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1. Introduction

The electricity generation, distribution and consumption are in the throes of change 

due to significant regulatory, societal and environmental developments, as well as tech-

nological progress. Recent years have witnessed the redefinition of the power grid in 

order to tackle the new challenges that have emerged in electric systems. One of the 

most relevant challenges associated with the current power grid is represented by the 

peaks in the power demand due to the high correlation among energy demands of cus-

tomers. Since electricity grids have little capacity to store energy, power demand and 

supply must balance at all times; as a consequence, energy plants capacity has to be sized 

to match the total demand peaks, driving a major increase of the infrastructure cost, 

which remains underutilized during off-peak hours. This waste of resources has become 

an even more critical issue in the last few years due to the increase of the worldwide 

energy consumption [1] and the increasing share of renewable energy sources [2]. High 

energy peaks are mostly due to residential users, who cover a relevant portion of the 

worldwide energy demands [3], but are inelastic with respect to the grid requirements as 

they usually run their home appliances only depending on their own requirements. For 

this reason, residential users can play a key role in addressing the peak demand problem. 

Time-Of-Use (TOU) tariffs represent a clear attempt to incite users to shift their energy 

loads out of the peak hours [4].

The most promising solution to tackle the peak demand challenge is represented by 

the Smart Grid, in which an intelligent infrastructure based on Information and Com-

munication Technology (ICT) tools is deployed alongside with the distribution network, 

which can deal with all the decision variables while minimizing the effort required to 

end-users. All data provided by the grid, such as the consumption of buildings [5] [6], 

electricity costs and distributed Renewable Energy Sources (RESs) data, can be used 

to optimize its efficiency through Demand-Side Management (DSM) methods, which 

represent a proactive approach to manage the household electric devices by integrating 

customers’ needs and requirements with the retailers’ goals [7]. The main objective of 

these methods is to shape the consumers’ energy demand in a proper way by deciding 

when and how to execute home appliances so as to improve the overall system efficiency 

while guaranteeing low costs and high comfort to users.



The most common way to incentivize consumers to modify their consump-

tion is to define convenient electric energy tariffs. In fact, by increasing the 

energy price, we expect that users’ demand naturally tends to decrease (i.e., 

higher prices cause consumption to decrease, and vice-versa). A considerable 

number of tariffs are available to define electric energy prices among which 

time-of-use, Critical-Peak Pricing (CPP) and Real-Time Pricing (RTP). In the 

TOU case, electricity prices depend on the time of day and are set in advance. 

Critical-peak pricing is a variant of TOU, in which in case of emer-gency 

situations (e.g., high demand) the price is raised. Finally, in real-time pricing, 

electricity prices can change as often as hourly, reflecting the utility cost of 

supplying energy to consumers. All these tariffs can be defined to achieve 

different purposes, such as reducing the peak load and maximizing the usage of 

renewable energy generation. In the first case, the energy prices are higher 

during peak hours and lower in off-peak hours. As a consequence, consumers 

are incentivized to move their loads to off-peak periods, there-fore reducing the 

peak load, and the need for generation, transmission and distribution capacity, 

as well as grids investments. In the second case, the electricity prices are higher 

in case of lack of renewable generation and lower in case of excess of Renewable 

Energy Resource (RES) productions, in order to elastically adapt the users’ 

demand to fluctuating generations of renewable sources.

In this paper we propose a novel, fully distributed DSM system aimed at reducing the 

peak demand of a group of residential users (e.g., a smart city neighborhood). In 

particular, we consider a real-time pricing scheme, where energy tariffs are function of the 

overall power demand of customers.

We model our system using a game theoretical approach, considering two practical 

cases where (1) each appliance decides autonomously its scheduling in a fully distributed 

fashion (Single-Appliance DSM), and (2) each user must schedule all his home appliances 

(Multiple-Appliance DSM). The proposed approach automatically ensures the reduction 

of the electricity demand at peak hours due to dynamic pricing.

We compare numerically these two cases, showing that the first is characterized only



by a negligible performance degradation in all the considered grid scenarios. Neverthe-

less, while both mechanisms achieve almost the same performance level, the Multiple-

Appliance DSM system requires a more complex architecture with a central server for 

each house that collects all appliances information and plays on behalf of the house-

holder. Such an approach would increase the installation and operating costs due to the 

higher system complexity. On the contrary, in the Single-Appliance DSM system, one 

can use the processing and communication capabilities of devices that can autonomously 

optimize their usage, thus greatly simplifying the architecture design and system config-

uration. This solution is made possible by the diffusion of Smart Appliances that are 

no longer merely passive devices, but active participants in the power grid infrastructure 

[8].

We underline that, while recent literature has focused on the design of DSM 

systems for controllable devices [9], namely devices whose power load profile 

within their operating time can be modulated according to the DSM goals, our 

work designs a distributed DSM to select the best (cheapest) schedule for 

shiftable appliances. Indeed, differently from air conditioning or heating 

systems, appliances like washing machines and electric dishwash-ers have a 

fixed power profile optimized for specific goals. In such cases, a user can choose 

only the starting time for each shiftable appliance, whose power profile is fixed. 

Nonetheless, the decision on the appliance’s starting time affects the price paid 

in all successive execution time slots, since the appliance’s operational phases 

cannot be postponed or modified. Therefore, our scheme is complementary to 

approaches devised for controllable devices like the one presented in [9], which 

solve an orthogonal distributed power scheduling problem.

We demonstrate that our game is a generalized ordinal potential game [10] under some 

simple and very general conditions (viz., the regularity of the pricing function). Such 

feature guarantees some nice properties, such as the existence of at least one pure Nash 

equilibrium (where no player has an incentive to deviate unilaterally from the scheduling 

pattern he decided upon). Furthermore, we show that any sequence of asynchronous 

improvement steps is finite and always converges to a pure Nash equilibrium.



In summary, our paper makes the following contributions:

• The proposition of a novel, fully distributed DSM method, able to reduce the

peak demand of a group of residential users, which we model and study using a

game theoretical framework. In our vision, the energy retailer fixes the energy

price dynamically, based on the total power demand of customers; then, appliances

autonomously decide their schedule, reaching an efficient Nash equilibrium point.

• Mathematical proofs that our proposed game is a generalized ordinal potential

game, under general conditions.

• The demonstration of the Finite Improvement Property, according to which any

sequence of asynchronous improvement steps (and, in particular, best response dy-

namics) converges to a pure Nash equilibrium.

• A thorough numerical evaluation that shows the effectiveness of the proposed ap-

proach in several scenarios, with real electric appliances scheduled by householders.

