
Mixed Finite Elements for Spatial Regression with PDE Penalization∗

Laura Azzimonti†, Fabio Nobile‡, Laura M. Sangalli†, and Piercesare Secchi†

Abstract. We study a class of models at the interface between statistics and numerical analysis. Specifically,
we consider nonparametric regression models for the estimation of spatial fields from pointwise
and noisy observations, which account for problem-specific prior information, described in terms
of a partial differential equation governing the phenomenon under study. The prior information is
incorporated in the model via a roughness term using a penalized regression framework. We prove
the well-posedness of the estimation problem, and we resort to a mixed equal order finite element
method for its discretization. Moreover, we prove the well-posedness and the optimal convergence
rate of the proposed discretization method. Finally the smoothing technique is extended to the case
of areal data, particularly interesting in many applications.
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1. Introduction. In this work we study the properties of a nonparametric regression tech-
nique for the estimation of bidimensional or three dimensional fields on bounded domains
starting from pointwise noisy evaluations. The technique is particularly well suited for appli-
cations in physics, engineering, biomedicine, etc., where prior knowledge of the field might be
available from physical principles and should be taken into account in the field estimation or
smoothing process. We consider, in particular, phenomena where the field can be described
by a partial differential equation (PDE) and has to satisfy some known boundary conditions.

Spatial regression with PDE penalization (SR-PDE) has been developed in [1] for the
estimation of the blood velocity field on an artery section, from echo-Doppler data. This
technique has very broad applicability since PDEs are commonly used to describe phenomena
behavior in many fields of physics, mechanics, biology, and engineering. Many applications
of particular interest can be named: the estimation of the concentration of pollutant released
in water or in the air and transported by the stream or by the wind starting from noisy
observations, the estimation of temperature or pressure fields from electronic control units
or sensors in environmental sciences, and many other phenomena in physical and biological
sciences or engineering. In this work we focus on phenomena that are well described by linear
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second order elliptic PDEs, typically transport-reaction-diffusion problems. Methods similar
to SR-PDE, applied to problems in hemodynamics, are described in [9, 10, 24] .

SR-PDE uses a functional data analysis approach (see, e.g., [22]) and generalizes classical
spatial smoothing techniques, such as thin-plate splines. SR-PDE, in fact, estimates the
surface or the field minimizing a penalized least square functional, with the roughness penalty
involving a partial differential operator. Many methods for surface estimation define the
estimate as the minimizer of a penalized sum-of-square-error functional, with the penalty
term involving a simple partial differential operator. Thin-plate spline smoothing, for example,
penalizes an energy functional in R

2 that involves second order derivatives. The minimizer of
this functional belongs to the linear space generated by the Green’s functions associated to the
bi-Laplacian (see [30] for details). Thin-plate spline smoothing was first extended to the case
of bounded domains in [26], where the thin-plate energy is computed only over the bounded
domain of interest. Since the minimizer cannot be directly characterized, it is approximated by
a surface in the space of tensor product B-splines. Recently, more complex smoothing methods
have been developed that deal with general bounded domains in R

2 and general boundary
conditions. Some examples are soap-film smoothing, described in [31], and the spatial spline
regression models described in [25], which generalize the finite element L-splines introduced in
[23]. These methods estimate bidimensional surfaces on complex bounded domains penalizing
the Laplace operator of the surface as a measure of the local curvature. Soap-film smoothing
approximates the minimizer of the penalized least square functional with a linear combination
of Green’s functions of the bi-Laplacian on the domain of interest, centered on the vertices
of a lattice. On the other hand, finite element L-splines and spatial spline regression models
solve directly the PDE associated to the penalized least square functional by means of a mixed
finite element method.

Following the approach presented in [23, 25], we propose estimating the field minimizing a
least square functional regularized with the L2-norm over the domain of interest of the misfit
of a second order PDE, Lf = u, modeling the phenomenon under study. The important
novelty with respect to the methods cited above is that the problem-specific prior information,
formalized in the PDE, is here used to model the phenomenon space variation. Furthermore,
SR-PDE allows for important modeling flexibility in this direction, accounting, for instance,
for space anisotropy and nonstationarity in a straightforward way.

We assume here that all the parameters appearing in the operator L and the boundary
conditions are known, while the forcing term in the PDE is not completely determined. This
approach is similar to that used in control theory when a distributed control on the forcing
term is considered; see, for example, [18, 19, 21]. However, the viewpoint that we have in this
work is quite different from the classical control theory framework. We are in fact interested in
a surface estimation problem starting from partial, pointwise, and noisy evaluations, instead
of considering an integral target. For this reason, different questions have to be addressed in
this partial and pointwise data framework, with respect to the issues classically considered in
control theory. It is, for instance, necessary to require higher regularity to the field to ensure
that the penalized least square functional is well defined. On the other hand, classical issues
handled in control theory, such as the presence of constraints in the space of controls, are
not relevant in this framework. Similarly, SR-PDE can be interpreted as an inverse problem
[11], where the goal is specifically the determination of a field starting from direct partial and



pointwise observations. A similar setting is considered in [27].
The penalized least square functional has a unique minimum in the Sobolev space H2, and

the minimum is the solution of a fourth order problem. In order to prove the existence and the
uniqueness of the estimator we resort to a mixed approach for fourth order problems since the
penalized error functional is not necessarily convex in H2. Accordingly, a mixed equal order
finite element method, similar to classical mixed methods described, for example, in [5, 20], is
used for discretizing the estimation problem. Other classical conforming and nonconforming
methods (see [5] and references therein) or more recent discontinuous Galerkin methods (see,
e.g., [3, 28, 15]) can be used for the discretization of the fourth order problem. However, in
the specific case considered here the mixed finite element method is a convenient choice since
the problem under exam can be written as a system of second order PDEs. Moreover, the
mixed approach also provides a good approximation of second order derivatives of the field
that can be useful in order to compute physical quantities of interest.

The proposed mixed equal order finite element discretization is known to have a suboptimal
convergence rate when applied to fourth order problems with arbitrary boundary conditions,
and, in particular, the first order approximation might not converge to the exact solution
(see, e.g., [4, 5]). However, we are able to prove the optimal convergence of the proposed
discretization method for the specific set of boundary conditions that are naturally associated
to the smoothing problem, whenever the true underlying field satisfies exactly those conditions.
The theoretical results are confirmed by numerical experiments.

The inspected convergence concerns the study of the bias of the estimator, while the study
of the variance of the estimator and the convergence when the number of observations goes to
infinity will be the subject of a future work. These topics are studied in the classical setting
of smoothing splines (see, e.g., [6]), thin-plate splines, or multidimensional smoothing splines
(see, e.g., [7, 8, 16] and references therein), but the results proved in these classical settings
cannot be directly generalized to SR-PDE models.

The proposed smoothing technique is also extended to the case of areal data, i.e., data that
represent linear quantities computed on some subdomains; this data framework is frequent
in many applications. For instance, in the case of the driving problem considered in [1],
which concerns the blood velocity field estimation from echo-Doppler acquisitions, the data
represent the mean velocity of blood on some subdomains on the considered artery section.
The properties of the estimator in the areal setting are obtained along the same lines followed
for pointwise observations.

The paper is organized as follows. Section 2 introduces the SR-PDE model used for
pointwise observations. Section 3 proves the well-posedness of the estimation problem, and
section 4 obtains a bound for the bias of the estimator. Section 5 describes the mixed finite
element method used for the discretization of the estimation problem and proves the well-
posedness of the discrete problem. Section 6 proves the convergence of the proposed mixed
finite element method and provides a bound for the bias of the finite element estimator.
Section 7 extends the models to the case of areal data and presents the asymptotic results in
this setting. Section 8 presents the numerical experiments supporting the theoretical results.
Section 9 outlines future research directions.



2. Surface estimator for pointwise data. Consider a bounded, regular, open domain
Ω ⊂ R

d with d ≤ 3 and a regular function f0 : Ω → R to be estimated from noisy observations.
Let zi, for i = 1, . . . , n, be n observations that represent noisy evaluations of the field f0 at
points pi ∈ Ω. We assume in this work that the location points pi are fixed and known
without error. As is usually done in nonparametric and smoothing problems, we assume the
classical additive error model for the observations:

(2.1) zi = f0(pi) + εi,

where εi, i = 1, . . . , n, are independent errors with mean E[εi] = 0, and constant variance
Var(εi) = σ2.

In addition to the observations zi, it is supposed that we have a physical knowledge of
the phenomenon under study and that this prior knowledge can be described by means of a
differential operator. Specifically, we can formalize this as a PDE that f0 satisfies:

(2.2)

{
Lf0 = ũ in Ω,
Bcf0 = γ on ∂Ω,

where the operator L and the boundary conditions are completely determined and fixed,
while the forcing term ũ = u+ g0 ∈ L2(Ω) is composed of a known and fixed part u ∈ L2(Ω),
motivated by the application, and an unknown term g0 ∈ L2(Ω), which will be estimated from
data. The parameters of the PDE and the boundary conditions could as well be considered
partly unknown and estimated from data, but in this work we assume them to be known and
fixed. We focus on second order elliptic operators; in particular, L is a diffusion-transport-
reaction operator

(2.3) Lf0 = −div(K∇f0) + b · ∇f0 + cf0

with smooth and bounded parameters. The matrix K ∈ R
d×d is a symmetric and positive

definite diffusion tensor, b ∈ R
d is the transport vector, and c ≥ 0 is the reaction term.

These parameters can be spatially varying in Ω; i.e., K = K(x), b = b(x), and c = c(x),
with x ∈ Ω. The boundary conditions of the PDE are homogeneous or nonhomogeneous
Dirichlet, Neumann, or Robin (or mixed) conditions. All the admissible boundary conditions
are summarized in

(2.4) Bcf0 =

⎧⎨
⎩

f0 on ΓD,
K∇f0 · ν on ΓN ,
K∇f0 · ν + χf0 on ΓR,

γ =

⎧⎨
⎩

γD on ΓD,
γN on ΓN ,
γR on ΓR,

where ν is the outward unit normal vector to ∂Ω, χ ∈ R is a positive constant, and ∂Ω =
Γ̄D ∪ Γ̄N ∪ Γ̄R, with ΓD,ΓN ,ΓR not overlapping. In what follows, we make the following
assumption.

