proposed, which exploits the
analogy between mass and geometric scalings. The approach is validated through numerical tests
where the solid-shell element recently proposed in [28, 8] has been used as a reference.

1.1. Notation

The tensor double contraction symbol “:” will be used here in an unconventional way to denote the
following matrix operation. Let A and B be two matrices with n rows and m columns. Then

A
n×m

: B
n×m

=

n∑
i=1

m∑
j=1

AijBij = B : A (4)

The following identity can then be easily verified:

A
n×p

CT

p×m
: ( B
n×m

) = A : (BC) (5)



Figure 1. Reference parallelepiped element with square bases.

Setting n = m and B = I, I being the n× n identity matrix, one recovers the matrix operation
corresponding to the trace of a square matrix:

A
n×p

: C
n×p

= ACT : I (6)

In analogy with the corresponding tensor notation, the single contraction symbol “·” will be used in
the case of matrices having only one column (m = 1). Then, if u and v are column vectors with n
rows, one has

u
n×1
· v
n×1

=

n∑
i=1

uivi = uT
1×n

v
n×1

= vT
1×n

u
n×1

(7)

Furthermore, if one defines vn×1 = Vn×m Nm×1, one obtains

u
n×1
· v
n×1

= u · (VN) = u
n×1

NT

1×m
: V
n×m

= VT

m×n
u
n×1
· N
m×1

(8)

Finally, the following notation will be used to denote surface and volume integrals in the element
intrinsic coordinate space∫

�

dξdηdζ, =

∫ 1

−1

∫ 1

−1

∫ 1

−1

dξdηdζ,

∫
�
dξdη =

∫ 1

−1

∫ 1

−1

dξdη (9)

2. SELECTIVE MASS SCALING FOR SOLID-SHELL ELEMENTS

2.1. Element geometry

Solid-shell elements are solid brick elements characterized by a dimension, the thickness, which is
smaller than the other two. In view of this geometric characteristics, it is here assumed that it is
possible to unambiguously identify the element upper and lower faces. In the case of distorted
elements, a more rigorous definition of the thickness principal direction will be given later in
this section. The usual isoparametric geometry description will be adopted to account for element
distortion with respect to the parent cube of size 2× 2× 2.

Let ξT = [ξ, η, ζ] be a set of intrinsic coordinates, with origin in the centroid of the parent cube
and ξa the intrinsic coordinates of node a, a = 1 . . . 8. Let ξ� define the matrix collecting vectors
ξa, i.e.

ξ�
3×8

= [ξ1 · · ·ξa · · ·ξ8]

 −1 1 1 −1 −1 1 1 −1
−1 −1 1 1 −1 −1 1 1
−1 −1 −1 −1 1 1 1 1

 , ξ�ξ
T
�

= 8I3 (10)



where I3 is the 3× 3 identity matrix. It is assumed that ζ is the coordinate in the thickness direction.
Let X be the 3× 8 matrix containing as columns the element nodal coordinates Xa, a = 1, . . . 8
with respect to a fixed reference frame

X
3×8

=

[
X1 · · ·Xa

3×1
· · ·X8

]
=

[
X1−4

3×4
X5−8

3×4

]
(11)

Element nodes are ordered as shown in Figure 1, where a parallelepiped element with square bases
is shown. The thickness is easily identified as the smallest dimension. Nodes 1-4 define vertices of
the lower element surface, while nodes 5-8 define vertices of the upper one. The coordinates of a
point belonging to an arbitrarily distorted element Ωe can then be expressed through the geometry
mapping

x
3×1

(ξ) = X
3×8

N
8×1

(ξ), N = [N1 · · ·Na · · ·N8]T (12)

where Na = 1
8 (1 + ξξa)(1 + ηηa)(1 + ζζa) are the usual trilinear interpolation functions. The

element volume is given by

V =

∫
Ωe
dΩ =

∫
�

|det[J(ξ)]|dξdηdζ (13)

where J(ξ) is the Jacobian matrix of the geometry mapping

J
3×3

(ξ) =
∂x

∂ξT
=

[
∂x

∂ξ

∂x

∂η

∂x

∂ζ

]
= X

3×8

∂N

∂ξT
8×3

= X

[
∂N

∂ξ

∂N

∂η

∂N

∂ζ

]
(14)

Let the element distortion be interpreted as a deformation process from the parent cubic
configuration to the current distorted geometry. In this way ξ and x represent the original and current
configurations, respectively, while J(ξ) is the deformation gradient. The principal directions of the
Cauchy deformation tensor c = J−TJ−1, corresponding to the inverse of the left Cauchy–Green
(or Finger) deformation tensor b = JJT , define the directions of principal stretch in the current
configuration.

Let

c =

3∑
i=1

γ2
i ti ⊗ ti (15)

define the spectral decomposition of c, with γ2
1 ≤ γ2

2 ≤ γ2
3 . The eigenvector t3 associated to the

maximum eigenvalue γ2
3 defines the direction of maximum shortening in the current configuration.

Since it is assumed that the element thickness is significantly smaller than the in-plane dimensions,
t3 locally defines the thickness direction, which however may vary from point to point within the
same element. A unique definition is obtained in the case of an underintegrated element (one Gauss
point), which will be considered in Section 3.2, since J−TJ−1 becomes constant. In this case, t3

can be identified as the element principal thickness direction.
In shell elements it is convenient to express the geometry in terms of the element middle surface.

For solid-shell elements this can be done by defining middle surface nodes of coordinates Xm,
where

X
3×4

m =
X1−4 + X5−8

2
(16)

It is also useful to define the element “fibers” as the segments connecting points corresponding to
each other on the element upper and lower surfaces. Corner fibers are then defined as 2∆X where

∆X
3×4

=
X5−8 −X1−4

2
(17)

The relation between element nodal coordinates X and middle surface nodes and corner fibers
X̂ can be synthetically expressed defining the transformationcoordinates gathered in matrix



operator Q:

X = [X1−4 X5−8] = X̂
3×8

Q
8×8

= [Xm

3×4
∆X
3×4

]

[
I4 I4

−I4 I4

]
X̂ =

1

2
XQT with QQT = 2I8 and Q−1 =

1

2
QT

(18)

where I4 and I8 are the 4× 4 and 8× 8 identity matrices, respectively. The element geometry and
the geometry mapping can also be expressed in terms of middle surface coordinates Xm and corner
fibers ∆X

x(ξ) = XN(ξ) = X̂QN(ξ) = X̂N̂ (19)

with

N̂
8×1

(ξ) =

[
Nm

4×1
(ξ)

∆N
4×1

(ξ)

]
= QN(ξ) =

[
N1−4 + N5−8

−N1−4 + N5−8

]
=

[
Nm(ξ, η)
ζNm(ξ, η)

]
(20)

where Nm
c = 1

4 (1 + ξξc)(1 + ηηc), c = 1, . . . 4. Note that unlike the transformed coordinates, the
transformed shape functions do not exhibit the 1/2 term which appears in (16) and (17). The
Jacobian takes the form:

J(ξ) = X
∂N

∂ξT
= X̂Q

∂N

∂ξT
= [Xm ∆X]

∂

∂ξT

[
Nm(ξ, η)
ζNm(ξ, η)

]
=

=

[
(Xm + ζ∆X)

∂Nm

∂ξ
(Xm + ζ∆X)

∂Nm

∂η
∆XNm

] (21)

Using Laplace’s determinant expansion of a matrix, the determinant of J can be expressed in the
form

det[J(ξ)] = J(ξ, η) + ζJζ(ξ, η) + ζ2Jζζ(ξ, η) (22)

where

J = det

[
Xm ∂Nm

∂ξ
Xm ∂Nm

∂η
∆XNm

]
Jζ = det

[
Xm ∂Nm

∂ξ
∆X

∂Nm

∂η
∆XNm

]
+ det

[
∆X

∂Nm

∂ξ
Xm ∂Nm

∂η
∆XNm

]
Jζζ = det

[
∆X

∂Nm

∂ξ
∆X

∂Nm

∂η
∆XNm

] (23)

Without loss of generality, det[J(ξ)] will be assumed to be strictly positive in Ωe, excluding in this
way singular geometry transformations and orientation changes. Using the expression (22) of the
Jacobian determinant, the element volume becomes

V =

∫
�

det[J(ξ)]dξdηdζ =

∫
�

{∫ 1

−1

[
J(ξ, η) + ζJζ(ξ, η) + ζ2Jζζ(ξ, η)

]
dζ

}
dξdη =

=

∫
�

[
2J(ξ, η) +

2

3
Jζζ(ξ, η)

]
dξdη

(24)

In the case of a parallelepiped distortion, it is easy to verify that both Jζ and Jζζ vanish, J is
constant and the element volume is completely determined by J = V/8, while, in the case of an
arbitrary distortion, Jζ and Jζζ are in general non-zero, even though they become smaller and
smaller with respect to J as the thickness decreases.