The paper is organized as follows. Section 2 discusses related work. Section 3 de-

scribes the main characteristics of the distributed system we propose to manage the

energy consumption of residential users. Section 4 presents our proposed game theoret-

ical formulation for the Single and Multiple-Appliance DSM, as well as the structural

properties of our game. Numerical results are presented and analyzed in Section 5.

Finally, Section 6 concludes the paper.

2. Related Work

Demand-Side Management (DSM) mechanisms have recently gained attention by the 

scientific community due to their advantages in terms of wise use of energy and cost 

reduction [11]. In DSM systems proposed in the literature, a mechanism is defined that, 

based on energy tariffs and data forecasts for future periods (e.g., photovoltaic power 

generation, devices future usage), is able to automatically and optimally schedule the 

home devices activities for future periods and to define the whole energy plan of users 

(i.e., when to buy and sell energy to the grid) [12]. The main goal of these solutions

is to minimize the electricity costs while guaranteeing the users’ comfort; this can be 



achieved through the execution of methods based on optimization models [13], [14] or 

heuristics, such as Genetic Algorithms [15] and customized Evolutionary Algorithms [16], 

which are used to solve more complex formulations of the demand management problem. 

Since RESs diffusion is rapidly increasing, several works include renewable plants into 

DSM frameworks. In these cases, devices are scheduled also based on the availability 

of an intermittent electricity source (e.g., PV plants) and users’ profits from selling re-

newable electricity to the energy market are taken into account [17]. The uncertainty of 

RESs generation forecasts is tackled through stochastic approaches, such as stochastic 

dynamic programming which is a very suitable tool to address the decision-making pro-

cess of energy management systems in presence of uncertainty, such as the one related to 

the electricity produced from weather-dependent generation sources [18]. The efficiency 

of demand management solutions can be notably improved by including storage systems 

that can increase the DSM flexibility in optimizing the usage of electric resources. Specif-

ically, batteries can be used to harvest the renewable generation in excess for later use 

or to charge the ESS when the electricity price is low, with the goal of minimizing the 

users’ electricity bill [19].

Solutions [13]–[19] are based on a single-user approach in which the energy plans of res-

idential customers are individually and locally optimized. However, in order to achieve 

relevant results from a system-wide perspective, the energy management problem could 

be applied to groups of users (e.g., a neighborhood or micro-grids), instead of single 

users. For this reason, some preliminary solutions have been proposed in the literature 

to manage energy resources of groups of customers. In [20], for example, the energy 

bill minimization problem is applied to a group of cooperative residential users equipped 

with PV panels and storage devices (i.e., electric vehicle batteries). A global scale op-

timization method is also proposed in [21], in which an algorithm is defined to control 

domestic electricity and heat demand, as well as the generation and storage of heat and 

electricity of a group of houses. These multi-user solutions require some sort of cen-

tralized coordination system run by the operator in order to collect all energy requests 

and find the optimal solution. To this end, a large flow of data must be transmitted 

through the Smart Grid network, thus introducing scalability constraints and requiring 

the definition of high-performance communication protocols. Furthermore, the coordina-



tion system should also verify that all customers comply with the optimal task schedule, 

since the operator has no guarantee that any user can gain by deviating unilaterally from 

the optimal solution. Therefore, the collection of users’ metering data and the enforcing 

of the optimal appliance schedule can introduce novel threats to customers’ security and 

privacy. For these reasons, some distributed DSM methods have been proposed in which 

decisions are taken locally, directly by the end consumer. In this case, Game Theory 

represents the ideal framework to design DSM solutions. Specifically, in [9] a distributed 

DSM system among users is proposed, where the users’ energy consumption scheduling 

problem is formulated as a game: the players are the users, and their strategies are the 

daily schedules of their household appliances and loads. The goal of the game is to either 

reduce the peak demand or the energy bill of users. A game theoretical approach is also 

used in [22], in which a distributed load management is defined to control the power 

demand of users through dynamic pricing strategies. However, in these works, a very 

simplified mathematical description is used to model houses, which does not correspond 

to real use cases.

In this paper we propose a DSM method, based on a game theoretical approach, 

which overcomes the most important limitations of the works proposed in the literature 

and described above. Our DSM is a fully distributed system, in which no centralized 

coordination is required, and only a limited and aggregated amount of data needs to 

be transmitted between the operator and the householders through the Smart Grid. 

For these reasons, scalability, communication, privacy and security issues are greatly 

mitigated. Moreover, a realistic model of household contexts is illustrated; specifically, 

a mathematical description of home devices is provided. Devices are defined as non-

preemptable activities characterized by specific load consumption profiles, determined 

based on real data, and are scheduled according to users’ preferences defined based on 

real use-case scenarios. Finally, to the best of our knowledge, the single-appliance demand 

management game proposed in this paper, in which electric devices can autonomously 

and locally optimize their usage, has never been studied in the literature.



3. System Model

The power scheduling system here proposed is designed to manage the electric appli-

ances of a group of residential users consisting of a set H of houses (e.g., a smart city

neighborhood). This system is used to schedule the energy plan of the whole group of

users over a 24-hour time horizon based on a fully distributed approach, with the final

goal of improving the efficiency of the whole power grid by reducing the peak demand of

electricity, while still complying with users’ needs and preferences. More specifically, in

our model we represent the daily time as a set T of time slots. Each householder 1 h ∈ H

has a set of non-preemptive electric appliances, A, that must be executed during the

day. In particular, the load profile of each appliance is modeled as an ordered sequence

of phases, F , in which a certain amount of power is consumed. We assume that the

power consumption lahf of a device a ∈ A belonging to user h ∈ H in each phase f ∈ F

is an average of the real consumption of the device within the time slot duration (see

Figure 1, where 15-minute phases are used for a washing machine [23]).

Each device a of user h needs to run for dah consecutive slots within a total of Rah
slots delimited by a minimum starting time slot, STah, and a maximum ending time slot,

ETah (verifying the constraint STah ≤ ETah−dah+1). These two parameters, STah and

ETah, represent the users’ preferences in starting each home device; they can be directly

provided by users or automatically obtained through learning algorithms such as the one

presented in [24].

In our model, we consider two different kinds of devices:

• Shiftable appliances (e.g., washing machine, dishwasher): they are man-

ageable devices that must be scheduled and executed during the day and 

are represented by the set As ⊆ A. For each shiftable device a ∈ As of the 

householder h ∈ H, the minimum starting time and the maximum ending 

time verify the constraint STah < ETah − dah + 1. Hence, their scheduling is 

an optimization variable in our model.