Assumption 1. |ΓD| > 0 so that a Poincaré inequality holds, i.e.,

(2.5) ‖v‖L2(Ω) ≤ CP ‖∇v‖L2(Ω)

∀v vanishing on ΓD.



In order to estimate the field f0, starting from the observations z1, . . . , zn and using the a
priori knowledge of the phenomenon, we propose minimizing the penalized sum-of-square-error
functional

(2.6) J(f) =
1

n

n∑
i=1

(f(pi)− zi)
2 + λ

∫
Ω
(Lf − u)2

over the set of functions Vγ = {v ∈ H2(Ω) : Bcv = γ}, where H2(Ω) is the Sobolev space
of functions in L2(Ω) with first and second derivatives in L2(Ω); notice that the boundary
conditions (2.4) are imposed directly in Vγ . Even if in this case we are considering fixed
and deterministic boundary conditions, it would be possible to account for uncertainty on
the boundary conditions, for instance, by including in the least square functional a dedicated
regularizing term, provided that the observations are also available on the boundary.

The functional J(f) is composed of a data fitting criterion, consisting of classical least
square errors, and a model fitting criterion, formalized as a roughness term that penalizes
the misfit of a PDE governing the phenomenon. Because of the inclusion of a PDE in the
definition of the statistical model, the proposed method can be seen as a regularized least
square analogous to the Bayesian inverse problems presented, e.g., in [27]. In particular,
the least square term in J(f) corresponds to a log-likelihood for Gaussian errors, while the
regularizing term effectively translates the prior knowledge of the surface. With respect to
[27], besides the different model framework and different estimation approaches, we also deal
with a larger class of operators, also including nonstationary anisotropic diffusion, transport,
and reaction terms.

The penalization of the general second order operator (2.3) strongly influences the spatial
structure of the estimated field. It is thus important to choose correct diffusion, transport,
reaction, and boundary terms, which translate the prior knowledge of the phenomenon. An
application of this method to a real problem can be found in [1], where the penalized differential
operator describes the physiological knowledge of a blood velocity profile. Notice also that
by penalizing the misfit of the PDE Lf0 − u, where u ∈ L2(Ω) is the known part of the
forcing term, we are actually minimizing the contribution of the unknown forcing term g0.
This unknown forcing term can be interpreted as the classical control term introduced in PDE
optimal control theory; see, for example, [18, 19, 21]. Even though the formalism is similar,
in this work we use a different viewpoint with respect to the classical control theory. We
consider, in fact, partial, pointwise, and noisy observations, instead of the classical integral
targets. For this reason new issues, concerning, for instance, the regularity of the solution,
have to be addressed. It is in fact necessary to require f ∈ H2(Ω) for the functional J(f) to
be well defined, thanks to the embedding H2(Ω) ⊂ C(Ω̄) if Ω ⊂ R

d with d ≤ 3. For data in
R
d with d > 3 one has to require more regularity in order to obtain f ∈ C(Ω); in particular

one needs f ∈ Hs(Ω) with s > d/2; see, e.g., [14].
In the functional J(f) the contribution of the data fitting criterion and of the model fitting

criterion is tuned by means of the smoothing parameter λ. A large literature is devoted
to the optimal choice of this parameter in classical statistical contexts; see, e.g., [17, 22]
and references therein. Standard methods are, for example, the Akaike information criterion
(AIC), the Bayesian information criterion (BIC), and the generalized cross-validation (GCV)



criterion. Other methods for the choice of the parameter λ, arising from the inverse problems
literature, are the unbiased predictive risk estimator (UPRE), the discrepancy principle, and
the L-curve method; see, e.g., [29].

The estimation problem is formulated as follows. 
Problem 1. Find f̂  ∈ Vγ such that

f̂ = argmin
f∈Vγ

J(f).

As will be shown in the next section, this problem is well-posed if we assume some regu-
larity on the parameters of the PDE and on the domain Ω. In particular, in the case d ≤ 3,
we make the following assumption.

Assumption 2. The parameters of the PDE are such that ∀ũ ∈ L2(Ω) there exists a unique
solution f0 of the PDE (2.2), which, moreover, satisfies f0 ∈ H2(Ω).

The Lax–Milgram theorem guarantees the existence and the uniqueness of the solution of
the PDE (2.2) in H1(Ω) when the parameters of the PDE K, b, and c satisfy some classical
requirements, for example, Kij , bj , c ∈ L∞(Ω), K is symmetric and uniformly elliptic, i.e.,
ξTK(x)ξ ≥ αK ∀x ∈ Ω and ∀ξ ∈ R

d, b ·ν ≥ 0 on ΓN ∪ΓR, −1/2div(b(x))+c(x) ≥ −αK/CP ,
where αK is the ellipticity constant and CP is the Poincaré constant, χ ∈ L∞(∂Ω), χ ≥ 0,
and γD ∈ H1/2(∂Ω), γN ∈ H−1/2(∂Ω), γR ∈ H−1/2(∂Ω).

To guarantee that the solution of the PDE is in H2(Ω) we need to require extra regularity
on the domain Ω, on the parameters of the PDE, and on the boundary conditions: Ω is a
polygonal convex domain or its boundary ∂Ω is a curve of class C2, Kij is Lipschitz continuous,
and γD ∈ H3/2(∂Ω), γN ∈ H1/2(∂Ω), γR ∈ H1/2(∂Ω). If the boundary conditions imposed
are mixed, they have to satisfy some joint conditions in order not to reduce the regularity of
the solution; see [14] for more details.

3. Well-posedness analysis. To analyze the well-posedness of Problem 1 we introduce a
new quantity g ∈ G = L2(Ω) that represents the misfit of the PDE in the penalizing term.
This new quantity, g ∈ G, is defined as g = Lf − u, where L is the second order elliptic
operator (2.3), and is the classical distributed control term in PDE optimal control theory.

It is useful to also introduce the space V0 = {v ∈ H2(Ω) : Bcv = 0}, which represents
the space of functions in H2(Ω) with homogeneous boundary conditions, and the operator
B : L2(Ω) → V0 such that Bũ is the unique solution of the PDE (2.2) with forcing term ũ
and homogeneous boundary conditions, i.e., L(Bũ) = ũ in Ω and Bc(Bũ) = 0 on ∂Ω. Under
Assumptions 1 and 2, thanks to the well-posedness and the H2-regularity of the PDE (2.2),
the operator B is an isomorphism between the spaces L2 and V0 and the H2-norm of Bu is
equivalent to the L2-norm of u; i.e., there exist two positive constants C1 and C2 such that

(3.1) C1 ‖u‖L2(Ω) ≤ ‖Bu‖H2(Ω) ≤ C2 ‖u‖L2(Ω) .

The solution of the PDE (2.2) can thus be written as f = fb +Bũ, where fb is the solution of
the PDE with the homogeneous forcing term and nonhomogeneous boundary conditions, i.e.,
L(fb) = 0 in Ω and Bc(fb) = γ on ∂Ω.

Existence and uniqueness of the estimator f̂ are obtained thanks to classical results of
calculus of variations. We recall here the result stated, e.g., in [19].



Theorem 1. If the functional J(g) has the form

(3.2) J(g) = A(g, g) + Lg + c,

where A : G × G → R is a continuous, coercive, and symmetric bilinear form in G, L : G → R

is a linear operator, c is a constant, and G is a Hilbert space, then there exists a unique ĝ ∈ G
such that J(ĝ) = infG J(g).

Moreover, ĝ satisfies the following Euler–Lagrange equation:

(3.3) (J ′(ĝ), ϕ) = 2A(ĝ, ϕ) + Lϕ = 0 ∀ϕ ∈ G.

The existence and uniqueness of the estimator are stated in the following theorem.
Theorem 2. Under Assumptions 1–2, the solution of Problem 1 exists and is unique.
Proof. Thanks to the definition of g we can write f as an affine transformation of g, i.e.,

f = fb +B(u+ g), and the functional (2.6) as

(3.4) Jg(g) = J(fb +B(u+ g)) =
1

n

n∑
i=1

(fb(pi) +B(u+ g)(pi)− zi)
2 + λ ‖g‖2L2(Ω) .

This reformulation of the functional J is very useful since we can now write Jg in the quadratic
form (3.2), where

A(g, ϕ) =
1

n

n∑
i=1

Bg(pi)Bϕ(pi) + λ

∫
Ω
gϕ,

Lϕ =
2

n

n∑
i=1

Bϕ(pi)(fb(pi) +Bu(pi)− zi),

c =
1

n

n∑
i=1

(fb(pi) +Bu(pi)− zi)
2.

Clearly, A(g, ϕ) is a bilinear form since both B and the pointwise evaluation of a function are
linear operators. Moreover, it is continuous in G; indeed, thanks to the embedding H2(Ω) ⊂
C(Ω̄) if Ω ⊂ R

d with d ≤ 3 and thanks to (3.1) we have that

|Bg(pi)| ≤ ‖Bg‖C(Ω̄) ≤ C ‖Bg‖H2(Ω) ≤ C ‖g‖L2(Ω) .

We thus obtain that A(g, ϕ) ≤ (C2 + λ) ‖g‖L2(Ω) ‖ϕ‖L2(Ω).

Finally, the operator A(g, ϕ) is coercive in L2(Ω) since

A(g, g) =
1

n

n∑
i=1

|Bg(pi)|2 + λ

∫
Ω
g2 ≥ λ

∫
Ω
g2 = λ ‖g‖2L2(Ω) .