It is also of interest to compute the area A of the element middle surface, defined as the surface
at ζ = 0. This is given by

A =

∫
�

∥∥∥∥∂x

∂ξ
× ∂x

∂η

∥∥∥∥
ζ=0

dξdη =

∫
�
j(ξ, η)dξdη (25)

where j(ξ, η) is the Jacobian of the surface transformation from the parent square to the distorted
configuration.



2.2. Element equivalent nodal forces

Let u(x) denote the displacement field. According to the isoparametric paradigm, u(x) is
interpolated over the element in terms of its nodal values U

3×8
by the same shape functions used

for the geometry, i.e. u(x(ξ)) = UN(ξ). The matrix B
3×8

(x(ξ)) gathering the spatial gradients of

nodal shape functions is defined as

B(x(ξ)) =
∂NT (x)

∂x
= J−T (ξ)

∂NT (ξ)

∂ξ
(26)

Under the assumption of infinitesimal strains, the strain field over the element is defined by

ε
3×3

(x) =
1

2

[
UBT (x) + B(x)UT

]
(27)

Noting that, for an isotropic linear elastic material, the trace of ε can be expressed as

I3 : ε =
1

2

[
(I3B) : U + (BT I3) : UT

]
= B : U (28)

the stress field is obtained as

σ = λ(B : U)I3 + µ(UBT + BUT ) (29)

where λ and µ are Lame’s constants.
The equivalent internal nodal forces F

3×8

int are obtained in the usual way considering a virtual

displacement δu(x) = δUN(x) and the corresponding virtual strains δε(x):

δU : Fint =

∫
Ωe
δε : σ dΩ =

∫
Ωe
δUBT : σ dΩ = δU :

∫
Ωe
σB dΩ ∀δU (30)

Defining as ü(x) = ÜN(x) the discretized acceleration field, the equivalent inertia nodal forces
are similarly obtained as

−δU : Fi =

∫
Ωe
ρ δu(x) · ü(x) dΩ =

∫
Ωe
ρ(δUN(x)) · (ÜN(x)) dΩ

= δU :

[
Ü

∫
Ωe
ρN(x)NT (x) dΩ

]
= δU : Ü M

8×8
∀δU

(31)
The integral in (31) defines the consistent mass matrix M. Its lumped version M̄, to be used in
explicit dynamics applications, can be obtained using one of the several approaches available in
the literature. The simplest lumping procedure, and the one which will be adopted in this work,
consists of placing the row sum of the terms in NNT in (31) as diagonal entries and setting to
zero the extra-diagonal terms (see e.g. [27]). Taking into account the partition of unity property of

N, this amounts to replace NNT by diag[Na

8∑
b=1

NT
b ] = diag[Na]. This procedure guarantees the

correct energy representation in translational rigid body motions, i.e., defining as δUtr

3×8
= δ utr

3×1
1
T
8

1×8

the nodal displacements corresponding to a translational rigid body motion, with δutr = const and
18 = [1 1 1 1 1 1 1 1]T , one has:

−δUtr : F̄i = δUtr :

[
Ü

∫
Ωe
ρN(x)NT (x) dΩ

]
= δUtr :

[
Ü

∫
Ωe
ρ diag[Na] dΩ

]
= δUtr : ÜM̄ ∀δUtr = δutr 1T8

(32)



where the bar superposed to Fi means that the inertia forces are obtained through a lumped mass
matrix. This can be easily shown by noting that

δUtr :

[
Ü

∫
Ωe
ρN(x)NT (x) dΩ

]
= δutr ·

[
Ü

∫
Ωe
ρNNT

18 dΩ

]
∀δutr (33)

Since NT
18 = 1 and N = diag[Na]18, one finally obtains (32). Other lumping techniques, such as

the HRZ [29], can be also considered in combination with the proposed mass scaling technique,
without substantial modifications of the conceptual approach.

2.3. Degrees of freedom transformation and selective mass scaling

The same linear transformation used in (16) and (17) for nodal coordinates is used for nodal
displacements

Û
3×8

=

[
U

3×4

m ∆U
3×4

]
= UQ−1, U = ÛQ (34)

Applying the linear transformation (34), the internal nodal forces Fint in (30) are transformed
accordingly as

δU : Fint = δÛ : F̂int = δÛ :

∫
Ωe

[
λ(Û : B̂)B̂ + µ(ÛB̂T + B̂ÛT )B̂

]
dΩ ∀δÛ (35)

where

F̂int = FintQT , B̂ = J−T
[
∂(Nm)T

∂ξ

∂(ζNm)T

∂ξ

]
= BQT (36)

The inertia nodal forces F̄i are transformed in a similar way:

− δU : F̄i = −δÛ : ˆ̄Fi = δÛ :

[
¨̂
U

∫
Ωe
ρQ diag[Na(x)]QT dΩ

]
∀δÛ, a = 1, . . . 8 (37)

with
ˆ̄Fi = F̄iQT ,

¨̂
U = ÜQ−1 (38)

Taking into account the expression (18) of Q and (22) of det[J], assuming that ρ = ρ(ξ, η) and
recalling from (20) that N1−4 + N5−8 = Nm, −N1−4 + N5−8 = ζNm, the inertia forces ˆ̄Fi in
(37) can be written as

− ˆ̄Fi =
¨̂
U

∫
�
ρ

{∫ 1

−1

[
diag[Nm

c ] ζdiag[Nm
c ]

ζdiag[Nm
c ] ζ2diag[Nm

c ]

] (
J + ζJζ + ζ2Jζζ

)
dζ

}
dξdη

=
¨̂
U

∫
�

2ρ

 (J + Jζζ

3

)
diag[Nm

c ] Jζ

3 diag[Nm
c ]

Jζ

3 diag[Nm
c ]

(
J + Jζζ

3

)
diag[Nm

c ]

 dξdη =
¨̂
U ˆ̄M

(39)

where subscript c = 1, . . . 4 runs over the four middle surface element corners.
The mass matrix ˆ̄M

8×8
in (39) is not diagonal. As already noted, for a parallelepiped element

Jζ = Jζζ = 0 and the extra-diagonal blocks disappear. For solid-shell type distortions, where the
thickness is small compared to the in-plane dimensions, the extra-diagonal terms are small compared
to the diagonal ones and can be neglected, obtaining again a diagonal mass matrix:

− ¯̄̂
Fi =

¨̂
U

∫
�

2ρ

(
J +

Jζζ

3

)[
diag[Nm

c ] 0
0 diag[Nm

c ]

]
dξdη =

¨̂
U

¯̄̂
M (40)

The second bar over ˆ̄Fi and ˆ̄M in (40) means that the extra-diagonal terms of the transformed
lumped mass matrix have been discarded.



Neglecting extra-diagonal terms does not compromise the correct representation of energy
for translational rigid body motions, even though it implies slight modifications of the element
spectrum, if compared to the original element with lumped mass matrix. The modification on the
squares of the highest and lowest eigenfrequencies can be bounded using the Rayleigh quotient.