• Fixed appliances (e.g., light, TV) are non-manageable devices, for which 

the starting/ending times are fixed, and are represented by the set Af ⊆ 

1In this paper, we use the terms householder and user interchangeably.
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Figure 1: Example of a load profile lahf of a washing machine.

A. For each fixed device a ∈ Af of the householder h ∈ H, the minimum 

starting time and the maximum ending time verify the constraint STah = 

ETah − dah + 1.

Devices scheduling is represented by the binary variable xaht, which is defined for 

each appliance a ∈ A of each householder h ∈ H, and for each time slot t ∈ T . It 

is equal to 1 if appliance a starts in time slot t, 0 otherwise. In order to use home 

appliances, householders can buy energy from the electricity retailer. In particular, the 

power demand of user h at time t is denoted by yht. The power demand of each user 

cannot exceed a supply limit defined by the retailer and denoted by πSL; this limit 

represents the maximum power that can be used at any time.

In our model, we have decided to use a real-time pricing approach to define 

the electricity tariff since it represents a very promising method to improve the 

efficiency of the whole power grid. Since the higher the demand of electricity, 

the larger the capacity of grid generation and distribution to install, we 

suppose that the price of electricity at time t, ct(·), is an increasing function of 

the total demand, yt, of the group of users H at time t. Specifically, if the power 

demand is lower than a threshold πT T , ct(·) is a strictly increasing function of yt, 

otherwise it becomes a constant function of value ct(πT T ).

The power scheduling system proposed in this paper is mathematically 

formalized to minimize the electricity bill of each residential user, by opti-

mally scheduling house appliance activities and managing the power absorp-



tion from the grid. However, based on the definition of the electricity prices, its 

actual goal is to conveniently shape the load demand of consumers with the 

purpose of decreasing their peak demand.

Table 1 summarizes the notation used in the paper.

Table 1: Basic notation used in the paper.

xaht Binary variable that indicates if appliance a

of householder h starts its execution at time t

yht Power demand of user h at time t

yt Total power demand at time t

ct(·) Pricing function

πTT Tariff Threshold of the pricing function

πSL Power Supply Limit

lahf Consumption of device a of user h in phase f

dah Operating time slots for device a of user h

STah/ETah Starting/Ending time for device a of user h

To clarify the objective of the proposed DSM system, let us refer to Fig-ure 

1, which presents the power demand of a washing machine as a function of its 

operative phases. We can observe that the washing machine has a fixed power 

demand profile that cannot be modified by the DSM system, otherwise the 

appliance cannot correctly operate. For example, if the DSM system reduces 

the power of the first phases, the temperature of the water might not reach the 

degree required by the washing program. Our proposed DSM system selects 

only the starting time of the washing machine within the interval provided by 

the householder (e.g., from 7 AM to 10 PM) in order to minimize the price paid 

by the user to operate the appliance, which depends on the scheduling decisions 

of all other appliances in the smart grid.

4. Distributed Power Scheduling as a Non-cooperative Game

In this section, we model the distributed power scheduling problem, which consti-

tutes the core of our proposed DSM system, using a non-cooperative game theoretical 



approach (formally described in Definition 1), which naturally captures the interactions

in such a distributed decision making process. Our design rationale (Subsection 4.1) is

the following: each appliance a ∈ A is an autonomous decision maker (or player) that

must select the starting time of its execution (i.e., the xaht value); this permits to mini-

mize the coordination required by a central server that would operate at each house to

aggregate all appliances load and scheduling constraints. Consequently, each appliance a

decides autonomously when to buy energy from the grid (i.e., yht) in order to minimize

its contribution to the overall bill charged to house h ∈ H, according to his user’s2 needs.

Then, after having solved the single-appliance game and studied its structural prop-

erties (Subsection 4.2), in Subsection 4.4 we consider a natural (and more complex) ex-

tension where a player represents an entire household which jointly decides the schedule

of all his appliances.

4.1. Single-Appliance Game Formulation

We first start describing the scenario where each appliance a ∈ A of house h ∈ H

is modeled as an autonomous player in the power scheduling game G, which is defined

as a triple {N , I,P}: N = A × H is the player set, I , {In}n∈N is the strategy set

with In , {xnt}n∈N being the strategy of player n, P , {Pn}n∈N is the cost function

of player n with Pn being the total price paid by n for its electricity consumption (the

total price due to appliance a ∈ A of house h ∈ H). Each appliance (player) n chooses

its strategy In to minimize its cost Pn.

The feasible power scheduling alternatives that form the strategy space In of each

player n = (a, h) (i.e., each appliance a of householder h) must satisfy both the consumer

needs and energy supply limits. Specifically, the strategy space In must satisfy the

following set of constraints:

In =

{
−→x n =

[
xn1...xnt...xn|T |

]
∈ {0, 1}|T | :

ETn−dn+1∑
t=STn

xnt = 1 (1)

ynt =
∑

f∈F:f≤t

lnfxn(t−f+1) ∀t ∈ T (2)

2In this paper users are house owners, therefore we use interchangeably the terms house and user.



yht =
∑
a∈A

∑
f∈F:f≤t

lahfxah(t−f+1) ∀t ∈ T (3)

yht ≤ πSL ∀t ∈ T
}
. (4)

Constraints (1) guarantee that appliance n starts in exactly one time slot and it is

carried out in the interval (STn, ETn). Constraints (2) determine the daily consumption

profile of the appliances in each time slot, which depends on their scheduling. More

specifically, the power required by each appliance in each time slot t, ynt, is equal to the

load profile lnf of the phase carried out at time t. Note that a phase f is running in

t, only if the appliance started at time t − f + 1, thus if xn(t−f+1) = 1. In a similar

fashion, equations (3) define the daily power demand of house h based on the appliances

scheduling. Finally, constraints (4) limit the overall power consumption of each house,

since in every time slot t ∈ T , the electricity bought from the grid cannot exceed the

Supply Limit (SL) defined by the retailer and denoted by πSL. In such constraints, the

power required by each appliance in each time slot t, ynt, is equal to the load profile lnf

of the phase executed starting from the time slot where xnt = 1. Note that (2) is used

by the appliance a to compute and minimize its contribution to the overall price charged

to house h, whereas (3) is used by householder h to compute the bill.

Having defined the strategy space of each player, we can now define the single-

appliance power scheduling game.