Due to the fact that the bilinear form A(·, ·) is continuous and coercive in G = L2(Ω), that 
the linear operator L is continuous, and that c is a constant, Theorem 1 states the existence 
and the uniqueness of ĝ = argming∈G Jg(g). From the bijectivity of B : L2(Ω) → V0 we deduce 
the existence and uniqueness of f̂  = fb + B(ĝ + u) = argminf∈Vγ J(f ).



The estimator f̂ is obtained by solving

(3.5)

{
Lf̂ = u+ ĝ in Ω,

Bcf̂ = γ on ∂Ω,

where ĝ is the solution of

(3.6)
1

2

(
J ′
g(ĝ), ϕ

)
=

∫
Ω

1

n

n∑
i=1

(
f̂ − zi

)
Bϕδpi + λ

∫
Ω
ĝϕ = 0 ∀ϕ ∈ G.

Recalling that B is an isomorphism between L2 and V0, we can associate to any ϕ ∈ G the
function v ∈ V0 such that v = Bϕ (or, equivalently, Lv = ϕ with homogeneous boundary
conditions) and we can write the latter equation as

(3.7)
1

2

(
J ′
g(ĝ), v

)
=

∫
Ω

1

n

n∑
i=1

(
f̂ − zi

)
vδpi + λ

∫
Ω
ĝLv = 0 ∀v ∈ V0.

The estimator ĝ, the solution of (3.7), can be interpreted as the solution in the sense of
distributions of the PDE

(3.8) L∗ĝ = − 1

nλ

n∑
i=1

(f̂ − zi)δpi ,

where δpi is the Dirac mass located in pi and L
∗ is the adjoint operator of L:

(3.9) L∗g = −div(K∇g)− b · ∇g + (c− div(b))g.

Remark 1. Should ĝ be sufficiently smooth, we could integrate twice (3.7) by parts and
obtain ĝ as the solution of

(3.10)

{
L∗ĝ = − 1

nλ

∑n
i=1(f̂ − zi)δpi in Ω,

Bc
∗ĝ = 0 on ∂Ω,

where the boundary conditions associated to the adjoint problem are

(3.11) Bc
∗g =

⎧⎨
⎩

g on ΓD,
K∇g · ν + b · νg on ΓN ,
K∇g · ν + (b · ν + χ)g on ΓR.

The estimator (f̂ , ĝ) would then satisfy the coupled problem

(3.12)

{
Lf̂ = u+ ĝ in Ω,

Bcf̂ = γ on ∂Ω,

{
L∗ĝ = − 1

nλ

∑n
i=1(f̂ − zi)δpi in Ω,

Bc
∗ĝ = 0 on ∂Ω,

which is analogous to the mixed formulation of fourth order problems, described, for example, in 
[4, 5, 20]. Usually, ĝ is not regular enough for the strong formulation (3.10) to be well  defined. 
However, we will derive the finite element discretization, described in detail in section 5, 
starting from the weak formulation of the system (3.12).



4. Bias of the estimator. The penalty term in the functional J(f ) induces a bias in the
estimator f̂ unless the unknown part of the forcing term g0 is equal to the null function and
the true underlying field f0 satisfies exactly the penalized PDE, namely Lf0 = u. Now we
want to quantify this bias.

The estimators f̂ and ĝ are defined, respectively, as the solutions of the linear problems
(3.5) and (3.7). Thanks to the linearity of (3.7), we can write ĝ = ĝ∗ + ĝw, where ĝ

∗ and ĝw
are, respectively, the solution of the equations∫

Ω

1

n

n∑
i=1

(Bĝ∗ +Bu+ fb − f0) vδpi + λ

∫
Ω
ĝ∗Lv = 0 ∀v ∈ V0,(4.1)

∫
Ω

1

n

n∑
i=1

(Bĝw − εi) vδpi + λ

∫
Ω
ĝwLv = 0 ∀v ∈ V0.(4.2)

Indeed it is trivial to show that ĝ∗+ĝw satisfies (3.7) since zi = f0(pi)+εi and f̂ = fb+B(u+ĝ).
Thanks to the linearity of (3.5), we can now write the surface estimator as f̂ = f̂∗ + ŵ,

where f̂∗ = fb + B(u + ĝ∗) and ŵ = Bĝw. It is easy to see that f̂∗ and ŵ both satisfy a
minimization problem of the form (2.6). It follows that the estimation problem can be split
in two independent parts:

f̂ =argmin
f∈Vγ

[
1

n

n∑
i=1

(f(pi)− f0(pi))
2 + λ

∫
Ω
(Lf − u)2

]
(4.3)

+ argmin
w∈V0

[
1

n

n∑
i=1

(w(pi)− εi)
2 + λ

∫
Ω
(Lw)2

]
.

The first functional on the right-hand side of (4.3) involves the observations without noise and 
the nonhomogeneous PDE in the penalty term (both the forcing term and the boundary 
conditions are nonhomogeneous). The minimizer f̂∗ of this functional is deterministic. The 
second functional on the right-hand side of (4.3) involves instead pure noise data and the 
homogeneous PDE (both the forcing term and the boundary conditions are homogeneous). 
The minimizer ŵ of this functional is thus a random term. Notice that the random term has zero 
mean, i.e., E[ŵ] = 0. Indeed, from (4.2) it follows  that∫

Ω

1

n

n∑
i=1

BE[ĝw]vδpi + λ

∫
Ω
E[ĝw]Lv =

1

n

n∑
i=1

E[εi]vδpi = 0 ∀v ∈ V0.

Exploiting the arbitrariness of v ∈ V0, we obtain E[ĝw] = 0 and E[ŵ] = BE[ĝw] = 0. For
this reason the deterministic term f̂∗ corresponds to the average of the surface estimator, i.e.,
E[f̂ ] = f̂∗.

We are now interested in quantifying the bias of the surface estimator E[f̂ ] − f0 induced
by the penalizing term. In particular it is natural to study the bias in the norm on V0 induced
by the functional J(f), i.e.,

(4.4) ‖f‖2J =
1

n

n∑
i=1

f(pi)
2 + λ

∫
Ω
(Lf)2 ∀f ∈ V0.



Lemma 1. The norm (4.4) of the bias of f̂  is bounded by

(4.5)
∥∥∥E[f̂ ]− f0

∥∥∥2
J
≤ 4λ ‖Lf0 − u‖2L2(Ω) .

Proof. In order to obtain the inequality (4.5) we can use the optimality of E[f̂ ] in the
minimization of the first functional on the right-hand side of (4.3), with respect to any other
function in Vγ . We have in fact that

∥∥∥E[f̂ ]− f0

∥∥∥2
J
=

1

n

n∑
i=1

(E[f̂ ](pi)− f0(pi))
2 + λ

∥∥∥L(E[f̂ ]− f0)
∥∥∥2
L2(Ω)

≤ 1

n

n∑
i=1

(E[f̂ ](pi)− f0(pi))
2 + 2λ

∥∥∥LE[f̂ ]− u
∥∥∥2
L2(Ω)

+ 2λ ‖Lf0 − u‖2L2(Ω)

≤ 2

[
1

n

n∑
i=1

(E[f̂ ](pi)− f0(pi))
2 + λ

∥∥∥LE[f̂ ]− u
∥∥∥2
L2(Ω)

]
+ 2λ ‖Lf0 − u‖2L2(Ω)

≤ 2λ ‖Lf0 − u‖2L

h

2(Ω) + 2λ ‖Lf0 − u‖2L2(Ω) .

This result means that the estimator is asymptotically unbiased in the norm ‖·‖J if either 
‖Lf0 − u‖L2 = 0  or  λ = λ(n) → 0 for n → +∞. The condition ‖Lf0 − u‖L2(Ω) = 0  means  
that the real field f0 is in the kernel of the penalty term, while the condition λ = λ(n) → 0 
for n → +∞ means that we consider the roughness parameter to be a decreasing function of 
the number of observations and in particular that the more observations we have, the less we 
penalize the PDE misfit.

5. Finite element estimator. The estimation problem presented in section 2 is infinite 
dimensional and cannot be solved analytically. To reduce this infinite dimensional problem to 
a finite dimensional one, we discretize the PDE system (3.12) with the finite element method; 
this method has already been used in this framework, for example, in [23, 25, 13]. The finite 
element approximation of the system (3.12) can be regarded as a naive mixed finite element 
method for the discretization of Problem 1. More complex methods for the discretization of 
fourth order problems could be used: in [5], for example, some conforming and nonconforming 
methods for the discretization of fourth order problems are introduced, while in [3, 28, 15] 
more recent discontinuous Galerkin methods are described.

Let Th be a regular and quasi-uniform triangulation of the domain, which for convenience 
we assume here to be polygonal and convex, and h = maxK∈Th diam(K) be the characteristic 
mesh size (see, e.g., [2]). Notice that the mesh Th can be defined independently of the location 
of the observations p1, . . .  ,  pn. We consider the space V r of piecewise continuous polynomial

functions of degree r ≥ 1 on the triangulation:

V r
h =

{
v ∈ C0(Ω̄) : v|K ∈ P

r(K) ∀K ∈ Th
}

and V r
h,ΓD

= V r
h ∩H1

ΓD
(Ω), where H1

ΓD
=
{
v ∈ H1(Ω) : v|ΓD

= 0
}
.



In order to discretize the PDE system (3.12) we define the bilinear forms

r(g, v) =

∫
Ω
gv, l(f, ψ) =

1

n

n∑
i=1

f(pi)ψ(pi),

a(f, ψ) =

∫
Ω
(K∇f · ∇ψ + b · ∇fψ + cfψ) +

∫
ΓR

χfψ,(5.1)

the last one being the bilinear form associated to the operator L; we also introduce the linear
operator F (ψ) =

∫
Ω uψ +

∫
ΓN

γNψ +
∫
ΓR
γRψ.