Let ω̄2
max and ¯̄ω2

max be the maximum eigenvalues with lumped M̄ (or equivalently ˆ̄M, since the
linear dofs transformation (34) does not alter the element spectrum) and with lumped-diagonalized
¯̄̂
M mass matrices, respectively, and let ˆ̄V and

¯̄̂
V be the corresponding eigenvectors. The eigenvalues

can be expressed as

ω̄2
max =

ˆ̄V : F̂int( ˆ̄V)

ˆ̄V : ˆ̄Fi( ˆ̄V)
, ¯̄ω2

max =

¯̄̂
V : F̂int(

¯̄̂
V)

¯̄̂
V :

¯̄̂
Fi(

¯̄̂
V)

(41)

Using the extremal property of Rayleigh quotient, one has that

¯̄ω2
max ≥

ˆ̄V : F̂int( ˆ̄V)

ˆ̄V :
¯̄̂
Fi( ˆ̄V)

= ω̄2
max

ˆ̄V : ˆ̄Fi( ˆ̄V)

ˆ̄V :
¯̄̂
Fi( ˆ̄V)

ω̄2
max ≥

¯̄̂
V : F̂int(

¯̄̂
V)

¯̄̂
V : ˆ̄Fi(

¯̄̂
V)

= ¯̄ω2
max

¯̄̂
V :

¯̄̂
Fi(

¯̄̂
V)

¯̄̂
V : ˆ̄Fi(

¯̄̂
V)

(42)

Taking into account that the two mass matrices have the same diagonal entries, using these
inequalities the relative difference between the two eigenvalues can be bounded as follows

− 2
¯̄Vm : Fim(∆ ¯̄V)

¯̄̂
V :

¯̄̂
Fi(

¯̄̂
V)

≤ ω̄2
max − ¯̄ω2

max

ω̄2
max

≤ −2
V̄m : Fim(∆V̄)

ˆ̄V :
¯̄̂
Fi( ˆ̄V)

(43)

with
V̂ = [Vm ∆V], F̂i = [Fim ∆Fi]

Vm : Fim(∆V) = Vm : ∆V

∫
�

2

3
Jζρdiag[Nm

c ]dξdη c = 1, . . . 4
(44)

Excluding the eigenvectors associated to zero eigenvalues and following the same path of reasoning
as above, a similar delimitation can also be constructed for the element minimum eigenvalues. These
bounds turn out to be very tight and the gap rapidly decreases with the thickness, as it can be verified
by means of the following numerical investigation.

Let Ωp2, Ωp5, Ωp10 be three parallelepiped 8-node elements with in-plane dimensions equal
to 5 mm and with thicknesses equal to 5

2 , 5
5 , 5

10 mm, respectively. Let X̂p2, X̂p5, X̂p10 be
the matrices of the 24 transformed nodal coordinates of each element, expressed with respect
to the element centroid. For each thickness, a population of 10000 coordinates perturbation
matrices dr

3×4
and ∆dr1−4

3×4

, ∆dr5−8
3×4

, r = 2, 5, 10 has been randomly generated. While −1/2 Xmp ≤

dr ≤ 1/2 Xmp has been set, ∆dr1−4 and ∆dr5−8 have been constructed each one gathering
as columns four of the randomly generated vectors −hr/413 ≤∆da ≤ hr/413, a = 1, . . . 8,
where hr = 5/r is the reference parallelepiped thickness and 13 = [1 1 1]T . As a result, 10000
randomly distorted elements of coordinates Xp r

1−4 = (Xmp + dr)−
(
∆Xp r + ∆dr1−4

)
, Xp r

5−8 =

(Xmp + dr) +
(
∆Xp r + ∆dr5−8

)
for each thickness. It is easy to verify that combinations of

extreme values of these perturbations lead to significantly distorted elements, such as the one of
the type p2 shown in Figure 2. The element coordinates are reported in Table I. For each element,
the contributions of Jζ , Jζζ and J to the element volume have been computed numerically using a
5× 5× 5 Gauss point integration and the complete spectrum has been computed, considering the
following material properties: E = 1768 MPa, ν = 0.3, ρ = 3 · 103 kg/m3. The maximum values,
among the three populations of 10000 elements each, of the ratio Jζ/J and of the differences
between the maximum and minimum eigenvalues obtained with the original lumped mass matrix
M̄ and with the diagonalized one,

¯̄̂
M, are summarized in Table II.



node: 1 2 3 4 5 6 7 8
x1 -2.5401 1.9654 3.9992 -0.9892 -2.7658 0.7515 3.1159 -1.7921
x2 -3.4673 -2.0530 2.3185 1.7620 -3.6264 -2.0002 2.2406 2.0127
x3 -0.7060 -0.6628 -1.4059 -0.6439 0.7776 1.5762 1.3492 1.4014

Table I. Nodal coordinates of distorted element of family p2 in Figure 2.

Figure 2. Distorted solid-shell element of p2 family (i.e. thickness equal one half of the in-plane dimensions).

max
∣∣Jζ/J∣∣ max

∣∣∣ ω̄2
min− ¯̄ω2

min

ω̄2
min

∣∣∣ max
∣∣∣ ω̄2

max− ¯̄ω2
max

ω̄2
max

∣∣∣
p2 0.3021 0.0460 0.0269
p5 0.1173 0.0114 0.0021
p10 0.0639 0.0024 0.0002

Table II. Comparison between max and min element eigenvalues using M̄ and
¯̄̂
M within considered

population of randomly distorted 3× 10000 elements.

In conclusion, the diagonalization of the the transformed lumped mass matrix ˆ̄M produces only
negligible variations of the element spectrum, much smaller than those implied, e.g., by the initial
mass lumping with respect to the original consistent mass matrix. Since the eigenfrequencies are
the square roots of the eigenvalues, the variations on the eigenfrequencies turn out to be about one
half of what is reported in Table II. In view of this result, the diagonal mass matrix

¯̄̂
M will be used

henceforth and the double bar over the symbol ω will be omitted to simplify the notation.
In [20], it has been shown how the element maximum eigenfrequency can be scaled down by

¯̄̂
M by a scaling factor α > 1, leading to modified nodalselectively multiplying some entries of



equivalent, selectively scaled inertia forces (
¯̄̂
Fi)α

− (
¯̄̂
Fi)α = − ¯̄̂

FiIα8 =
¨̂
U

∫
�

2ρ

(
J +

2

3
Jζζ
)[

diag[Nm
c ] 0

0 αdiag[Nm
c ]

]
dξdη =

¨̂
U

¯̄̂
Mα (45)

where Iα8 is defined as

Iα8 =

[
I4 0
0 αI4

]
(46)

The same type of selective mass scaling will be adopted also in the present paper. However, in [20]
only parallelepiped elements were considered. In the present work, the proposed selective mass
scaling will be applied to arbitrarily distorted solid-shell elements. As it will be discussed in the
next section, to obtain an analytical estimate of the scaled element maximum eigenfrequency, as in
[26] use will be made of a one Gauss point integration rule (constant strain element).

2.4. Equivalence between mass scaling and geometric scaling

An interesting interpretation of the selective mass scaling in (45) can be obtained by transferring
the scaling from the inertia forces to the internal forces. Starting from the variational form of the
equation of motion (in the simple case of free motion)

δÛ :
(

¨̂
UM̂α + F̂int

)
= 0 ∀δÛ (47)

one can rewrite the virtual work of the inertia forces as

δÛ :
¨̂
UM̂α = δÛ :

¨̂
UI
√
α

8 M̂I
√
α

8 =
(
δÛ I

√
α

8

)
:
(

¨̂
UI
√
α

8

)
M̂ = δÛ

√
α :

¨̂
U
√
αM̂ (48)

where the following definitions have been used

I
√
α

8 =

[
I4 0
0
√
αI4

]
, δÛ

√
α =

[
δUm

√
α δ∆U

]
,

¨̂
U
√
α =

[
Üm

√
α∆Ü

]
(49)

The virtual work of the internal forces is modified accordingly

δÛ : F̂int = δÛ
√
α :
(
F̂int

)1/
√
α

(50)

where
(
F̂int

)1/
√
α

= F̂intI1/
√
α

8 , with obvious definition of I1/
√
α

8 . Notice that the symbols α,
√
α and

1/
√
α in superscript position are not to be intended as exponents, but as qualifiers of the scaling

implemented on the corresponding array or matrix. Taking into account the expression (35) of F̂int

and defining B̂1/
√
α = B̂I1/

√
α

8 , Û
√
α = ÛI

√
α

8 , one finally obtains

δÛ : F̂int = δÛ
√
α :

∫
Ωe

[
λ
(
Û
√
α : B̂1/

√
α
)

I3 + µ

(
Û
√
α
(
B̂1/
√
α
)T

+ B̂1/
√
α
(
Û
√
α
)T)]

B̂1/
√
α dΩ

= δÛ
√
α :
(
F̂int

)1/
√
α

(51)
The problems (47) and

δÛ
√
α :

[
¨̂
U
√
αM̂ +

(
F̂int

)1/
√
α
]

= 0 ∀δÛ
√
α (52)

have the same eigenvalues, whereas the eigenvectors are scaled in a different way. In the latter
problem, accelerations and displacements are selectively scaled while the mass matrix is not, so that
the internal forces are scaled through a modification of the compatibility matrix B̂. In qualitative
terms, the modification of B̂ can be interpreted as an enlargement of the element in the thickness



Figure 3. Test element used for assessment of rotational error.

direction (smaller strains would be obtained for the same relative displacement). The equivalence
between selective mass and geometric scalings will be proved in more rigorous terms in the next
Section, in the case of reduced one-Gauss point integration.