Definition 1 (Power Scheduling Game). Mathematically, the power scheduling game is

formalized as follows:

G : min
In

Pn(In, I−n) =
∑
t∈T

ynt · ct(yt), ∀n ∈ N . (5)

The solution of the power scheduling game is characterized by a Nash Equilibrium

(NE), a strategy profile I∗ = (I∗n, I∗−n) from which no player has an incentive to deviate

unilaterally, i.e.,

Pn(I∗n, I∗−n) ≥ Pn(In, I∗−n), ∀n ∈ N ,∀In ∈ I.

To study the efficiency of the NE(s) of G, we define the social cost of all players

as the total price, P , paid by all customers to the electricity retailer, as a function of 



I = {In}n∈N , where the strategy of player n is In = {xnt}n∈N :

P (I) =
∑
h∈H

∑
t∈T

yht · ct(yt), (6)

where yht is a function of xnt, n = (a, h) ∈ A×H and ct is a function of yt that represents the

total power demand of all players at time t.

By analyzing the utility functions of G, we can see that the pricing function ct(yt)

plays an important role on the resulting system equilibrium point(s). Specifically, our

objective is to devise smart pricing policies to drive the system equilibrium to the op-

timum in terms of social cost. In this regard, we focus on a class of pricing functions,

termed as regular pricing functions, defined as follows.

Definition 2 (Regular Pricing Function). The pricing function {ct(yt)}0≤t≤T is a regular

pricing function if the following properties hold:

• ct(yt) is continuous, non-decreasing for 0 ≤ t ≤ T and its derivative c′t(yt) is

continuous in yt;

• Given any two time intervals [t0u, t
1
u], [t0v, t

1
v] and power demand in these inter-

vals {yu}t0u<u<t1u , {yv}t0v<v<t1v , if
∑t1u
u=t0u

c′u(yu) >
∑t1v
v=t0v

c′v(yv), then it holds that∑t1u
u=t0u

[yucu(yu)]′ >
∑t1v
v=t0v

[yvcv(yv)]
′.

Remark: Regular pricing functions characterize a family of utility functions widely 

applied in practical applications. A typical example of regular pricing function is the

power function ct = αyt
β where α > 0 and β ≥ 1. The design motivation hinging 

behind such pricing functions is to encourage users to balance their electricity demand 

and consequently decrease the peak demand.

In the following analysis, we show that under the condition that the pricing policy 

can be expressed by a regular function, the power scheduling game G admits a number 

of desirable properties, particularly from the perspective of social cost.

4.2. Solving the Power Scheduling Game

In this subsection, we solve the power scheduling game G and study the structural 

properties of the game. We are specifically interested in large systems where the impact 

of an individual user on the system dynamics is limited. Theorem 1 shows that G is a 



generalized ordinal potential game, whose definition is reported hereafter for complete-

ness.

Definition 3 (Generalized Ordinal Potential Game). Given a finite strategic game

Γ , {N , {Sn}n∈N , {un}n∈N }, Γ is a generalized ordinal potential game if there exists

a function (called potential function) Φ : S → R such that for every player n ∈ N and

every s−n ∈ S−n and sn, s
′
n ∈ Sn, it holds that

un(sn, s−n) > un(s′n, s−n) =⇒ Φ(sn, s−n) > Φ(s′n, s−n).

Theorem 1. Under the condition that {ct(yt)}0≤t≤T is a regular pricing function, the

power scheduling game G is a generalized ordinal potential game with the corresponding

potential function being P (I)

Proof. To prove the theorem, it suffices to show that for any two strategies In and I ′n
and for any player n ∈ N , it holds that

Pn(In, I−n) > Pn(I ′n, I−n) =⇒ P (In, I−n) > P (I ′n, I−n).

In this regard, assume that Pn(In, I−n) > Pn(I ′n, I−n). Assume that n (i.e., appliance

a ∈ A of house h ∈ H) starts its activity in time interval t0u < u < t1u (t0v < v < t1v,

respectively) in strategy In (I ′n). Let yt denote the total power demand at time t under

strategy profile (In, I−n). Between the strategy profiles (In, I−n) and (I ′n, I−n), the

difference is that n migrates its power demand of pn from time interval [t0u, t
1
u] to [t0v, t

1
v].

Since we are focused on large systems where the impact of an individual user on the

system dynamics is limited, i.e., pn � yt, it holds that

Pn(In, I−n)− Pn(I′n, I−n) =

t1u∑
u=t0u

pncu(yu) +

t1v∑
v=t0v

pncv(yv)

−

 t1u∑
u=t0u

pncu(yu − pn) +

t1v∑
v=t0v

pncv(yv + pn)

 '
' pn

 t1u∑
u=t0u

c′u(yu − pn)−
t1v∑
v=t0v

c′v(yv)

 > 0, (7)

following the assumption that Pn(In, I−n) > Pn(I ′n, I−n).

Recalling the definition of regular pricing functions, it then holds that

t1u∑
u=t0u

[(yu − pn)cu(yu − pn)]′ >

t1v∑
v=t0v

[yvcv(yv)]′. (8)



On the other hand, we study the social cost under the strategy profiles (In, I−n) and

(I ′n, I−n). Specifically, we can derive the difference between P (In, I−n) and P (I ′n, I−n)

as follows:

P (In, I−n)− P (I′n, I−n) =

t1u∑
u=t0u

[yucu(yu)] +

t1v∑
v=t0v

[yvcv(yv)]

−


t1u∑

u=t0u

[(yu − pn)cu(yu − pn)] +

t1v∑
v=t0v

[(yv + pn)cv(yv + pn)]


=

t1u∑
u=t0u

[yucu(yu)]−
t1u∑

u=t0u

[(yu − pn)cu(yu − pn)]

−


t1v∑
v=t0v

[(yv + pn)cv(yv + pn)]−
t1v∑
v=t0v

[yvcv(yv)]

 . (9)

With some algebraic operations, we have

t1u∑
u=t0u

[yucu(yu)]−
t1u∑

u=t0u

[(yu − pn)cu(yu − pn)] =

t1u∑
u=t0u

{yu[cu(yu)− cu(yu − pn)] + pncu(yu − pn)} '

'
t1u∑

u=t0u

{yupnc′u(yu − pn) + pncu(yu − pn)} >

>

t1u∑
u=t0u

[(yu − pn)cu(yu − pn)]′. (10)

Similarly, we have

t1v∑
v=t0v

[(yv + pn)cv(yv + pn)]−
t1v∑
v=t0v

[yvcv(yv)] <

t1v∑
v=t0v

[yvcv(yv)]′. (11)

Hence, it follows from (10) and (11) that

P (In, I−n)− P (I′n, I−n) =

t1u∑
u=t0u

[yucu(yu)]−
t1u∑

u=t0u

[(yu − pn)cu(yu − pn)]

−


t1v∑
v=t0v

[(yv + pn)cv(yv + pn)]−
t1v∑
v=t0v

[yvcv(yv)]

 >



>

t1u∑
u=t0u

[(yu − pn)cu(yu − pn)]′ −
t1v∑
v=t0v

[yvcv(yv)]′ > 0. (12)

The proof is thus completed.