Now let fD,h ∈ V r
h be a lifting of the nonhomogeneous Dirichlet conditions, i.e., fD,h|ΓD

=
γD,h, where γD,h is the interpolant of γD in the space of piecewise continuous polynomial
functions of degree r on the Dirichlet boundary ΓD. The finite element approximation of the
system (3.12) becomes

(5.2)

{
1
λ l(f̂h, ψh) + a(ψh, ĝh) =

1
nλ

∑n
i=1 ziψh(pi) ∀ψh ∈ V r

h,ΓD
,

a(f̂h, vh)− r(ĝh, vh) = F (vh) ∀vh ∈ V r
h,ΓD

,

with (f̂h − fD,h, ĝh) ∈ V r
h,ΓD

× V r
h,ΓD

.
In this and the following section, we need a slightly stronger regularity assumption on the

PDE (2.2); in particular, we need its solution to be in a Sobolev space W 2,p, where W s,p(Ω) is 
the space of functions in Lp(Ω) with derivatives up to order s in Lp(Ω).

Assumption 3. The parameters of the PDE are such that for every ũ ∈ Lp(Ω) there exists a 
unique solution f0 ∈ W 2,p(Ω) for some p > d.

Lemma 2. Under Assumption 3, there exists h0 > 0 such that for every h ≤ h0, problem (5.2) 
has a unique solution.

Proof. The proof mimics the strategy used to prove the existence and the uniqueness of 
the estimator at the continuous level in Theorem 2.

Let ϕh ∈ Vh
r, and let B : L2(Ω) → V0 be the operator defined in section 3 such that 

ψ = Bϕh is the solution of

a(ψ, v) =

∫
Ω
ϕhv ∀v ∈ H1

ΓD
.

We define the operator Bh as the discretization of the operator B; i.e., ψh = Bhϕh ∈ V r
h,ΓD

is
the solution of

(5.3) a(ψh, vh) =

∫
Ω
ϕhvh ∀vh ∈ V r

h,ΓD
.

It is easy to show that the operator Bh is stable in the L∞-norm, i.e.,

‖ψh‖L∞(Ω) ≤ C ‖ϕh‖L2(Ω) .

We have in fact that

‖ψh‖L∞(Ω) ≤ ‖ψ − ψh‖L∞(Ω) + ‖ψ‖L∞(Ω) .



Thanks to the H2-elliptic regularity of the PDE (2.2) (see Assumption 2) we have that

‖ψ‖L∞(Ω) ≤ C ‖ψ‖H2(Ω) ≤ C ‖ϕh‖L2(Ω) ,

while thanks to Assumption 3 and the Sobolev inequality (see, e.g., [2])

(5.4) ‖w‖L∞(Ω) ≤ C ‖w‖W 1,p(Ω) ∀w ∈W 1,p(Ω), ∀p > d,

where W 1,p(Ω) is the space of functions in Lp(Ω) with first derivatives in Lp(Ω), we obtain
the bound for the error term in the L∞-norm

‖ψ − ψh‖L∞(Ω) ≤ C ‖ψ − ψh‖W 1,p(Ω) ≤ C inf
vh∈V r

h,ΓD

‖ψ − vh‖W 1,p(Ω)

≤ Ch |ψ|W 2,p(Ω) ≤ Ch ‖ϕh‖Lp(Ω) ≤ Ch
1+min

{
0, d

p
− d

2

}
‖ϕh‖L2(Ω) .

In the last step we have used an inverse inequality (see, e.g., [12]), and taking p = 2d/(d− 2),
which is larger than d for d ≤ 3, we conclude that

‖ψ − ψh‖L∞(Ω) ≤ C ‖ϕh‖L2(Ω) .

We now define the operators Ah and Lh as the discretization of the operators A and L defined
in section 3:

Ah(gh, ϕh) =
1

n

n∑
i=1

Bhgh(pi)Bhϕh(pi) + λ

∫
Ω
ghϕh,

Lhϕh =
2

n

n∑
i=1

Bhϕh(pi)(fb,h(pi) +Bhu(pi)− zi),

where fb,h is the discretization of fb. The operator Ah is coercive in L2; in fact,

Ah(gh, gh) =
1

n

n∑
i=1

(Bhgh(pi))
2 + λ

∫
Ω
g2h ≥ λ ‖gh‖2L2(Ω) .

Thanks to the stability in the L∞-norm of the operator Bh, the operators Ah and Lh are both
continuous:

Ah(gh, ϕh) ≤ C ‖Bhgh‖L∞(Ω) ‖Bhϕh‖L∞(Ω) + λ ‖gh‖L2(Ω) ‖ϕh‖L2(Ω)

≤ C ‖gh‖L2(Ω) ‖ϕh‖L2(Ω) ,

Lh(ϕh) ≤ C ‖Bhϕh‖L∞(Ω) ≤ C ‖ϕh‖L2(Ω) .

Thanks to the fact that Ah is continuous and coercive in L2(Ω) and Lh is continuous in L2(Ω),
the equation

2Ah(gh, ϕh) + Lh(ϕh) = 0 ∀ϕh : Bhϕh = ψh ∈ V r
h,ΓD

has a unique solution gh ∈ V r
h,ΓD

. This equation corresponds to the first equation of the
system (5.2).



Once ĝh is known, f̂h is recovered uniquely from the second equation in (5.2).
Now let {ψk}Nh

k=1 be the Lagrangian basis of the space V r
h,ΓD

, where Nh = dim(V r
h,ΓD

), and
let ξ1, . . . , ξNh

be the nodes associated to the Nh basis functions. Thanks to the Lagrangian
property of the basis functions we can write a function f ∈ span{ψ1, . . . , ψNh

} as

f(x) =

Nh∑
k=1

f(ξk)ψk(x) = fTψ,

where f = (f1, . . . , fNh
)T = (f(ξ1), . . . , f(ξNh

))T and ψ = (ψ1, . . . , ψNh
)T .

Analogously, we define the Lagrangian basis of the space V r
h \V r

h,ΓD
as {ψD

k }N
D
h

k=1, where

ND
h = dim(V r

h \V r
h,ΓD

), and the nodes on the boundary ΓD as ξD1 , . . . , ξ
D
ND

h
. A lifting fD,h can

be constructed in span{ψD
1 , . . . , ψ

D
ND

h
} as fD,h = fTDψ

D, where fD = (fD(ξ
D
1 ), . . . , fD(ξ

D
ND

h
))T

and ψD = (ψD
1 , . . . , ψ

D
ND

h

)T .

We now define the finite element matrices and vectors: Rjk =
∫
Ω ψjψk is the mass ma-

trix, Ψij = ψj(pi) and ΨD
ij = ψD

j (pi) are the matrices of pointwise evaluation of the basis

functions, Ajk = a(ψk, ψj) and AD
jk = a(ψD

k , ψj) are the matrices associated to the bilinear

form a(·, ·), z = (z1, . . . , zn) is the vector containing the observed data, and uj =
∫
Ω uψj ,

(hN )j =
∫
ΓN

γNψj, and (hR)j =
∫
ΓR
γRψj are the vectors related to the forcing term and the

nonhomogeneous boundary conditions.
The finite element solution f̂h of the discrete counterpart of the estimation problem can

thus be written as
f̂h = f̂Tψ + fTDψ

D,

where f̂ is the solution of the linear system

(5.5)

[
ΨTΨ/(nλ) AT

A −R

] [
f̂
ĝ

]
=

[
ΨT z/(nλ) −ΨTΨDfD/(nλ)

u+ hN + hR −ADfD

]
.

In [1], exploiting the linearity of the estimator f̂h in the observations, some classical inferen-
tial tools such as approximate pointwise confidence bands and prediction intervals are derived, 
providing measures for uncertainty quantification within such models. Moreover, the smooth-
ing parameter λ may be selected via standard methods as the AIC, the BIC, the UPRE, and 
the GCV criterion; see, e.g., [17, 22, 29] and references therein. In particular the GCV, which 
is available in a closed form for the proposed models, is detailed in [1].

6. Bias of the finite element estimator. To study the convergence of the finite element 
estimator, it is convenient to reformulate the estimation problem (Problem 1) as a constrained 
problem on the space

(6.1) W = {(f, g) ∈ Vγ × G : Lf − u = g} .
Thus, exploiting the introduction of the adjoint variable ĝ, the estimation problem becomes
the following.

Problem 2. Find f̂  ∈ Vγ , ĝ ∈ G  such that

(f̂ , ĝ) = argmin
(f,g)∈W

1

n

n∑
i=1

(f(pi)− zi)
2 + λ

∫
g2.



The constrained space W can be discretized as

Wh = {(fh, gh) ∈ V r
h × V r

h,ΓD
: fh|ΓD

= γD,h and

a(fh, vh)− r(gh, vh) = F (vh) ∀vh ∈ V r
h,ΓD

},

where a(·, ·), r(·, ·), F (·), and γD,h are as defined in section 5, and the finite element estimator

(f̂h, ĝh) ∈ Wh is the solution of the equation

1

λ
l(f̂h, ψh) + a(ψh, ĝh) =

1

nλ

n∑
i=1

ziψh(pi) ∀ψh ∈ V r
h,ΓD

.

The finite element estimator f̂h can be split, like its continuous counterpart f̂ , in two
different terms E[f̂h] and ŵh that are, respectively, the finite element approximation of E[f̂ ]
and ŵ. Reasoning as for the continuous problem, we can easily show that E[ŵh] = 0 and that
the expected value of the finite element estimator (E[f̂h],E[ĝh]) is the solution of the equation

(6.2) l(E[f̂h], ψh) + λa(ψh,E[ĝh]) = l(f0, ψh) ∀ψh ∈ V r
h,ΓD

in the constrained space Wh.
Neglecting the zero mean term, we now aim at studying the bias of the finite element

estimator, E[f̂h]− f0, in the norm defined on the constrained space W,

(6.3) |||f̂h|||2 = ‖f̂h‖2n + λ
[
‖f̂h‖2H1(Ω) + ‖ĝh‖2L2(Ω)

]
,

where the seminorm ‖·‖n is the seminorm induced by the bilinear operator l(·, ·), i.e.,

‖f̂h‖n =
1

n

n∑
i=1

(f̂h(pi))
2.