The possibility to improve the stiffness matrix conditioning (or equivalently to reduce higher
eigenfrequencies) by artificially increasing the element thickness has been investigated by several
authors (see e.g. [22, 23, 24]), while in [21] Olovsson et al. proposed a direct scaling of
accelerations, leaving the mass matrix unaltered.

2.5. Error due to scaled rotational inertia

While the selective mass scaling proposed in (45) does not affect translational rigid body motions,
it does affect rigid body rotations. To asses this effect, the roto-translational motion of the
parallelepiped element of constant density ρ in Figure 3 is analyzed.

The element has a square L× L basis and thickness h. For convenience, the element sides in the
initial configuration are taken aligned with the axes of the global reference system. G is the element
centroid of coordinates XG, which is at a distance rG from the x2 axis, which is assumed to be the
rotation axis.

A rotation with constant angular velocity β̇ is considered. Rigid body rotations around x2 are
defined by the rotation matrix R

R =

 cosβ 0 − sinβ
0 1 0

sinβ 0 cosβ

 (53)

so that the displaced configuration and velocity field are obtained as

x = Rx0, u̇ = Ṙx0 (54)

where x0 denotes coordinates in the original configuration and

Ṙ = β̇

 − sinβ 0 − cosβ
0 0 0

cosβ 0 − sinβ

 , ṘTR = β̇

 1 0 0
0 0 0
0 0 1

 (55)



It is convenient to adopt a reference system placed in the element centroid, such that

x0 = XG + x?0, u̇ = Ṙ(XG + x?0) (56)

where x?0 are coordinates measured with respect to the centroid.
The element kinetic energy is given by

K =
1

2

∫
Ωe
ρu̇T u̇ dΩ =

1

2

∫
Ωe
ρ
(
XT
G + x?T0

)
ṘR(XG + x?0)dΩ (57)

Noting that ∫
Ωe

x?T0 ṘRXGdΩ = 0∫
Ωe

XT
GṘRXGdΩ = β̇V0r

2
G∫

Ωe
x?T0 ṘRx?0dΩ = β̇V0

1

12
(L2 + h2)

(58)

V0 = L2h being the element volume, one obtains

K =
1

2
β̇ρV0

[
r2
G +

1

12
(L2 + h2)

]
(59)

By setting

L =
2

γ1
=

2

γ2
, h =

2

γ3
=
γ1

γ3
L =

γ2

γ3
L (60)

γ1 = γ2 and γ3 being the eigenvalues in (15), and defining γ = γ3/γ1 = γ3/γ2, one can write

K =
1

2
β̇ρV0

[
r2
G +

L2

12
(1 +

1

γ2
)

]
(61)

The discretized velocity field is expressed as

u̇ = U̇N(ξ) = Ṙ

(
XG
3×1

1
T
8 + X?

0
3×8

)
N(ξ) (62)

where X?
0 is the matrix of nodal coordinates in the element local reference system. According to

(18), the transformed nodal velocities are given by

˙̂
U =

1

2
U̇QT =

1

2
Ṙ(X̂G + X̂?

0) (63)

with
X̂G
3×8

=
1

2
XG
3×1

1
T
8

1×8
QT

8×8
= XG[2 2 2 2 0 0 0 0], X̂?

0 =
1

2
X?

0QT (64)

Using the definition of the transformed lumped mass matrix in (40) and considering that the
element is a parallelepiped, one has

¯̄̂
M = 2ρJI8 where 8J = V0 is the element volume. The

discretized kinetic energy is then given by

¯̄̂
K =

1

2
˙̂
U :

˙̂
U

¯̄̂
M =

1

2
˙̂
U :

˙̂
U(2ρJI8) (65)

Assuming the rotational motion in (54), substituting (63) in (65) and taking into account that

(ṘX̂G) : (ṘX̂G) = 4β̇2r2
G

(ṘX̂G) : (ṘX̂?
0) = 0

(ṘX̂?) : (ṘX̂?
0) = β̇2(L2 + h2)

(66)



one obtains

¯̄̂
K =

1

2
2ρJ

[
Ṙ(X̂G + X̂?

0)
]

:
[
Ṙ(X̂G + X̂?

0)I8

]
=

1

2
β̇ρV0

[
r2
G +

1

4
(L2 + h2)

]
(67)

For the considered parallelepiped, the scaled transformed lumped mass matrix (45) is given by
¯̄̂
Mα = 2ρJIα8 with the corresponding expression of the scaled kinetic energy

¯̄̂
Kα =

1

2
2ρJ

[
Ṙ(X̂G + X̂?

0)
]

:
[
Ṙ(X̂G + X̂?

0)Iα8

]
=

1

2
β̇ρV0

[
r2
G +

1

4
(L2 + αh2)

]
(68)

As expected, the adopted selective mass scaling leads to an alteration of the kinetic energy
associated to a rotational motion. The relative error with respect to the non-scaled energy is given
by

e =

¯̄̂
Kα − ¯̄̂

K
¯̄̂
K

= (α− 1)
h2

4r2
G + L2 + h2

(69)

Making use of the relation h = L/γ, the error can be rewritten as

e = (α− 1)
1

γ2
[
4
r2G
L2 +

(
1 + 1

γ2

)] (70)

For a pure rotational motion, one has rG = 0, and for thin shells (γ ≫ 1) the error is simply given
by

e = (α− 1)
1

γ2
(

1 + 1
γ2

) ≈ (α− 1)
1

γ2
(71)

and therefore it depends linearly on the mass scaling and quadratically on the element thickness to
width ratio 1/γ (note that 1/γ increases for increasing thickness).

If rG > 0, the motion is roto-translational. The term (rG/L)2 measures the relative weight of the
translational contribution to the kinetic energy with respect to the rotational one. For thin shells
(γ ≫ 1) and rG/L sufficiently large, a good estimate ē of the energy error implied by the proposed
selective mass scaling is given by

ē ≈ (α− 1)
1

4γ2
( rg
L

)2 (72)

and is negligible in most cases, as it will be shown in the numerical examples. However, it has
to be taken into account in all those cases where the motion contains a prevailing large rotational
component.

3. COMPUTATION OF ELEMENT MAXIMUM EIGENFREQUENCY

3.1. Reduced integration solid-shell elements

After selective mass scaling has been applied, one remains with the problem of computing the
critical time step size which, according to (2), can be estimated from the maximum element
eigenfrequency. In the case of distorted hexahedrical elements, an effective estimate was proposed
by Flanagan and Belytschko in [26], based on a constant strain (one Gauss point) approximation.
Clearly, reduced integration elements have a maximum eigenfrequency which is not equal to
their fully integrated counterparts. The difference can be quantitatively assessed by a numerical
investigation of the type considered in Section 2.3, based on a population of 3× 10000 randomly
distorted elements. For each element , the eigenfrequency ωmax(1×1×1), obtained using a one Gauss
point reduced integration and lumped mass matrices, has been compared with the corresponding



max
∣∣∣ωmax (1×1×1)−ωmax (5×5×5)

ωmax (5×5×5)

∣∣∣ max
∣∣∣ωmax (1×1×1)−ωmax (1×1×5)

ωmax (1×1×5)

∣∣∣
p2 0.0910 0.0050
p5 0.0891 0.0006
p10 0.1023 0.0001

Table III. Comparison between max eigenfrequencies: ωmax (1×1×1) → reduced integration rule for uniform
strain elements; ωmax (1×1×5) → reduced integration rule for solid-shell elements; ωmax (5×5×5) → full

integration rule.

eigenfrequency obtained with a 5× 5× 5 Gauss integration rule. The maximum difference, defined
as max{(ωmax (1×1×1) − ωmax (5×5×5))/ωmax (5×5×5)}, is about 10%, tending to decrease with the
thickness to in-plane dimension ratio. The sign of the difference is almost always negative, as it is
expected, since the one Gauss point element is in general less stiff than the fully integrated element.