Corollary 1 (Efficiency of the Equilibrium). Under the conditions of Theorem 1, the

equilibrium of G minimizes the total price paid to the operator, i.e., the total social cost.

Corollary 2 (Convergence to the Equilibrium). Under the conditions of Theorem 1, G

admits the Finite Improvement Property (FIP). Any sequence of asynchronous improve-

ment steps is finite and converges to a pure equilibrium. Particularly, the sequence of

best response updates converges to a pure equilibrium.

Potential games have nice properties, such as existence of at least one pure Nash

equilibrium, namely the strategy that minimizes P (I). Furthermore, in such games,

best response dynamics always converges to a Nash equilibrium.

Hereafter, we describe a simple implementation of best response dynamics,

which allows each player n, namely each appliance a of each householder h,

to improve its cost function in the proposed power scheduling game. Such

algorithm is the best response strategy for a player n minimizing objective∑
function (5), t∈T ynt ·ct(yt), assuming other appliances are not changing their 
strategies.

In the best response dynamics of the SA-DSM game, every appliance, in an

iterative fashion, defines its optimal power scheduling strategy based on

electricity tariffs, calculated according to other players’ strategies. Specifi-

cally, as shown in Figure 2, in a generic round k of the iterative procedure, the

appliance n receives by the device n − 1 the vector yt, which is the overall power

demand of all devices in the current state of the best response dy-namics. At

this point, the appliance n calculates the parameters yt?, which represent the 

total demand of other devices:

y
t
? = yt − yknt

−1 (13)

where yknt
−1 is the demand of appliance n at iteration k − 1. In order to

optimally decide its optimal schedule, n solves the following Mixed Integer



Non-linear Programming (MINLP) model, with the goal of minimizing its 

electricity bill:

min
∑
t∈T

yknt · ct(yt?+ yknt) (14)

s.t.
ETn−∑dn+1

t=STn

xnt = 1 ∀a ∈ A (15)

yn
k
t =

∑
f∈F :f≤t

lnf xn(t−f+1) ∀t ∈ T (16)

ykht =
∑
a∈A

∑
f∈F :f≤t

∀t ∈ T (17)

ykht ≤ πSL

lahf xah(t−f+1) 

∀t ∈ T (18)

where the objective function (14) minimizes the daily bill of the appliance n 

and constraints (15), (16), (17) and (18) correspond to constraints (1), (2), (3) 

and (4) of the single-appliance power scheduling game. After solving this 

model, appliance n updates the overall power demand of consumers:

yt = y
t
? + yknt (19)

where yknt is outputted by the MINLP solver, and forwards it to the next 

appliance n + 1.

At every iteration, the energy prices are updated according to the last 

strategy profile and, as a consequence, other appliances can decide to modify 

their consumption scheduling by changing their strategy according to the new 

tariffs. The iterative process is repeated until convergence is reached (in the 

Numerical Results section, we will show that our proposed algorithm 

converges, in few iterations, to a Nash equilibrium) and, at the end of it, the 

appliances power scheduling and energy prices are fixed as well as the energy 

bill charged to each householder h, which is simply the sum of all his

appliances costs
∑
t∈T yht · ct(yt).

4.3. Security and Privacy

In the best response dynamics here proposed, the transmission of the

power profile to other users may raise security and privacy concerns. In fact, 
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Figure 2: Round k of the best response dynamics with the multiple-appliance power 

scheduling game.

several studies on Non-Intrusive Load Monitoring (see, e.g., [25, 26]) prove 

that the power consumption patterns of individual appliances can be easily 

inferred from aggregated measurements. For this reason, even if the only in-

formation exchanged among appliances in the best response dynamics is the 

aggregated power consumption of householders, some privacy-friendly solu-

tions are required to preserve the privacy of customers. The design of these 

mechanisms is out of the scope of this paper and we would rather resort on 

schemes already proposed in the literature, which formally ensure important 

security and privacy properties. Specifically, data perturbation is an ap-proach 

which is widely employed in combination to data aggregation in order to 

strengthen the privacy and security level of demand management mecha-

nisms. The authors of [27], for example, propose a secure game-theoretical 

framework for distributed appliance scheduling, in which players perturb their 

data by exposing a noisy version of their individual power consumption data, 

obtained by adding a random amount (either positive or negative) to the actual 

consumption. Data perturbation can also be achieved by relying on batteries 

installed at the customers’ premises, which can be configured to disguise the 

actual appliance electricity consumption [28].

Finally, to completely remove the communication of any sensitive informa-

tion, learning algorithms could be used to enable consumers to autonomously



converge to the equilibria of the DSM load scheduling game. All these privacy

preserving solutions, which have been recently presented in the literature,

can be seamlessly introduced in our framework to strengthen the privacy

and security of our DSM mechanism.

4.4. Multiple-Appliance Game Formulation

The natural extension of the single-application power scheduling game considers as a

player the householder h who chooses the schedule of all his appliances according to his

preferences. The strategy space for player h is therefore composed of all variables xaht 

corresponding to the activities of all his appliances.

Definition 4 (Multiple-Appliance Power Scheduling Game). Mathematically, the multiple-

appliances power scheduling game is formalized as follows:

G : min
Ih

Ph(Ih, I−h) =
∑
t∈T

yht · ct(yt), ∀n ∈ N (20)

Ih =

{
Xh =


x1h1 x1ht · · · x1h|T |

x2h1 x2ht · · · x2h|T |
...

...
. . .

...

x|A|h1 x|A|ht · · · x|A|h|T |

 ∈ {0, 1}
|A|×|T | :

ETah−dah+1∑
t=STah

xaht = 1 ∀a ∈ A (21)

yht =
∑
a∈A

∑
f∈F:f≤t

lahfxah(t−f+1) ∀t ∈ T (22)

yht ≤ πSL ∀t ∈ T
}
. (23)

Similarly to (1), (3) and (4), constraints (21), (22) and (23) are used, respectively,

to guarantee that each appliance a starts in exactly one time slot within the interval

(STah, ETah), to define the daily power demand of house h and to upper-bound the

demand of each house according to the supply limit πSL.