Notice that the norm |||·||| contains both the norm ‖·‖J and the H1-norm of f̂h. In fact, we  
also need an explicit control on the H1-norm of f̂h to study the convergence properties of the 
mixed finite element solution of the system (5.2).

The convergence of the bias term is studied when h → 0, while the number n of obser-
vations and the penalty parameter λ are considered fixed. Since we are considering n and λ 
fixed, we expect to obtain an error bound that contains a term going to zero as h → 0 and  a  
term that represents the bias induced by the roughness penalty, similarly to the continuous 
setting in Lemma 1.

Remark 2. One might be tempted to compare E[f̂h] to its continuous counterpart E[f̂ ]. 
However, due to the presence of δpi in the forcing term of the dual equation in (3.12), E[f̂ ] 
is not smooth in general. For this reason, in the error analysis proposed in this section, we
directly compare E[f̂h] with the true underlying field f0, which is assumed to be sufficiently 
smooth.



The bound for the bias of the finite element estimator E[f̂h]− f0 is obtained thanks to the
following lemma and theorem.

Lemma 3. Let g0 = Lf0 − u. The bias of the finite element estimator (E[f̂h],E[ĝh]) ∈ Wh

satisfies the inequality

∥∥∥f0 − E[f̂h]
∥∥∥2
n
+ λ

[∥∥∥f0 − E[f̂h]
∥∥∥2
H1(Ω)

+ ‖g0 − E[ĝh]‖2L2(Ω)

]

≤ C

{
inf

(ϕh,ph)∈Wh

[
‖f0 − ϕh‖2n + λ ‖f0 − ϕh‖2H1(Ω) + λ ‖g0 − ph‖2L2(Ω)

]

+ λ ‖g0‖2L2(Ω)

}
(6.4)

for some constant C > 0 independent of h.
Proof. We set f∗h = E[f̂h] and g

∗
h = E[ĝh], and we recall that ‖·‖n is the seminorm induced

by the bilinear form l(·, ·), i.e., ‖f‖2n = l(f, f).
In order to prove Lemma 3 we can use the theory of saddle point systems. From (6.2) and

the definition of Wh we have immediately

1

λ
l(f̂∗h − f0, ψh) + a(ψh, ĝ

∗
h) = 0 ∀ψh ∈ V r

h,ΓD
,

a(f̂∗h − ϕh, vh) = r(ĝ∗h − ph, vh) ∀vh ∈ V r
h,ΓD

, (ϕh, ph) ∈ Wh.

Choosing (ϕh, ph) ∈ Wh we thus obtain

∥∥∥f̂∗h − ϕh

∥∥∥2
n
+ λ ‖ĝ∗h − ph‖2L2(Ω) = l(f̂∗h − ϕh, f̂

∗
h − ϕh) + λr(ĝ∗h − ph, ĝ

∗
h − ph)

= l(f̂∗h − f0, f̂
∗
h − ϕh) + l(f0 − ϕh, f̂

∗
h − ϕh) + λr(ĝ∗h − ph, ĝ

∗
h − ph)

= −λa(f̂∗h − ϕh, ĝ
∗
h) + l(f0 − ϕh, f̂

∗
h − ϕh) + λr(ĝ∗h − ph, ĝ

∗
h − ph)

= l(f0 − ϕh, f̂
∗
h − ϕh)− λr(ĝ∗h − ph, ph)(6.5)

since f̂∗h − ϕh ∈ V r
h,ΓD

. We now bound the term f̂∗h − ϕh in the H1-norm using the coercivity

of the bilinear form a(·, ·) in H1(Ω):

∥∥∥f̂∗h − ϕh

∥∥∥2
H1(Ω)

≤ 1

α
a(f̂∗h − ϕh, f̂

∗
h − ϕh) =

1

α
r(ĝ∗h − ph, f̂

∗
h − ϕh)

≤

√
1 + C2

P

α
‖ĝ∗h − ph‖L2(Ω)

∥∥∥f̂∗h − ϕh

∥∥∥
H1(Ω)

,

where α is the coercivity constant and CP is the constant in the Poincaré inequality (2.5),



which holds thanks to Assumption 1. Summing this inequality to (6.5) we obtain

∥∥∥f̂∗h − ϕh

∥∥∥2
n
+ λ

[
α2

4(1 + C2
P )

∥∥∥f̂∗h − ϕh

∥∥∥2
H1(Ω)

+ ‖ĝ∗h − ph‖L2(Ω)

]

≤ l(f0 − ϕh, f̂
∗
h − ϕh)− λr(ĝ∗h − ph, ph) +

λ

4
‖ĝ∗h − ph‖2L2(Ω)

≤ 1

2
‖f0 − ϕh‖2n +

1

2

∥∥∥f̂∗h − ϕh

∥∥∥2
n
+
λ

2
‖ĝ∗h − ph‖2L2(Ω) + 2λ ‖g0 − ph‖2L2(Ω)

+ 2λ ‖g0‖2L2(Ω) .

This inequality provides the bound

∥∥∥f̂∗h − ϕh

∥∥∥2
n
+ λ

[∥∥∥f̂∗h − ϕh

∥∥∥2
H1(Ω)

+ ‖ĝ∗h − ph‖2L2(Ω)

]

≤ C
{
‖f0 − ϕh‖2n + λ ‖g0 − ph‖2L2(Ω) + λ ‖g0‖2L2(Ω)

}
.

The final error bound (6.4) can now be obtained by triangular inequality and exploiting the
arbitrariness of (ϕh, ph) ∈ Wh.

To obtain the desired result, it is necessary to split the error term on the constrained space
Wh in two different errors for E[f̂h] and E[ĝh] on the space V r

h . Assuming, moreover, that f0
and g0 are in proper Sobolev spaces W s,p(Ω) we obtain the following result.

Theorem 3. Under Assumption 3, using finite elements of degree r, if f0 ∈W r+1,p(Ω) with
f0|ΓD

= γD, for p > d, and g0 ∈ Hr(Ω) with g0|ΓD
= 0, there exists h0 > 0 such that ∀h ≤ h0

∥∥∥f0 − E[f̂h]
∥∥∥2
n
+ λ

[∥∥∥f0 − E[f̂h]
∥∥∥2
H1(Ω)

+ ‖g0 − E[ĝh]‖2L2(Ω)

]

≤ C
{
h2r
[
(1 + λ) |f0|2W r+1,p(Ω) + |g0|2Hr(Ω)

]
+ λ ‖g0‖2L2(Ω)

}
.(6.6)

Proof. In order to prove the result we need to split in two parts the constrained error term

inf
(ϕh,ph)∈Wh

[
‖f0 − ϕh‖2n + λ ‖f0 − ϕh‖2H1(Ω) + λ ‖g0 − ph‖2L2(Ω)

]

in inequality (6.4).
In the following we fix ph ∈ V r

h,ΓD
and we choose ϕh ∈ V r

h , which satisfies a(ϕh, vh) =
r(ph, vh) + F (vh) and ϕh|ΓD

= γD,h, so that (ϕh, ph) ∈ Wh. Thanks to this choice we obtain
the following bound:

(6.7) ‖f0 − ϕh‖2H1(Ω) ≤ C
[
‖f0 − zh‖2H1(Ω) + ‖g0 − ph‖2L2(Ω)

]
,

where zh is an arbitrary function in V r
h such that zh|ΓD

= γD,h. This inequality is obtained
thanks to the fact that

‖f0 − ϕh‖2H1(Ω) ≤ 2 ‖f0 − zh‖2H1(Ω) + 2 ‖zh − ϕh‖2H1(Ω)



and that

α ‖zh − ϕh‖2H1(Ω) ≤ a(zh − ϕh, zh − ϕh) = a(f0 − ϕh, zh − ϕh) + a(zh − f0, zh − ϕh)

= r(g0 − ph, zh − ϕh) + a(zh − f0, zh − ϕh)

≤ ‖g0 − ph‖L2(Ω) ‖zh − ϕh‖L2(Ω) + ‖zh − f0‖H1(Ω) ‖zh − ϕh‖H1(Ω)

≤ C
[
‖g0 − ph‖L2(Ω) + ‖zh − f0‖H1(Ω)

]
‖zh − ϕh‖H1(Ω) .

The term ‖f0 − ϕh‖2n can be bounded with the L∞-norm of the same quantity. We have in
fact that

1

n

n∑
i=1

(f0(pi)− ϕh(pi))
2 ≤ max

pi

(f0(pi)− ϕh(pi))
2 ≤ ‖f0 − ϕh‖2L∞ .

We now define f0h ∈ V r
h such that a(f0h, ψh)− r(g0, ψh) = F (ψh) ∀ψh ∈ V r

h,ΓD
and f0h|ΓD

=
γD,h; the error term can be split in two parts:

(6.8) ‖f0 − ϕh‖L∞(Ω) ≤ ‖f0 − f0h‖L∞(Ω) + ‖f0h − ϕh‖L∞(Ω) .

The first term on the right-hand side of the inequality represents the L∞-norm of the finite
element error of the elliptic equation. The quantity f0h can in fact be seen as the finite element
approximation of the exact solution f0. Thanks to the Sobolev inequality (5.4), the L∞-norm
of the finite element error can be bounded with the W 1,p-norm (p > d) of the same quantity,
i.e.,

(6.9) ‖f0 − f0h‖L∞(Ω) ≤ C ‖f0 − f0h‖W 1,p(Ω) .

Hence (see, e.g., [2])

‖f0 − f0h‖W 1,p(Ω) ≤ C inf
zh∈V r

h
zh|ΓD

=γD,h

‖f0 − zh‖W 1,p(Ω) .

The second term on the right-hand side of the inequality can be bounded by

‖f0h − ϕh‖L∞(Ω) ≤ C ‖g0 − ph‖L2(Ω) .