When solid-shell elements are used in explicit dynamics analyses, a reduced integration rule
with one Gauss point in the in-plane direction and at least two Gauss points in the thickness
direction is often used to reduce the computational burden and, at the same time, to provide an
accurate description of the element bending behavior. The accuracy of the uniform strain element
estimate has been numerically assessed also in this case, using the same population of 3× 10000
distorted elements, and comparing ωmax (1×1×1) with the maximum eigenfrequency obtained using
a (1× 1× 5) integration rule, i.e. one Gauss point in the in-plane direction and 5 Gauss points
through the thickness. In this case, the maximum difference defined as max{(ωmax (1×1×1) −
ωmax (1×1×5))/ωmax (1×1×5)} is always less than 1%, for all initial aspect ratios. In conclusion,
provided that a reduction factor of 0.9 is applied to the time step size, the small error magnitude
allows to safely use the maximum eigenfrequency ωmax (1×1×1), computed for the uniform strain
hexahedron, for the determination of the stable time step size when a different type of element
is used in the actual mesh. In the specific case of reduced integration solid-shell elements, the
approximation is more favorable and a reduction of 1% only can be adopted. The obtained results
are summarized in Table III

In view of this result, the next Section will be devoted to the formulation of an effective strategy
for the computation of the maximum eigenfrequency of a solid-shell element integrated with only
one Gauss point and with masses selectively scaled according to the procedure illustrated in Section
2.3.

3.2. Equivalent internal nodal forces for one integration point

The use of only one integration point located at the element centroid, greatly simplifies the
expression of the equivalent internal nodal forces. Let the subscript 0 denote quantities evaluated at
the element centroid ξ0 = [0 0 0]T . The following definitions hold

N0 =
1

8
18,

∂NT

∂ξ

∣∣∣∣
ξ=ξ0

=
1

8
ξ�, J0 =

1

8
XξT
�
, B0 =

1

8
J−T0 ξ� (73)

where ξ� is defined in (10). The element volume in (24) is approximated as

V0 = 8J0 (74)

where J0 = J(ξ = 0, η = 0). With these definitions, the equivalent nodal forces turn out to be given
by

Fint0 = V0σ0B0 = V0

[
λ (U : B0) I3 + µ

(
UBT

0 + B0U
T
)]

B0

−F̄i0 =
V0ρ0

8
Ü

(75)

where σ0
3×3

is the constant stress field evaluated at the element centroid and, as before, a superposed

bar means mass lumping. Application of the coordinates transformation (16) and (17) and of the



definition (10) of ξ� allows to write the Jacobian operator J0 as

J0 =
1

8
XξT
�

=
1

8
X̂QξT

�
=

1

8
X̂ξ̂

T

� (76)

where ξ̂� = ξ�QT is given by

ξ̂� = 2

 −1 1 1 −1 0 0 0 0
−1 −1 1 1 0 0 0 0
0 0 0 0 1 1 1 1

 , ξ̂�ξ̂
T

� = 2ξ�ξ
T
�

= 16I3 (77)

The constant strain compatibility matrix B̂0 is defined as

B̂0 = B0Q
T =

1

8
J−T0 ξ̂�, B̂0B̂

T
0 =

1

4
J−T0 J−1

0 =
1

4
c0 (78)

If also the nodal dofs are transformed as in (34) and (35), using (18)3 and (38), transformed internal
and inertia forces Fint0 and −F̄i0 are written as

F̂int0 = V0σ0B̂0 = V0

[
λ
(
Û : B̂0

)
I3 + µ

(
ÛB̂T

0 + B̂0Û
T
)]

B̂0

− ¯̄̂
F
i

0 =
V0ρ0

4
¨̂
U

(79)

Selective mass scaling is applied as in (45), multiplying by α the lower diagonal block of the
lumped mass matrix, leading to

−
( ¯̄̂
Fi0

)α
=
V0ρ0

4
¨̂
UIα8 (80)

As in (50), the scaling can be partially transferred from the inertia forces to the internal forces,
obtaining

δÛ
√
α :

[
−
( ¯̄̂
Fi0

)√α
+
(
F̂int0

) 1√
α

]
= 0 ∀δÛ

√
α (81)

where

−
( ¯̄̂
Fi0

)√α
=
V0ρ0

4
¨̂
UI
√
α

8(
F̂int0

)1/
√
α

= V0

[
λ
(
Û
√
α : B̂1/

√
α

0

)
I3 + µ

(
Û
√
α
(
B̂1/
√
α

0

)T
+ B̂1/

√
α

0

(
Û
√
α
)T)]

B̂1/
√
α

0

(82)

and
B̂1/
√
α

0 = B̂0I
1/
√
α

8 =
1

8
J−T0 ξ̂�I1/

√
α

8 (83)

Noting that

I
√
α

8 ξ̂
T

� = ξ̂
T

�I
√
α

3 , I
√
α

3 =

 1 0 0
0 1 0
0 0 √

α

 (84)

using (76), one can define

J
√
α

0 = J0I
√
α

3 =
1

8
X̂ξ̂

T

�I
√
α

3 =
1

8
X̂I
√
α

8 ξ̂
T

� =
1

8
X̂
√
αξ̂

T

� (85)

where X̂
√
α = X̂I

√
α

8 = [Xm
√
α∆X] is a vector of selectively scaled nodal coordinates, describing

an element having the same in-plane geometry, but linearly enlarged in the thickness direction.
Using the result in (85) and the definition in (83), matrix B̂1/
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so that the selectively scaled internal forces
(
F̂int0

)1/
√
α

in (82) can be viewed as obtained from an
element with enlarged geometry in the thickness direction. This observation allows to establish an
equivalence between the mass scaling and an increase of the element thickness, a concept which
will be used in the next sections for the definition of the optimal value of the scaling parameter.



3.3. Formulation of the eigenvalue problem

Considering the eigenvalue problem (81) and assuming a periodic, harmonic evolution in time of
the displacement dofs, in view of the linearity of the problem one can write

Û
√
α(t) = V̂

√
α sinωt,

¨̂
U
√
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√
α sinωt, σ0(t) = s0 sinωt (87)

With these definitions, the internal and inertia nodal forces become(
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and the eigenvalue problem (81) admits eigenvectors of the form
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√
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ω2ρ0
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Since B1/
√
α

0 has independent rows and is determined by the element geometry, substituting the
expression (89) of the eigenvector in the r.h.s. of (88), the eigenvalue problem can be reformulated
as the problem of finding ω2 such that
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The solution of problem (90) depends on B̂1/
√
α

0
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. According to (86)2 and (77)2, one has
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Recalling the definition (85)1 of J
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so that, according to the interpretation given in (15), B̂1/
√
α

0
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)T
= 1

4c1/α

0 turns out to be
proportional to the inverse of the left Cauchy-Green deformation tensor associated to the mapping
which transforms the parent 2× 2× 2 cube into the current distorted and scaled element. Its spectral
decomposition is given by
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Defining the matrices T1/
√
α and γ1/
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α as
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one has
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Defining S0 =
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√
α
)T

s0T
1/
√
α, equation (90) can be projected onto the principal stretch

directions by pre and post multiplying both sides by
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Problem (96) is equivalent to (90) and represents the generalization to the case of selectively scaled
masses of the simplified eigenvalue problem formulated by Flanagan and Belytschko in [26] for a
uniform strain trilinear 8-node solid element. The inverse of the maximum eigenvalue γ1/

√
α

3 defines
the shortening of element fibers in the thickness direction and its corresponding eigenvector t1/

√
α

3

defines the thickness effective orientation, which is in general not clearly defined for an arbitrarily
distorted element. Following [26, 20], the maximum eigenvalue ω2

max of problem (96) corresponds
to an extensional vibration mode in the thickness direction, and can be obtained by solving (96)
with S0 describing a purely normal stress state

S0 =

 S1 0 0
0 S2 0
0 0 S3

 (97)

Defining for notation simplicity χi =
(
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√
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)2

, with χ1 ≤ χ2 ≤ χ3, problem (96) can be rewritten
as  S1

S2

S3

 =
1

ω2ρ0

 (λ+ 2µ)χ1 λχ2 λχ3

λχ1 (λ+ 2µ)χ2 λχ3

λχ1 λχ2 (λ+ 2µ)χ3

 S1

S2

S3

 (98)

or, in terms of the more used Poisson’s coefficient ν instead of Lamé’s constant λ:
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The characteristic equation of problem (99) is given by the following cubic equation
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where f is a function of ω2 parameterized by the value of α and

I1/α1 = χ1 + χ2 + χ3

I1/α2 = χ1χ2 + χ2χ3 + χ1χ3

I1/α3 = χ1χ2χ3

(101)

are the invariants of c1/α
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equation (100) depends directly on the invariants, the spectral decomposition of B1/
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is not required in practice. These invariants depend only on the element geometry and on the mass
scaling parameter, which is embedded in B1/

√
α

0 , as it is clearly shown by equation (83), and can be
easily computed for each element in the mesh.