As in the single-appliance case, a best response response dynamics can be

designed to identify and study the efficiency of the Nash equilibrium of the

multi-appliance game. Such algorithm, whose implementation is very similar



to that of the single-appliance game as illustrated in Figure 3, is the best

response strategy for a householder h minimizing the objective function (20),∑
t∈T yht ·ct(yt), assuming other householders are not changing their strategies.

House 1

House |H| House 2

MINLP

House h
MINLP

House h+1

MINLP

House h-1

MINLP

MINLP

MINLP

Figure 3: Round k of the best response dynamics with the multiple-appliance power 

scheduling game.

We underline that scheduling optimally multiple appliances increases the complexity 

of the Smart Grid architecture, since each house requires a central server that collects 

the energy consumption information from all house appliances and the householder’s 

preferences (i.e., starting/ending times). Conversely, in the single-appliance formulation 

each appliance operates independently, and the householder can configure asynchronously 

the different appliances preferences. Furthermore, as we will show in Section 5, the higher 

complexity of the multiple-appliance scheduling game does not result in lower costs for 

the householder or a lower power peak for the retailer’s grid.

4.5. Computational Complexity and Signaling Overhead

Having defined the formulation of the SA-DSM and MA-DSM problems, we 

quantify in the following the computational complexity of the best re-sponse 

algorithm and the signaling overhead of the protocol used to exchange the 

information for the computation of the Nash Equilibria.

In order to measure the computational complexity of the two DSM sys-

tems, let us refer to a homogeneous scenario, where all householders’ appli-

ances have the same number of feasible starting slots. Formally, let us denote 



by α = |A| the number of shiftable appliances of each householder h ∈ H, by η the 

number of householders (η = |H|), and by τ = |T | the number of starting time 

slots.

Then, the best response algorithm of the SA-DSM mechanism explores at 

most η · α · τ solutions at each iteration, since for each appliance among the η · α 

of the system, we have to compute the minimum price among τ starting slots. 

In contrast, the size of the MA-DSM solution space is η · τα, since each 

householder needs to consider all possible permutations of feasible appliance 

schedules.

We further observe that the distributed version of the best response, where 

each player (i.e., an appliance for the SA-DSM or an householder for the MA-

DSM) independently performs the optimization, does not change the linear or 

exponential growth of the solution spaces with respect to the number of 

appliances. Indeed, each player of the SA-DSM and MA-DSM scenarios would 

explore τ and τα solutions, respectively.

To provide further insight into the complexity of the two proposed DSM 

schemes, we evaluate their signaling overheads analyzing the corresponding 

communication complexities. Note that the signaling overhead depends on the 

implementation of the best response dynamic. Under the assumption that each 

player (either appliance or householder) broadcasts only its power profile (i.e., 

the power consumption for each time slot) to the other players of the smart 

grid using a central controller or a flooding protocol, both DSM schemes 

generate at most a bitrate equal to ρ = dlog2 πSLe · τ per player, since any 

householder cannot consume more than πSL kW for each time slot.

At each iteration of the best response dynamics, the overall amount of 

information generated by the MA-DSM and SA-DSM approaches is equal to η · 

ρ and η · α · ρ, respectively. It can be observed that the MA-DSM scheme 

permits to support α householders more than the SA-DSM approach. Indeed, 

assuming a time slotted communication system for the players of the smart 

grid, with a communication slot lasting e s and bandwidth B bps, the number of 

householders ηMA and ηSA that can be supported by the MA-DSM and SA-



DSM are, respectively:

ηMA = b B · e
τ · ρ

c

ηSA = b B · e
α · τ · ρ

c. (24)

In contrast, if all players directly exchange the aggregated power profile 

among themselves (i.e., the sum of the power demands that have been col-

lected so far) as indicated in Sections 4.2 and 4.4 (cf. Figures 2 and 3), the 

signaling overhead slightly changes. In particular, the MA-DSM and SA-DSM 

approaches generate an amount of information for each iteration equal

to η · log2 (η · ρ) and η · α · log2 (η · α · ρ), respectively. Indeed, the aggregated value 

of the power demand in each time slot can be as large as the threshold πSL 

multiplied by the number of players. Moreover, at each iteration of the best 

response dynamics, each player forwards the aggregated power profile to the 

successive player. Nonetheless, the computational complexity of the MA-DSM 

approach still grows more quickly/steeply than the communication overhead 

of the SA-DSM scheme, as we describe in the following.

Table 2 summarizes the results on the computational and communication 

complexity for the SA-DSM and MA-DSM approaches, using both the cen-

tralized and distributed version of the best response algorithm.”

Table 2: Computational complexity and communication overhead of the best response algorithm.

DSM Scheme Computational Complexity Communication

Centralized Distributed Overhead

SA-DSM η · α · τ τ (∀n ∈ N ) η · α · ρ

MA-DSM η · τα τα (∀h ∈ H) η · ρ

5. Numerical Results

This section presents the numerical results we obtained evaluating the Single-Appliance

DSM (SA-DSM), and the Multiple-Appliance DSM (MA-DSM) mechanisms in realistic 



Smart Grid scenarios using real traces. First, we describe the considered scenarios and

parameters used in our numerical evaluation. Then, we compare and discuss the perfor-

mance achieved by the two proposed mechanisms.

5.1. Simulated Scenarios

We considered a set T of 24 time slots of 1 hour each. Residential houses, which are

connected to the grid with a peak power limit of 3 kW (πSL = 3 kW), are

equipped with 11 realistically-modeled appliances, namely: washing machine,

dishwasher, boiler, vacuum cleaner, refrigerator, purifier, lights, microwave

oven, oven, TV and iron. Of these devices, only the first four are modeled as

shiftable appliances, while the other ones are considered fixed devices. The

basic domestic configuration and load profiles of each appliance, which are

shown in Figure 4, have been defined based on the data collected from 100

houses served by an Italian energy supply operator.

Starting from the basic house configuration, we defined multiple scenarios by varying

the number of users participating in the game and the parameters of both the energy

price function and the scheduling constraints. Specifically, for the number of houses we

considered 3 different cases where the game is played, respectively, by 5, 20 and 50 house-

holders, to assess the performance of the proposed system when the competition level

increases. Concerning the electricity tariffs, we consider the following pricing function to

compute the price paid for the electricity in each time slot t ∈ T :

ct(yt) =

cMIN + s · yt ∀t ∈ T : yt < πTT

cMIN + s · πTT ∀t ∈ T : yt ≥ πTT .
(25)

In such equations, yt is the total power demand, πT T is a tariff power threshold, cMIN is the

minimum electricity price and s is the slope of the cost function. Specifically,

we fixed the minimum electricity price cMIN = 50 × 10−6 $, and varied the

slope of the cost function by defining it as an integer-multiple of the minimum
0, 11 × 10−6

slope s = k · sMIN , with sMIN = $/kWh, |H| being the number
|H|

of householders and k the proportionality factor. As for the value of the tariff

threshold, πT T , after which the energy price is no longer dependent on users’ demand,

we considered 5 different cases: 25%, 30%, 35%, 40% and 100% of the maximum peak
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Figure 4: Load profiles of the appliances considered in our tests.



power limit of the whole group of users (i.e., |H| · πSL). By varying the cost function 

parameters, we assess the impact of the energy tariff on the system performance.