This bound is obtained thanks to the L∞-stability of the operator Bh : L2(Ω) → V r
h,ΓD

, defined
in (5.3) as the operator such that f0h − ϕh = Bh(g0 − ph) is the solution of the problem

a(f0,h − ϕh, vh) = r(g0 − ph, vh) ∀vh ∈ V r
h,ΓD

.

Therefore

(6.10) ‖f0 − ϕh‖n ≤ C

⎛
⎜⎝ inf

zh∈V r
h

zh|ΓD
=γD,h

‖f0 − zh‖W 1,p(Ω) + ‖g0 − ph‖L2(Ω)

⎞
⎟⎠ .



Collecting the bounds (6.7) and (6.10), since ‖g0 − ph‖L2(Ω) ≤ ‖g0‖L2(Ω), W
1,p(Ω) ⊆ H1(Ω)

for p ≥ 2, and Ω is bounded, we obtain for p > d, d = 2, 3, the unconstrained upper bound∥∥∥f0 − f̂∗h

∥∥∥2
n
+ λ

[∥∥∥f0 − f̂∗h

∥∥∥2
H1(Ω)

+ ‖g0 − ĝ∗h‖2L2(Ω)

]
(6.11)

≤ C

⎧⎪⎨
⎪⎩(1 + λ) inf

zh∈V r
h

zh|ΓD
=γD,h

‖f0 − zh‖2W 1,p(Ω) + inf
ph∈V r

h,ΓD

‖g0 − ph‖2L2(Ω) + λ ‖g0‖2L2(Ω)

⎫⎪⎬
⎪⎭ .

The classical error bound for the interpolant Πr
hv ∈ V r

h of v ∈W r+1,p(Ω) with p > 1,

(6.12) ‖v −Πr
hv‖W k,p(Ω) ≤ Chr+1−k |v|W r+1,p(Ω) ,

provides

inf
zh∈V r

h
zh|ΓD

=γD,h

‖f0 − zh‖W 1,p(Ω) ≤ Chr |f0|W r+1,p(Ω) ,

inf
ph∈V r

h,ΓD

‖g0 − ph‖L2(Ω) ≤ Chr+1 |g0|Hr+1(Ω) .

Notice that the inequality (6.6) can be split in two terms: the first term on the right-hand
side goes to zero for h→ 0 with the optimal convergence rate, while the second term ‖g0‖2L2(Ω)

is the same bias term obtained in the error splitting (4.5) and goes to zero when λ→ 0.
By closer inspection of the proof of Theorem 3, we can show that it is possible to obtain a

better order of convergence requiring a slightly higher regularity to f0 and g0 and considering
only the seminorm ‖·‖n and the L2-norm of the adjoint variable.

Theorem 4. Under Assumption 3, using finite elements of degree r, if f0 ∈ W r+1,∞(Ω)
with f0|ΓD

= γD and g0 ∈ Hr+1(Ω) with g0|ΓD
= 0, there exists h0 > 0 such that ∀h ≤ h0∥∥∥f0 − E[f̂h]

∥∥∥2
n
+ λ ‖g0 − E[ĝh]‖2L2(Ω) ≤ C

{
h2(r+1)

[
φ2(h) ‖f0‖2W r+1,∞(Ω) + |g0|2Hr+1(Ω)

]
+ λ ‖g0‖2L2(Ω)

}
,∥∥∥f0 − E[f̂h]

∥∥∥2
H1(Ω)

≤ Ch2r
{
|f0|2Hr+1(Ω) + |g0|2Hr(Ω)

}
,

where

(6.13) φ(h) =

{
log(h), r = 1,
1, r > 1.

Proof. From Lemma 3 we obtain that∥∥∥f0 − E[f̂h]
∥∥∥2
n
+ λ ‖g0 − E[ĝh]‖2L2(Ω) ≤ C

{
inf

(ϕh,ph)∈Wh

[
‖f0 − ϕh]‖2n + λ ‖g0 − ph‖2L2(Ω)

]

+ λ ‖g0‖2L2(Ω)

}
,

∥∥∥f0 − E[f̂h]
∥∥∥2
H1(Ω)

≤ C inf
(ϕh,ph)∈Wh

‖f0 − ϕh‖2H1(Ω) .



The unconstrained upper bounds can be obtained following the same strategy used in the
proof of Theorem 3. The increase in the convergence rate is obtained using a different bound
for the first term on the right-hand side of the inequality (6.8), i.e.,

‖f0 − f0h‖L∞(Ω) ≤ Chφ(h) ‖f0 − f0h‖W 1,∞(Ω) ≤ Chφ(h) inf
zh∈V r

h
zh|ΓD

=γD,h

‖f0 − zh‖W 1,∞(Ω) .

Now exploiting the error bound in the W 1,∞-norm (see, e.g., [2])

inf
zh∈V r

h
zh|ΓD

=γD,h

‖f0 − zh‖W 1,∞(Ω) ≤ Chr ‖f0‖W r+1,∞(Ω) ,

we obtain
‖f0 − f0h‖L∞(Ω) ≤ Chr+1φ(h) ‖f0‖W r+1,∞(Ω)

and the desired result.
These rates of convergence are confirmed by the numerical results shown in section 8.

Remark 3. In this work we propose an equal order finite element approximation for f̂  and ĝ. 
Equal order finite elements are known to lead to suboptimal convergence rates for the fourth 
order biharmonic problem (see, e.g., [4, 5]). However, here we are able to recover the optimal 
convergence rate thanks to the fact that the boundary conditions that are naturally associated 
to the smoothing problem are the same for f̂  and ĝ.

Remark 4. It should be noticed that the optimal convergence rate is recovered only if g0 
satisfies exactly the homogeneous Dirichlet boundary conditions on ΓD, which might be a 
restrictive hypothesis. If g0 does not satisfy the Dirichlet boundary conditions, we should expect 
a boundary error decaying as h1/2 in both two and three dimensions.

7. Surface estimator for areal data. The smoothing method presented in section 2 can be 
extended to the case of areal data that represent linear quantities computed on some subregions. 
This is useful in many applications of interest, and it is, for instance, the case of the estimation of 
the blood velocity field from echo-Doppler data presented in [1]; the echo-Doppler data 
represent, in fact, the mean velocity of the blood cells on a subdomain within an artery and 
cannot be approximated with pointwise observations.

Let Di ⊂ Ω, for i = 1, . . .  , N , be some subdomains and z̄i, for  i = 1, . . .  , N , be the mean 
value of a quantity of interest on the subdomains. Starting from the model for pointwise 
observations, we can derive the following model for the observations z̄i:

(7.1) z̄i =
1

|Di|

∫
Di

f0 + ηi;

see [1] for details. The error terms ηi have zero mean and variances σ̄2i . Under the assumption
that the number of observations in a subdomain is proportional to its dimension, the variances
σ̄2i depend inversely on the dimension of the beams Di.

In order to estimate the field we propose minimizing the penalized sum-of-square-error
functional

(7.2) J̄(f) =
1

N

N∑
i=1

1

|Di|

(∫
Di

(f − z̄i) dp

)2

+ λ

∫
Ω
(Lf − u)2



over the space Vγ , defined in section 2. The first term is a weighted least square error functional
for areal data over subdomains Di, weighted with the inverse of the variances σ̄2i , under the
assumption that σ̄2i ∝ 1/ |Di|.

Existence and uniqueness of the estimator f̂ = argminf∈Vγ
J̄(f) are provided by the

following theorem.

Theorem 5. The estimator f̂  exists, is unique, and is obtained solving the system of PDEs

(7.3)

{
Lf̂ = u+ ĝ in Ω,

Bcf̂ = γ on ∂Ω,

{
L∗ĝ = − 1

Nλ

∑N
i=1

1
|Di|IDi

∫
Di
(f̂ − z̄i) in Ω,

Bc
∗ĝ = 0 on ∂Ω,

where ĝ ∈ G represents the misfit of the penalized PDE, L∗ is the adjoint operator of L,
described by (3.9), and Bc

∗ is the operator that defines the boundary conditions of the adjoint
problem, summarized in (3.11).

The proof is analogous to the proof of Theorem 2. The existence and uniqueness of
the estimator are in fact obtained, thanks to Theorem 1, writing the functional J̄(f) as the
quadratic form (3.2). The proof of the well-posedness of the problem in the areal case is easier
than that presented in section 3, and it is similar to classical results in control theory. Data
are in fact distributed, and it is not necessary to require more regularity, as in the case of
pointwise observations, for the system of PDEs (7.3) to be well defined.

The estimator is then discretized by means of the mixed finite element method described
in section 5. In addition to the matrices used in section 5, we also define the matrices of
the spatial average of the basis functions on the subdomains Di, Ψ̄ik = 1/ |Di|

∫
Di
ψk and

Ψ̄D
ik = 1/ |Di|

∫
Di
ψD
k , the weight matrix W = diag(|D1| , . . . , |DN |), and the vector of mean

values on subdomains, z̄ = (z̄1, . . . , z̄N )T . The finite element estimator f̂h can thus be written
as f̂h = f̂Tψ + f̂TDψ

D, where f̂ is the solution of the linear system

(7.4)

[
Ψ̄TWΨ̄/(Nλ) AT

A −R

] [
f̂
ĝ

]
=

[
Ψ̄TWz̄/(Nλ)− Ψ̄T Ψ̄DfD/(Nλ)

u+ hN + hR −ADfD

]
.

For more details on the properties of the estimator see [1].
As in the case of pointwise observations we can obtain a bound for the bias of the estimator 

f̂  that corresponds exactly to the bound (4.5). We can also exploit the results obtained in the 
pointwise case to study the convergence of the bias of the finite element estimator. Moreover, 
in the areal data setting it is possible to relax the hypothesis on f0 and g0 in Theorem 3.