Equation (100) shows that, in the present one-Gauss-point approach, the element maximum
eigenfrequency depends only on the mass scaling and on the principal values γi. This means that
different elements, with different distortions, but characterized by the same γi, lead to the same
stable time step. It is therefore difficult to establish a connection between element distortion and
maximum eigenfrequency.



Figure 4. Decrease of max eigenfrequency ωmax for increasing scaling factor α and optimal values of scaling
factor: rigorous estimate αopt = 2.68, dots; simplified estimate αopt = 4.07, dashes.

3.4. Optimal value of mass scaling parameter

On the basis of equations (100) and (2), the problem of the definition of the critical time step
is reduced to the computation of the largest root of the third order equation (100). This however
requires the definition of the scaling parameter α. Furthermore, one has to take into account that in
large deformation problems, where the linear stability criterion (2) is usually applied in conjunction
with a safety reduction factor and an energy stability check, when the element geometry changes
significantly during the deformation process, ωmax has to be computed repeatedly for each element,
so that the analytical solution of (100) turns out to be too expensive.

The decrease of ωmax for increasing α is shown in Figure 4 for the element of the p2 family of
Section 2.3, shown in Figure 2. It can be seen that for small values of α there is a significant gain,
which decreases rapidly for moderate values of α. For large values of α, ωmax tends asymptotically
to a constant value ω∞, which can be easily computed by letting α→∞ in f

(
ω2;α

)
in (100).

ω∞ represents a lower bound on ωmax, which can be approached only at the cost of very large
mass scaling, with consequent loss of accuracy in the description of the structural motion. In [13],
it was empirically proposed to take ωtarget = ω∞/0.9 as a target value and to compute α from
f
(
ω2
target;α

)
= 0.

A more rationale criterion for the definition of α can be obtained by considering the equivalence
between mass and geometric scalings proved in (86). It has been shown that the maximum
eigenfrequency is associated to the thickness vibration mode and that it increases linearly with
the inverse of the thickness. On the other hand, for a perfectly cubic element, the three roots of
(100) are identical. This consideration naturally leads to the formulation of a simple criterion for the
selection of the optimal value of the scaling parameter: the optimal scaling αopt should be the one
making the thickness to become of a size comparable with the in-plane dimensions. For a highly
distorted element, a rigorous procedure would consists of carrying out the spectral decomposition
(15) of c0, where c0 is defined in (78), choosing the direction of t3 as the thickness direction and
setting αopt = (γ3/γ2)

2 for each element e. This computation has to be carried out only once, before
starting the analysis, and therefore is not computationally invasive.

As an alternative, the following simplified inexpensive approach can be followed. For each
element, define approximate in-plane dimensions and thickness L1, L2, h0, respectively, as the
distances between the centroids of element faces, i.e.:

L1 = ‖x(1, 0, 0)− x(−1, 0, 0)‖, L2 = ‖x(0, 1, 0)− x(0,−1, 0)‖, h0 = ‖x(0, 0, 1)− x(0, 0,−1)‖
(102)



Then set

αopt =
L2
min

h2
0

, Lmin = min{L1, L2} (103)

The two estimates would provide the same result for a parallelepiped element. As shown in Figure
4, using (103) for the significantly distorted and relatively thick element of the p2 family in Figure
2, one obtains a moderate mass scaling factor αopt = 4.07, while the rigorous procedure based on
the spectral decomposition (15) provides αopt = 2.68. Much higher values are obtained for thinner
elements, as it will be shown in the numerical examples.

For this particular type of distortion, the two estimates are significantly different, but looking at
the plot in Figure 4, one can see that in both cases αopt defines a maximum eigenfrequency well
within the curved part of the plot. A numerical study, considering the three families of distorted
elements defined in Section 2.3, shows that the average difference between the two estimates is
about 10-13%, depending on the reference thickness.

Considering the estimate in (103), it is interesting to note that, in view of the adopted one-Gauss-
point integration, all elements having the sameL1,L2, h0 measuring orthogonal segments, no matter
what is their distortion, have the same γ1, γ2, γ3 and, hence, the same ωmax. In other words, if a
parallelepiped element of edges L1, L2, h0 is distorted in such a way that the segments connecting
the centroids of its opposite facets do not change in length and remain orthogonal, then its ωmax
remains the same.

After the optimal value of α has been defined, one has to compute ωαmax in an accurate and
inexpensive way for each element in the mesh, whenever the element distortion is such to require
a new computation. As an initial tentative value of ωαmax for a given element, an upper bound ωαG
on the element maximum eigenfrequency can be computed using Gershgorin’s estimate applied to
the eigenvalue problem (99). According to Gershgorin’s theorem [25], an upper bound on a matrix
maximum eigenvalue is given by the maximum value obtained by summing up the modules of the
entries of each row of the matrix. In the case of the matrix in (99), this gives

ω2
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Since the matrix is not symmetric, a different estimate could be obtained also by summing up the
modules of the entries of each column. However, it can be shown that for the matrix in (99) the
sharper bound is always given by the row sum, which is therefore used hereafter. The bound in
(104) can be overly large for practical use. A sharper bound can be easily obtained performing a
Newton-Raphson iteration on the characteristic equation f

(
ω2;αopt

)
, starting from the initial value

ω2
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The estimate in (106) is still an upper bound, and hence conservative as far as time integration
stability is concerned, and is rather sharp and less expensive than the analytical solution of the
cubic equation in (100). An example of the iterative procedure applied to the element in Figure 2
with α = 2.68 is shown in Figure 5, where the following values have been obtained: ω2

G = 0.749
s−2, ω2

N−R = 0.677 s−2, ω2
exact = 0.655 s−2, with a final error from above of 1.7% on ωmax. The

numerical investigation on the 3× 10000 elements of Section 2.3 gives a maximum error (always
from above) of about 3% for all the three element families p2, p5, p10, while the average error is of
about 1%. The procedure to be followed for the computation of ωmax is summarized in Box 1.



Figure 5. One-iteration procedure for estimate of ω2
max.

Figure 6. Rotational patch-test: distorted element patch. a) patch lower surface; b) three-dimensional view.

4. NUMERICAL EXAMPLES

4.1. Rotational patch test

In Section 2.5 it has been shown how the proposed selective mass scaling alters the rotational
inertia of a parallelepiped element. A similar result is expected also with distorted elements. To test
numerically the impact of the mass scaling in this case, the square patch of four distorted elements
shown in Figure 6 is considered. Other types of patch tests, specifically conceived for testing mass
matrices, have been proposed in [30], chapt. 5.