In our tests, we also defined different scenarios by considering various levels of appli-

ances flexibility. As reported in Section 3, for each appliance a bound has been introduced 

for both the starting and ending time (i.e., STah and ETah), representing the period in 

which the appliance activity has to be executed (note that the activity duration dah is 

fixed and lower than the window ETah − STah). Therefore, the larger the execution win-

dow is, the higher the system flexibility is in scheduling devices. In order to evaluate 

the effect of the scheduling flexibility on the system performance, we defined 

three scenarios:

• No flexibility (“fix” label in the following curves). The appliances 

scheduling is fixed and cannot be optimized, therefore: 

ETah − (STah + dah) = −1 ∀a ∈ A, h ∈ H. (26)

If STah and ETah are defined according to Equation (26), the system is 

forced to start the appliance a of user h at time STah based on con-straints 

(1)/(21).

• Tight flexibility (“short” label in the following curves). For each shiftable 

appliance, three different schedules are given, while fixed devices have a 

fixed start time. In this case, the parameters STah and ETah are defined 

according to the following equations: 

ETah − (STah + dah) =

1 ∀a ∈ As, h ∈ H

−1 ∀a ∈ Af , h ∈ H
(27)

• Loose flexibility (“long” label in the following curves). For each shiftable 

appliance, eight different schedules are given, while fixed devices have a 

fixed start time as obtained through the following equations: 

ETah − (STah + dah) =

6 ∀a ∈ As, h ∈ H

−1 ∀a ∈ Af , h ∈ H
(28)



For each case-study considered in our tests, the starting-time slot of each 

appliance a of each user h, STah, was randomly chosen within the set Tah = {1, 

2, . . . , |T | − dah + 1} (each activity a must be carried out within the time horizon 

T and, therefore, it cannot start later than the time slot t = |T | − dah + 1) and 

Equations (26)-(28) were used to define the ending-time slots, ETah, for each of 

the three flexibility levels previously defined.

Finally, we considered two different scenarios to test our system depending 

on whether consumers are heterogeneous or homogeneous. In the former case, 

the parameters STah and ETah are independently selected for each consumer in 

order to define a population of heterogeneous users in terms of appliances 

usage. Conversely, in case of homogeneous consumers, the parameters STah and 

ETah have identical values for all users (i.e., STa1 = STa2 = . . . = STa|H|and ETa1 = 

ETa2 = . . . = ETa|H| ∀a ∈ A). By analyzing these two scenarios, it is possible to 

assess the impact of the natural diversity of consumers, in terms of appliances 

usage, on the system performance.

In order to gauge the performance of the proposed mechanisms, we measured the 

following performance metrics:

• Social Cost : P (I), defined as in eq. (6). Note that this value represents the

electricity bill of the group of houses.

• Fairness: we considered the Jain’s Fairness Index (JFI) defined as in [29].

• Peak demand : defined as the peak of the power demand of the whole group of

users: maxt
∑
h∈H yht.

5.2. SA-DSM versus MA-DSM

Figure 5 illustrates the social cost and the peak demand obtained using the two pro-

posed mechanisms as a function of the number of houses. In such scenario, householders 

have homogeneous preferences (i.e., STah and ETah vary only among appliances, but all 

houses’ preferences are identical).

It can be observed that both mechanisms exhibit very similar trends in terms of 

social cost and peak demand. Indeed, in all the considered scenarios, the gap between
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Figure 5: SA-DSM versus MA-DSM system results considering homogeneous houses and a linear

increasing cost function with minimum slope.

the overall householder’s electricity bill obtained using the SA-DSM and the MA-DSM

is always lower than 3%.

The only remarkable difference that we observed between these two solutions is re-

lated to the solving time of the corresponding best response dynamics. Specifically, the

SA-DSM mechanism converges more quickly to the Nash Equilibrium than MA-DSM

due to the smaller solution space explored by the best response algorithm. Specifically,

in the scenario with 50 houses and long flexibility preferences, the SA-DSM mechanism

takes only 8 seconds, in average, to find the equilibrium, whereas the MA-DSM approach

needs around 15 minutes3. For this reason, the SA-DSM system can be considered an

excellent solution for scheduling the appliances execution, since it achieves practically

3On an Intel Core i5 3.33 GHz, with a 4 GB RAM.



the same results of the MA-DSM system in terms of electricity bills and peak demand, 

but in a remarkably lower time and with a fully distributed approach. As a consequence, 

devices that individually take scheduling decisions represent an effective and efficient 

solution for realistic Smart Grids deployments: only minimal computation and commu-

nication capacity is required among all system’s components, without any centralized 

house controller.

It can be further observed from Figures 5(a) and 5(b) that, independently of the DSM 

mechanism, users always benefit from higher scheduling flexibility. Indeed, larger execu-

tion intervals for shiftable appliances (i.e., the curves identified by “Long” in the figures) 

always allow users to pay cheaper bills than those obtained with short and fixed flexibility 

levels (i.e., curves identified by “Short” and “Fix”, respectively), since the DSM system 

can explore a larger solution space. However, the cheaper bills obtained using the long 

flexibility preferences come at the cost of longer solving time (i.e., the amount of time 

required to find the Nash Equilibrium through the best response algorithm). Indeed, 

we observed that the solving time of the long flexibility scenario doubles with respect 

to the short flexibility case. Numerical results presented in Figures 5(a) and 5(b) also 

show that the number of players marginally affects the gain that is achieved with the 

proposed DSM systems. In particular, the electricity bill saving obtained with respect to 

the no-flexibility scenario is around 11% and 22% for, respectively, the short-flexibility 

and the long-flexibility scenarios, irrespective of the number of players and the DSM 

mechanism. Indeed, while a larger set of players increases the competition, the pro-

posed DSM mechanisms achieve the same gains by efficiently exploiting the flexibility of 

shiftable appliances.