Theorem 6. Under Assumption 1, using finite elements of degree r, if  f0 ∈ Hr+1(Ω) with f0|
ΓD = γD and g0 ∈ Hr(Ω) with g0|ΓD = 0, there exists h0 > 0 such that ∀h ≤ h0

1

N

N∑
i=1

1

|Di|

(∫
Di

(f0 − E[f̂∗]

)2

+ λ

[∥∥∥f0 − E[f̂h]
∥∥∥2
H1(Ω)

+ ‖g0 − E[ĝh]‖2L2(Ω)

]

≤ C
{
h2r(1 + λ)

[
|f0|2Hr+1(Ω) + |g0|2Hr(Ω)

]
+ λ ‖g0‖2L2(Ω)

}
.(7.5)

Proof. If we define f̂∗h = E[f̂h], ĝ
∗
h = E[ĝh], and the bilinear form l(·, ·) as

l(f, ψ) =
1

N

N∑
i=1

1

|Di|

∫
Di

f

∫
Di

ψ,



we can easily obtain the bound (7.5) for the bias in the norm |||·||| defined as

|||f̂h||| =
1

N

N∑
i=1

1

|Di|

(∫
Di

f̂h

)2

+ λ
[
‖f̂h‖2H1(Ω) + ‖ĝh‖2L2(Ω)

]
.

Since the norm associated to the bilinear form l(·, ·) is bounded by the H1-norm, we have that

1

N

N∑
i=1

1

|Di|

(∫
Di

f0 − f̂∗h

)2

+ λ

[∥∥∥f0 − f̂∗h

∥∥∥2
H1(Ω)

+ ‖g0 − ĝ∗h‖2L2(Ω)

]

≤ C

{
(1 + λ) inf

(ϕh,ph)∈Wh

[
‖f0 − ϕh‖2H1(Ω) + ‖g0 − ph‖2L2(Ω)

]
+ λ ‖g0‖2L2(Ω)

}
.

The inequality (6.7) still holds for (ϕh, ph) ∈ Wh and zh ∈ V r
h , and we obtain

1

N

N∑
i=1

1

|Di|

(∫
Di

f0 − f̂∗h

)2

+ λ

[∥∥∥f0 − f̂∗h

∥∥∥2
H1(Ω)

+ ‖g0 − ĝ∗h‖2L2(Ω)

]

≤ C

⎧⎪⎨
⎪⎩(1 + λ)

⎡
⎢⎣ inf

zh∈V r
h

zh|ΓD
=γD,h

‖f0 − zh‖2H1(Ω) + inf
ph∈V r

h,ΓD

‖g0 − ph‖2L2(Ω)

⎤
⎥⎦+ λ ‖g0‖2L2(Ω)

⎫⎪⎬
⎪⎭ .

Using the classical error bound (6.12) we obtain the desired result.

8. Numerical simulations. In this section we verify in simple settings the convergence 
results shown in section 6 for pointwise data and in section 7 for areal data.

8.1. Test 1. We first verify the convergence results obtained for pointwise data. We consider 
the bidimensional domain Ω = [0, 1] × [0, 1], and we assume that the true underlying surface f0 
satisfies the following PDE:

(8.1)

{
Δf0 = 2 [x(x− 1) + y(y − 1)] in Ω,
f0 = 0 on ∂Ω,

whose solution, f0 = xy(x−1)(y−1), is represented in Figure 1, left. We consider the n = 200
observation points p1, . . . ,pn, represented in Figure 1, right, the roughness parameter λ fixed,
and we want to test the convergence of |||E[f̂h]− f0||| when h→ 0. For this reason we solve the
estimation problem on different uniform structured meshes with size h = 1/2, 1/4, . . . , 1/29.

We will consider different settings.
A. The observations are without noise, i.e., zi = f0(pi), and the functional J(f) penalizes

the misfit of the governing PDE (8.1), i.e., L = Δ and u = 2 [x(x− 1) + y(y − 1)].
B. The observations are without noise, i.e., zi = f0(pi), but the functional J(f) penalizes

the misfit of a PDE different from the governing PDE (8.1). In particular, L = Δ but
u �= 2 [x(x− 1) + y(y − 1)]:
1. the penalized forcing term u is such that g0 = Lf0 − u satisfies homogeneous

Dirichlet boundary conditions on ∂Ω: u = 2(x(x − 1) + y(y − 1))(1 + (x(x −
1)y(y − 1)));
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Figure 1. Left: true surface f0 used for the simulation studies of Test 1; the image displays the 
isolines (0, 0.005, 0.01,  . . . ,  0.06). Right: location points sampled uniformly on the domain for Tests 1 and 2.

2. different penalized forcing terms u are considered, such that g0 = Lf0 − u does
not satisfy homogeneous Dirichlet boundary conditions on ∂Ω:
(a) u = (x(x − 1) + y(y − 1)), which corresponds to the knowledge of the real

forcing term up to a multiplying constant factor;
(b) u = 2x(x− 1), which corresponds to the knowledge of only a part of the real

forcing term;
(c) u = 2(x(x− 1) + y(y − 1)) + (x10 + y10 + (x− 1)10 + (y − 1)10), which forces

g0 to be equal to −1 on the boundary, with a relatively large boundary layer.
C. The observations are with noise, i.e., zi = f0(pi) + εi, where εi ∼ N (0, σ2), and the

functional J(f) penalizes the misfit of the governing PDE (8.1), i.e., L = Δ and
u = 2 [x(x− 1) + y(y − 1)].

D. The observations are with noise, i.e., zi = f0(pi) + εi, where εi ∼ N (0, σ2), and the
functional J(f) penalizes the misfit of a PDE different from the governing PDE (8.1).
In particular, L = Δ but u = 2(x(x − 1) + y(y − 1))(1 + (x(x − 1)y(y − 1))), as in
case B1.

Case A (no bias,  no noise).  We solve the estimation problem both with linear and quadratic 
finite elements fixing the roughness parameter λ = 1. We recall that we are using the same 
order of approximation for f̂h and ĝh. The results of the linear and the quadratic mixed finite 
element approximations are shown, respectively, in the left and right panels of Figure 2.  In  
particular we show the convergence of the error |||f̂h − f0||| as well as the convergence of each 
individual term of the norm |||·|||, namely ‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω), and ‖ĝh − g0‖L2(Ω). Since  
we are considering the case of observations without noise, E[f̂h] =  f̂h and E[ĝh] = ĝh. We notice  
that with both the linear and the quadratic approximations we obtain a rate of convergence 
equal to or higher than the expected rate for all the error terms. In particular, the H1-norm 
of the error is the dominating term in both the linear and the quadratic approximations, and 
it decays as h in the case of linear finite elements and as h2 in the case of quadratic finite
elements. All the other terms are negligible. As expected, the norm ‖·‖n of f̂h − f0 and the
L2-norm of ĝh − g0 decay as h2 in the case of linear finite elements and at least as h3 in the 
case of quadratic finite elements.
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Figure 2. Test 1, case  A: convergence rates of the bias of the estimator obtained with λ = 1  in the norms
|||f̂h − f0|||, ‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω), and ‖ĝh − g0‖L2(Ω). Left: linear mixed finite element approximation.
Right: quadratic mixed finite element approximation.
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Figure 3. Test 1, case B1: convergence rates of the bias of the estimator obtained with linear finite elements
when λ = 0.1, 0.2, 0.4, 0.8. Top left: |||f̂h − f0|||, top right: ‖f̂h − f0‖n, bottom left: ‖f̂h − f0‖H1(Ω), bottom right:
‖ĝh − g0‖L2(Ω).

Case B1 (bias with exact boundary conditions, no noise). We solve the estimation problem 
with linear finite elements, and we study the convergence for different values of the roughness 
parameter λ. Recall that, in this case, g0 = Δf0 − u �= 0 satisfies the homogeneous Dirichlet 
boundary conditions. Figure 3 shows the rate of convergence of the error in different norms 
when λ = 0.1, 0.2, 0.4, 0.8. As in case A, since the observations are without noise, E[f̂h] =  f̂h
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Figure 4. Test 1, case B2: convergence rates of |||f̂h − f0|||Ω and |||f̂h − f0|||Ωint using linear finite elements
with λ = 0.002. Left: case B2(a), center: case B2(b), right: B2(c).

and E[ĝh] = ĝh. Notice that when the mesh is fine the approximation error in the norm
|||·||| asymptotically approaches a value proportional to

√
λ, as expected from Theorem 3; this

behavior is caused by the presence of the bias term in the error bound (6.6). In this case the
dominant term is the L2-norm of ĝh−g0. This term has a different behavior for different values
of λ: if λ is sufficiently small, it decays as h2 before approaching the asymptote; otherwise
it decays as h. It is thus necessary to use small values of λ in order to recover the expected
convergence rate h2. However, even when a large value of λ is used, the rate of convergence
of |||f̂h − f0||| is at least linear before reaching the saturation level caused by the bias term.
The other two terms instead decay with the expected convergence rate for all the values of λ,
before approaching the asymptote.

Case B2 (bias with wrong boundary conditions, no noise). We consider three different forcing
terms u such that g0 = Δf0 − u �= 0 does not satisfy the homogeneous Dirichlet boundary
conditions. In this case we study the error in the norm |||·||| over the whole domain Ω, which
will be denoted by |||f̂h − f0|||Ω, as well as over the subdomain Ωint = [0.1, 0.9] × [0.1, 0.9],
denoted by |||f̂h − f0|||Ωint

. As highlighted in Remark 4, the former error should be affected by
a boundary term decaying as h1/2, while the latter does not include the error at the boundary.
As in cases A and B1, since the observations are without noise, E[f̂h] = f̂h and E[ĝh] = ĝh.
The results obtained with the three forcing terms considered in B2(a), B2(b), and B2(c) are
represented, respectively, in the left, center, and right panels of Figure 4. In theory we would
expect a different rate of convergence for the errors |||f̂h − f0|||Ω and |||f̂h − f0|||Ωint

, which should
be more clearly visible when the mesh is fine. On the other hand, the numerical simulations
do not display any significant difference between the convergence rates of the two errors in all
three cases. This is due to the presence of the bias, which is asymptotically approached by
both the error terms, hiding the expected convergence rate. Thus, using a forcing term such
that g0 does not satisfy the homogeneous Dirichlet boundary conditions does not affect the
surface estimation too much.