The test setup is as in Section 2.5, i.e. the patch is forced to rigidly rotate around the x2 axis with
constant angular velocity β̇ and the patch centroid G is assumed to be placed at a distance rG from
the rotation axis. The patch is a square parallelepiped with side L = 10 mm and thickness h = 1
mm (i.e. γ = L/h = 10). The distorted mesh has been obtained starting from a regular mesh of four
square elements and displacing the central nodes (5 and 14 in Figure 6) along the patch diagonal,



node X1 X2 X3

5 6.25 6.25 -0.5
14 6.25 6.25 0.5

Table IV. Rotational patch test: coordinates of central nodes.

e αeopt ∆te ᾱeopt ∆t̄e

1 25.00 7.95× 10−2 10.21 6.03× 10−2

2 19.48 7.06× 10−2 11.06 6.03× 10−2

3 19.48 7.06× 10−2 11.06 6.03× 10−2

4 14.06 6.03× 10−2 14.06 6.03× 10−2

Table V. Rotational patch test: optimal values of α and critical time step.

so that they now have the coordinates shown in Table IV. To contrast the centrifugal inertia force,
a centripetal body force of the same magnitude and opposite direction is applied to the elements
in the patch. Upon discretization, equivalent nodal forces are applied to the two unconstrained
central nodes of the patch (nodes 5 and 14 in Figure 6). For uniform angular velocity (β̈ = 0),
the acceleration field is given by

ü = R̈x0 = −β̇2

 cosβ 0 − sinβ
0 0 0

sinβ 0 cosβ

x0 (107)

where x0 defines the original configuration and R is defined in (53).
The centripetal forces are obtained on each element as

Fc = Ü

∫
Ωe
ρNNT dΩ, Ü = R̈X0 (108)

If a consistent mass matrix is used, the inertia forces are exactly compensated, and a perfectly rigid
motion, with constant kinetic energy, is obtained (to within the approximation error induced by the
central difference time integration). This is not the case if the lumped mass matrix in (40) is used.
As a consequence, a slightly oscillating kinetic energy, together with a non-zero elastic energy is
obtained. An additional error is introduced when the selectively scaled mass matrix in (45) is used.

As a first step, the optimal value αeopt of the scaling factor is computed for each element, solving
the eigenvalue problem in (15). The optimal values obtained for the four elements are shown
in the second column of Table V, together with the corresponding stable time steps ∆te. The
∆tcrit to be used for the time integration of the assembled patch is the smallest among them, i.e.
∆tcrit = min

e
∆te = ∆t4. For the three elements with ∆te ≥ ∆tcrit, the adopted mass scaling is

larger than needed, with a useless accuracy loss. To overcome the problem, for these elements αeopt
is recomputed from (100) where, this time, ω has been replaced by 2/∆tcrit, obtaining the values
ᾱeopt shown in the fourth column in Table V. In this way, the same ∆t̄e = ∆tcrit is obtained for
all elements (see ∆t̄ in the fifth column of Table V), with optimal mass scaling application. Even
though this second loop over the elements can appear computationally expensive, it should be noted
that this computation has to be carried out only once at the beginning of the analysis.

Three different cases are considered, with patch rotations assigned around three axes, parallel
to x2, at increasing distance rG from the patch centroid, with rG/L = 0.5, 2, 3.5. For the same
angular velocity, as rG/L increases, the motion translational component also increases, while the
rotational one remains constant. Snapshots of the three motions are shown in Figure 7, for the
same centroid position. The elastic energy

¯̄̂Eα − Ē generated by the mass scaling in addition to
the one due to the use of a lumped mass matrix is negligibly small if compared to the kinetic
energy (note that all these energies depend on β̇2 and therefore their ratio is independent of the



Figure 7. Rotational patch-test: patch rotation around three different axes. Snapshots at same centroid
elevations.

rG
L

¯̄̂Eα − Ē
K̄

¯̄̂
Kα − K̄

K̄
ē

0.5 1.40× 10−4 6.79× 10−2 6.47× 10−2

2 1.30× 10−5 7.42× 10−3 7.64× 10−3

3.5 4.33× 10−6 3.33× 10−3 2.60× 10−3

Table VI. Rotational patch test. Elastic and kinetic energy errors (column 2 and 3) and estimated value ē (72)
of kinetic energy error (column 4).

assigned rotation velocity), as shown in the second column of Table VI. Since the translational
motion component is purely rigid, the elastic energy depends only on the rotational part of the
motion and

¯̄̂Eα − Ē is constant for increasing ratio rG/L, while K̄ increases, implying that the
small error in column 2 tends to decrease asymptotically with the square of rG/L, as much as the
error on the kinetic energy, reported in column 3. Since the energies computed with the lumped
mass matrix are slightly oscillating, differences between maximum values are shown in columns 2
and 3 of Table VI. The error ē estimated using (72) is reported in column 4. Since α and γ in (72)
are in principle different for each element, α and γ pertaining to element 4, the one dictating the
critical time step, are used. Since in this case αopt = (γ3/γ2)2 is used, one has α = γ2 in (72) and,
hence ē = (1− α)/α · (L/4rG)2, where L = 10 mm is the length of the patch side. This is the value
reported in Table VI. It can be noted that in all cases ē provides a reasonable estimate of the order
of magnitude of the error on the kinetic energy.

4.2. Impulsively loaded cantilever: small displacements

The cantilever beam depicted in Figure 8 has been used in [13] to discuss the effectiveness of
the selective mass scaling for parallelepiped elements and it is used here with distorted elements.
The beam has a side length of l = 6000 mm and a width of w = 200 mm. Four thicknesses
are considered: h = 10, h = 25, h = 50, h = 100 mm. In the thinnest case, the element width
to thickness ratio is 20. The cantilever is made of steel. The material parameters are: E =
200000 N/mm2 (Young’s modulus), ν = 0.3 (Poisson’s ratio) and ρ = 7.5 · 10−9 Ns2/mm4 (mass
density). A constant concentrated tip load F is applied in the vertical direction, equally distributed
among the four tip nodes. To remain in the small displacement range for all thicknesses and to obtain
comparable curves, the applied load has been scaled in each case so as to obtain the same static tip
displacement: F = 500, F = 62.5, F = 7.8125, F = 0.5 N. Results are discussed in terms of the
tip displacement. As a reference, the analytical static solution is vref = 10.8 mm for all thicknesses.
The structure is discretized by means of 6 distorted Q1STs solid-shell elements [8] over the length
l. In the other two directions only one element is used (Figure 8b).
For each thickness, the simplified formula in (103) has been used to compute the optimal value of 
the mass scaling parameter for each element, while the procedure in Box 1 has been used for 
the determination of the maximum element eigenfrequency and, hence, of the critical time step  



(a)

(b)

Figure 8. Linear cantilever beam. a) Geometry and boundary conditions. b) Finite element mesh.

e h = 10 mm h = 25 mm h = 50 mm h = 100 mm
1 430.80 68.93 17.23 4.31
2 411.56 65.85 16.46 4.12
3 570.30 91.25 22.81 5.70
4 434.81 69.57 17.39 4.35
5 499.00 79.84 19.96 4.99
6 424.50 67.92 16.98 4.25

Table VII. Linear cantilever beam. Optimal values of mass scaling factor α.

h = 10 mm h = 25 mm h = 50 mm h = 100 mm
∆t(α=1) 1.67E-06 4.00E-06 8.29E-06 1.62E-05

∆t(α=αopt) 2.80E-05 2.75E-05 2.80E-05 2.80E-05
ecrit 2 2 2 2

Table VIII. Linear cantilever beam. Critical time step with and without mass scaling. ecrit denotes the
element determining the critical time step.

according to (2). The obtained values of the scaling parameter are listed in Table VII for each
element and thickness. As expected, the optimal scaling decreases as the thickness increases and
slightly varies among elements of the same thickness, depending on the different in-plane distortion.

The stable time step for the different thicknesses and with and without mass scaling is shown
in Table VIII. The critical time step is the minimum among the critical time steps associated to
individual elements. In this case, element 2 turns out to be the critical one for all thicknesses. One
can also observe that the obtained stable time step is practically the same for all thicknesses and
therefore it is determined by the element in-plane geometry only. The gain with respect to the case
of unscaled masses (compare the rows “∆t(α=1)” and “∆t(α=αopt)”), increases as the thickness
decreases, becoming larger than one order of magnitude in the thinnest case. Despite the large
mass scaling, which in the thinnest case is more than 400, the accuracy loss is negligible. Figure
9a shows the curves obtained for the different thicknesses in terms of tip displacement. Due to
the reduced stiffness, the beam first eigenperiod increases linearly with the thickness reduction. To
obtain a thickness independent response, the same curves are plotted in Figure 9b, against a time
scaled by the beam first eigenperiod T . The curves are superposed and no effects of the scaling
can be observed. In conclusions, the proposed selective mass scaling produces only negligible
modifications of the structure dynamical response in the case of small displacements and rotations.