One of the main advantages for the operator to adopt the proposed SA-DSM system, 

as illustrated in Figure 6, is that it automatically ensures the reduction of the electricity 

demand during peak hours (i.e., high-price hours) without any centralized coordination 

among users. Specifically, the peak demand decreases by as much as 22% using the SA-

DSM system with respect to the value obtained considering fixed scheduling choices (i.e., 

the no-flexibility scenario), and the gain is slightly influenced by the appliances flexibility. 

The reduction of the peak power demand results from shifting loads from peak hours to 

other time-slots. To this end, only few users’ scheduling changes are required (i.e., only



appliances used at peak hours have to be shifted) and even a short flexibility can achieve

remarkable results.

0 4 8 12 16 20 24
0

5

10

15

20

25

30

Day Time (h)

P
ow

er
 D

em
an

d 
(k

W
)

 

Fix Short Long

Fix vs Long: −22%

Fix vs Short: −21%

Figure 6: Peak reduction guaranteed by SA-DSM: aggregate power demand of 20 identical houses 

(80 homogeneous appliances).

5.3. Analysis of Householder Preferences

Figures 7(a), 7(b) and 7(c) illustrate, respectively, the social cost, the peak demand 

and the aggregated power profile of the proposed SA-DSM mechanism as a function of 

the appliances flexibility. Specifically, these figures compare the results obtained with 20 

homogeneous and heterogeneous houses.

As illustrated in Figure 7(a), the electricity bill is cheaper when considering het-

erogeneous players. Indeed, the power demand of heterogeneous houses can be more 

smoothly distributed over the day than in the homogeneous scenario, due to the differ-

ent householders preferences about the time windows in which devices can operate. As 

a consequence, since the energy price in every time slot is defined as a function of the 

power demand of houses appliances in that particular slot, players can benefit from loads 

spreading over time. Figure 7(b) shows that also the peak demand can be considerably 

reduced when considering heterogeneous houses. Specifically, in this case, the proposed 

SA-DSM mechanism reduces the peak of the power demand down to 55% in the long 

flexibility case with respect to the corresponding homogeneous scenario because of a 

smoother load distribution. This effect appears clearly in Figure 7(c), where the overall 

electricity demand over the 24 hours of 20 heterogeneous houses with loose scheduling 

preferences (long flexibility) is compared to that of 20 identical residential houses.
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Figure 7: SA-DSM results with 20 homogeneous and heterogeneous houses preferences.

5.4. Analysis of Energy Tariffs

To evaluate how energy tariffs affect the performance of the proposed DSM systems,

we fix the slope of the electricity pricing function s =
0, 11 × 10−6

|20|
$/kWh and we con-

sider four different tariff thresholds (i.e., the threshold on the aggregated demand above

which the electricity price becomes constant): πTT ∈ {15, 18, 21, 24} kW. Figures 8(a)

and 8(b) show the social cost and peak demand of a group of 20 identical houses as

a function of the devices flexibility considering the four aforementioned energy tariffs.

As expected, in all cases, the flexibility on the scheduling preferences reduces both the

electricity bill and the peak demand. However, by playing with the energy tariff, the

operator can further increase users’ gain on the electricity price and, at the same time,

decrease the peak power absorbed from the grid, thus resulting in lower investments

and operating costs. For example, as illustrated in Figure 8(a), the social cost decreases

down to 11% from the no-flexibility to the long flexibility scheduling scenarios when the

operator fixes the tariff threshold πTT = 15 kW. However, this gain increases up to 22%

with πTT = 24 kW. Indeed, when πTT = 15 kW, cost savings can be obtained only by

shifting loads from peak hours to time slots in which the total power demand is lower

than 15 kW. In contrast, a wider set of scheduling alternatives is available to reduce the

social cost when πTT = 24 kW, since power loads can be shifted from peak hours to all

time slots where the aggregated power demand is lower than 24 kW. As a consequence,

as the tariff threshold increases, the number of devices shifted outside the peak hours

grows, reducing the peak demand as illustrated in Figure 8(b).

In our tests, we also vary the slope s of the energy tariff, defined as an
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Figure 8: SA-DSM results with 20 identical houses and a varying tariff threshold (πT T ) of the

pricing function.

integer-multiple of the minimum slope s = k ·sMIN , to assess its impact on the

system performance. Specifically, we fix the tariff threshold πT T = 24 kW and

vary the proportionality factor k of the slope s in the range [1, 5]. Figure 9

illustrates the social cost of a group of 20 identical houses obtained by using the

SA-DSM mechanism, as a function of the slope of the tariff. In particular, for

each devices flexibility level, we report the percentage reduction of the social

cost with respect to the benchmark scenario in which the appliances schedule is

fixed (i.e., there is no flexibility in deciding when to use each device), in order to

show the net effect of the DSM system. As expected, with more “aggressive”

pricing functions (i.e., steeper slopes), the proposed framework is able to obtain

greater savings on the consumers’ bill. In fact, in these cases, the energy prices

increase faster with the power demand and, therefore, the gap between the bill

obtained with the optimal devices schedule and the bills of other solutions

becomes more evident. However, our tests have also shown that varying the

slope of the energy tariff has a limited impact on the peak demand in all the

considered scenarios. As a consequence, this parameter has to be chosen only

based on economic considerations: by modifying the slope of the energy tariff,

the operator can conveniently adjust the users’ gain on the electricity bill in

order to incetivize them to shift their loads.
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Figure 9: Percentage reduction of the social cost guaranteed by SA-DSM as a function

of the slope of the energy tariff.

Finally, we underline that in all the considered scenarios, we observed that all players

pay actually an equal share of the electricity bill, since the Jain’s Fairness Index is always

very close to 1. Indeed, even in the scenarios with heterogeneous residential users, the

JFI is always higher than 0.9991.

6. Conclusions

In this paper, we proposed a novel, fully distributed Demand-Side Management

(DSM) system aimed at reducing the peak demand of a group of residential users.

We modeled our system using a game theoretical approach, where players are the

customer’s appliances, which decide autonomously when to execute. We demonstrated

that the proposed game is a generalized ordinal potential one, and we proposed a best

response dynamics mechanism which is guaranteed to converge in few steps to efficient

Nash equilibrium solutions. Furthermore, we showed that our approach performs ex-

tremely close to a more complex setting where each customer must optimize the schedule

of all his appliances, since it provides practically the same results in terms of minimizing

their daily electricity bill. For this reason, due to its intrinsic simplicity, robustness and

distributed architecture, we recommend the adoption of our proposed approach.

Numerical results, obtained using realistic load profiles and appliance models, demon-

strate that the proposed DSM system represents a promising and very effective solution



to reduce the peak absorption of the entire system and the electricity bill of individual

customers in a fully distributed way.
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