(a) (b)

Figure 9. Linear cantilever beam. (a) Tip displacement for varying thickness and mass scaling. (b) Same as
(a) with scaled time. Mass scaling parameters values are reported in Table VII.

h = 10 mm h = 25 mm h = 50 mm h = 100 mm e
αmaxopt 146.67 23.47 5.87 1.47 13
αminopt 39.00 6.24 1.56 1.00 15

Table IX. Large displacement cantilever beam. Maximum and minimum values of αopt.

4.3. Impulsively loaded cantilever: large displacements

To test the loss of accuracy implied by the selective mass scaling in the case of large displacements,
a cantilever beam subjected to a much higher load F = 3600 N is considered. The test setup is the
same as in Figure 8, but in this case dimensions l = 2000 mm, w = 200 mm and h = 10, 25, 50, 100
mm have been considered, and the distorted mesh in Figure 10, with two Q1STs solid-shell elements
along the width and ten along the length, has been used. The different geometry has been chosen in
order to test the effect of mass scaling in the presence of more severe element distortion.

Figure 10. Large displacement cantilever beam. Finite element mesh.

In the thickest beam (h = 100 mm), for many elements (9-14, 16-18, 21-26) the smallest in-
plane dimension is smaller than the thickness and the resulting αopt is equal to one. The highest
value resulting from the application of the simplified procedure in (103) is for element 13, with
αopt = 1.47. Maximum and minimum values of αopt for the different thicknesses, are reported in
Table IX, together with the corresponding element number.

The stable time step for the different thicknesses, with and without mass scaling is shown in Table
X. In the case h = 100 mm, the critical time step remains unchanged. This is due to the fact that
the critical time step is dictated by element 15 and, for this element, an in-plane dimension is the
smallest one. Therefore, αopt = 1 is used, so that no mass scaling is applied. Since a finer mesh is
used in this case, the gain in terms of time step size is much smaller than in the previous example.



h = 10 mm h = 25 mm h = 50 mm h = 100 mm
∆t(α=1) 1.66E-06 3.88E-06 6.97E-06 8.48E-06

∆t(α=αopt) 7.75E-06 7.75E-06 7.75E-06 8.48E-06
ecrit 15 15 15 15

Table X. Large displacements cantilever beam. Critical time step with and without mass scaling. ecrit
denotes the element determining the critical time step.

The history of the tip displacement of the thinnest beam (h = 10 mm, αopt = 39.00) is shown
in Figure 11. The maximum tip displacement is more than 50% of the beam length, so that it can
certainly be classified as large. Three curves are shown: the curves with and without selective mass
scaling and the curve obtained with the finite element code Abaqus, using the same mesh, but made
of shell elements of the S4R type. The three curves are almost perfectly superposed, implying that
also in this case the translational part of the rigid body motion is largely dominant over the rotational
one.

Figure 11. Large displacement cantilever beam. History of tip displacement: with and without selective mass
scaling, using Abaqus S4R element mesh.

5. CONCLUSIONS

In explicit dynamics applications with solid-shell elements, the smallness of the thickness
with respect to the element in-plane dimensions leads to unacceptably small time step sizes,
compromising their effective applicability in this context. In inertia dominated problems, the
structural response is predominantly governed by element translational rigid body motions. This
aspect has been exploited by several researchers to propose different strategies intended to reduce the
element highest eigenfrequencies through selective mass scaling. With solid-shell elements, the goal
of the mass scaling is that the critical time step be governed by the element in-plane dimensions and
not by the thickness. Furthermore, a highly desirable feature in explicit dynamics is that the adopted



selective mass scaling preserves the mass matrix diagonal structure, a requirement not satisfied by
most of the solutions proposed in the literature.

In [20], a selective mass scaling for solid-shell elements of parallelepiped shape was proposed.
The mass scaling preserved the element rigid body translational inertia and the mass matrix original
diagonal structure leading, upon selection of suitable values of the scaling parameter, to a critical
time step size governed by the element in-plane dimensions and not anymore by the element
thickness. In the present work, the selective mass scaling method proposed in [20] has been applied
to solid-shell elements of arbitrary distorted shape. Two critical aspects have been addressed in
particular: the definition of a criterion for the optimal choice of the scaling factor; the definition
of a computationally effective approach for the computation of the distorted element maximum
eigenfrequency and, hence, of the assembled mesh critical time step size.

Following the approach proposed in [26], reference has been made to a one-Gauss point, 8-node
solid element. The applicability of the results obtained for the underintegrated element to other
types of solid-shell elements has been assessed through a numerical verification campaign. For the
one-Gauss point element, it has been shown that the proposed selective mass scaling is equivalent
to a geometric thickness scaling, providing in this way a clear criterion for the choice of the mass
scaling factor optimal value: the mass scaling must be large enough to make the thickness of a size
comparable to the smallest in-plane dimension, but not larger. The optimal value of the mass scaling
parameter is therefore an element property and its definition can be carried out element by element
at the beginning of the analysis, in a pre-processing step. In large strain problems, the element shape
can vary significantly during the analysis. While the mass scaling parameter cannot be modified (it
would imply an artificial energy modification), the elements maximum eigenfrequencies have to be
recomputed run-time. An accurate and computationally effective procedure for the computation of
the element maximum eigenfrequency has been proposed to this purpose.

While the translational inertia is not affected, the proposed selective mass scaling modifies the
element rotational inertia. The error on the kinetic energy implied by this modification in a rigid
body rotational motion has been assessed analytically for a simple case and a closed form formula
has been derived for its estimation. A special type of patch test has been designed to asses the
energy error due to the scaled rotational inertia for distorted elements. It has been shown that the
error tends asymptotically to decrease quadratically as the translational content of the motion grows
with respect to the rotational one. On the basis of these results, the proposed selective mass scaling
should not be applied in the case of motions dominated by the rotational rigid body component.

Numerical tests with meshes of distorted elements, both in small and large displacements, have
shown the accuracy and the effectiveness of the method. In particular, for discretizations exhibiting
the same in-plane mesh, it has been shown that for suitable values of the mass scaling factor the
same critical time step can be obtained regardless of the thickness, with no appreciable effect on
the analysis results. Once the scaling has been applied and the thickness is no longer the critical
parameter, other types of mass scaling (see e.g. [15, 18, 19]) can in principle be applied, on the
basis of the elements in-plane dimensions, to further increase the allowable time step size.
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• When time step size has to be updated, for each element in the mesh:
◦ compute J0, J−1

0

◦ compute c1/α

0 = J−T0 I1/α3 J−1
0

◦ compute invariants of c1/α

0 :
I1/α1 = [c1/α

0 ]11 + [c1/α

0 ]22 + [c1/α

0 ]33

I1/α2 = [c1/α

0 ]11[c1/α

0 ]22 + [c1/α

0 ]11[c1/α

0 ]33 + [c1/α

0 ]22[c1/α

0 ]33 − [c1/α

0 ]212 − [c1/α

0 ]213 − [c1/α

0 ]223

I1/α3 = det[c1/α

0 ]
◦ compute Gershgorin estimate ω2

G of ω2
max

ω2
max ≤ ω2

G =
2µ

ρ0

[
ν

1− 2ν
I1/α1 + max

i

{
3∑
j=1

∣∣∣[c1/α

0 ]ij

∣∣∣}]
◦ compute residuum f(ω2

G;αopt) of characteristic polynomial for ω2
max = ω2

G and α = αopt

f(ω2
G;αopt) = (ω2

G)3 − 1− ν
1− 2ν

2µ

ρ0
I1/α1 (ω2

G)2 +
1

1− 2ν

(
2µ

ρ0

)2

I1/α2 ω2
G −

1 + ν

1− 2ν

(
2µ

ρ0

)3

I1/α3

◦ compute new and final estimate (upper bound) of ω2
max

ω2
N−R ≈ ω2

G −
f
(
ω2
G;αopt

)
f ′ (ω2

G;αopt)
with

f ′
(
ω2
G;α

)
= 3(ω2

G)2 − 2
1− ν
1− 2ν

2µ

ρ0
I1/α1 (ω2

G) +
1

1− 2ν

(
2µ

ρ0

)2

I1/α2

Box 1: Procedure for run-time element eigenfrequency computation.
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