Case C (no bias, with noise). We add some noise to the pointwise evaluations f0(pi) of the
surface: for each location point we sample independent errors, ε1, . . . , εn, from a zero mean
Gaussian distribution N (0, σ2), with different standard deviations σ = 0.005, 0.01, 0.02. The
first value of σ corresponds to a rather high signal to noise ratio, since the value of the true
surface varies from 0 to 0.062, while the last corresponds to a very low signal to noise ratio
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Figure 5. Test 1, case  C: value of the observations z1, . .  . , zn obtained from model (2.1) adding noise with 
different values of standard deviation σ, superimposed to the true underlying surface f0 (the image displays the 
isolines (0, 0.005, 0.01,  . . .  , 0.06)). Left: σ = 0.005, center:  σ = 0.01, right:  σ = 0.02.

with errors of the same order of magnitude of the variation of f0. The experiment is repeated 
50 times for each value of σ. Figure 5 shows the values zi obtained from model (2.1) in the first 
replicate of the experiment. We can notice that the observations with small additive noise, 
represented in the left panel of Figure 5, are similar to the evaluation of f0 in the sampling 
points, while the observations with large errors, represented in the right panel of the same 
figure, are far from the true underlying surface. The results obtained solving the estimation 
problem with linear finite elements, with fixed roughness parameter λ = 1 and penalizing the 
exact PDE, are shown in Figure 6. To show the variability of the error convergence over the 
50 replicates, we represent the boxplots of the approximation errors obtained for each value 
of σ and each grid size h. The convergence rate of the experiment representing the median 
behavior of the convergence rates over 50 repetitions of the experiment is shown in Figure 6 
as a thick line superimposed to the boxplots. The median convergence rates and the boxplots 
are colored according to the corresponding value of σ. Notice that in Figure 6 the represented 
approximation errors include both the error associated to the finite element discretization and 
the error associated to the noisy observations. Due to the presence of noise, both |||f̂h − f0|||
and ‖f̂h − f0‖n quite soon reach a saturation limit proportional to the standard deviation of 
the noise σ. However, further refining the mesh still provides better approximation of the first
derivatives, as shown by the convergence of ‖f̂h − f0‖H1(Ω). Notice also that the variability
of the error, highlighted in the picture by the height of the boxplots, depends on the grid size 
and in particular increases as h decreases. This variability does not appear to depend on the 
standard deviation of the noise, being comparable in the three cases (σ = 0.005, 0.01, 0.02).

Case D (bias, with noise). Analogously to case C, we add some noise to the pointwise 
evaluations f0(pi) of the surface: for each location point we sample independent errors,
ε1, . . . , εn, from a zero mean Gaussian distribution N (0, σ2), with different standard devi-
ations σ = 0.005, 0.01, 0.02. We solve the estimation problem with linear finite elements, and
we study the convergence for different values of the roughness parameter λ = 0.1, 0.2, 0.4, 0.8.
Recall that, analogously to case B1, g0 = Δf0 − u �= 0 and it satisfies the homogeneous
Dirichlet boundary conditions. For each value of σ and each value of λ, the experiment is
repeated 50 times. As in case C, Figure 7 displays the boxplots of the approximation errors,
to highlight the variability of the error convergence over the 50 replicates, and the thick lines,
to show the convergence rate of the experiment representing the median behavior of the con-
vergence rates. Notice that in Figure 7 the represented approximation errors include the error
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h

−
g 0

|| L
2

0.002 0.0078 0.0312 0.125 0.25 0.5

0.
00

07
9

0.
00

19
0.

00
46

0.
01

1
0.

02
7

2

σ=0.02
σ=0.01
σ=0.005

Figure 6. Test 1, case  C: convergence rates of the approximation error of the estimator obtained with 
linear finite elements and λ = 1  when the error in the observations is generated from a Gaussian distribution 
with different standard deviations σ = 0.005 (brown), σ = 0.01 (green), and σ = 0.02 (blue). For each value of 
σ, the thick line corresponds to the convergence rate of the experiment representing the median behavior of the 
convergence rates. The median convergence rate is superimposed to the boxplots of the approximation errors 
computed at different values of h. Top left: |||f̂h − f0|||, top right:  ‖f̂h − f0‖n, bottom left: ‖f̂h − f0‖H1(Ω), 
bottom right: ‖ĝh − g0‖L2(Ω).

associated to the finite element approximation, the bias induced by the penalty term, and the 
error associated to the noisy observations. The saturation limit reached by the approximation 
error depends on the last two terms. In particular, when the roughness parameter λ is large 
(top panels of Figure 7), the saturation limit obtained for different values of σ is almost the 
same since the bias is predominant. Instead, as λ decreases (bottom panels of Figure 7), 
the saturation limit becomes proportional to the standard deviation of the noise, as in case 
C. Notice also that the variability of the error, highlighted by the height of the boxplots, 
depends not only on the grid size (likewise in case C) but also on the value of the roughness 
parameter λ. Indeed, for small values of λ the contribution of the penalty term is negligible 
and the results are analogous to case C. On the other hand, for large values of λ, the bias 
induced by the penalty term is predominant and the variability depends on standard deviation 
of the error; in particular, the larger the standard deviation, the higher the variability of the 
estimate.

8.2. Test 2. We verify the convergence results in the pointwise data framework also in a 
different simulation study concerning a diffusion-transport-reaction (DTR) PDE. We consider
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Figure 7. Test 1, case D: convergence rates of |||f̂h − f0||| using linear finite elements and different values of
λ when the error in the observations is generated from a Gaussian distribution with different standard deviations
σ = 0.005 (brown), σ = 0.01 (green), and σ = 0.02 (blue). For each value of σ, the thick line corresponds to
the convergence rate of the experiment representing the median behavior of the convergence rates. The median
convergence rate is superimposed to the boxplots of the approximation errors computed at different values of h.
Top left: λ = 0.8, top right: λ = 0.4, bottom left: λ = 0.2, bottom right: λ = 0.1.

the domain Ω = [0, 1] × [0, 1], and we assume that the true underlying field f0 satisfies the
following PDE:

(8.2)

{
Lf0 = −1 in Ω,
f0 = 0 on ∂Ω,

where the operator L is the DTR operator defined in (2.3) with parameters K11 = 4, K22 = 1,
K12 = K21 = 0, b1 = 2, b2 = 1, and c = 1, Kij and bi being, respectively, the element (i, j)
of the diffusion tensor K and the ith element of the transport vector b. The solution of the
PDE (8.2) is represented in Figure 8. We consider the n = 200 observation points p1, . . . ,pn

represented in Figure 1, right. For the sake of brevity, in this case we show the convergence of
|||E[f̂h]− f0||| = |||f̂h − f0||| only when the observations are without noise and the functional J(f)
penalizes the misfit of the governing PDE (8.2). The results obtained solving the estimation
problem with linear and quadratic finite elements and λ = 1 on different uniform structured
meshes with size h = 1/2, 1/4, . . . , 1/28 are shown in Figure 9. We can notice that also in the
DTR case we obtain a rate of convergence equal to or higher than the expected rate for all
the error terms with both the linear and the quadratic approximations. The H1-norm is still
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Figure 9. Test 2: convergence rates of the bias of the estimator obtained with λ = 1 in the norms

sider only the case of observations without noise, i.e., z̄i = |Di|

|||f̂h − f0|||, ‖f̂h − f0‖n, ‖f̂h − f0‖H1(Ω), and  ‖ĝh − g0‖L2(Ω). Left: linear mixed finite element approximation. 
Right: quadratic mixed finite element approximation.

the dominating term, while all the other terms are negligible. As in the Laplacian case, the
error terms ‖f̂h − f0‖n and ‖ĝh − g0‖L2(Ω) decay as h2 for linear finite elements and at least
as h3 for quadratic finite elements.

8.3. Test 3. Finally, we also verify the convergence results obtained for areal data. We 
consider the bidimensional domain Ω = [0, 1] × [0, 1], and we assume,  as in Test 1,  that the  
true underlying surface f0 satisfies the PDE (8.1), whose solution is represented in Figure 1, 
left. We consider the N = 9 subsets D1, . . .  ,DN represented in Figure 10, left. Each subset is 
colored according to the corresponding observation value z̄i

1
. F∫or the sake of brevity, we con-

Di
f0. We test the convergence

of |||E[f̂h]− f0||| = |||f̂h − f0||| when h → 0, solving the estimation problem with linear finite
elements and λ = 1 on different uniform structured meshes with size h = 1/23, 1/24, . . . , 1/27.
Since we are considering the areal data framework, we substitute the seminorm ‖·‖n in (6.3)

with the seminorm ‖f‖N = 1
N

∑N
i=1

1
|Di|(

∫
Di
f)2.

The results obtained minimizing the functional J̄(f), penalized with the misfit of the
exact PDE (8.1), are shown in Figure 10, right. We can notice that we obtain the same rate
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Figure 10. Left: subdomains used in Test 3, colored according to the corresponding observation value z̄i.
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of convergence expected from Theorem 6. In particular, the H1-norm is the dominating term
decaying as h, while ‖f̂h − f0‖N and ‖ĝh − g0‖L2(Ω) decay as h2.

9. Conclusion and future work. In this work we have studied the properties of the SR-PDE 
smoothing technique. This smoothing method has a very broad applicability since PDEs are 
commonly used to model physical phenomena. The method is actually not applicable to PDEs 
with discontinuous parameters, with pointwise forcing terms, or defined on irregular domains, 
due to the extra regularity required for the parameters of the penalized PDE. This request, 
however, is not restrictive in spatial statistics and in the smoothing framework since the field is 
normally assumed to be very regular. The proposed mixed finite element method requires, 
moreover, g0 to satisfy the Dirichlet boundary conditions on ΓD. This hypothesis could 
sometimes be restrictive since it means that the second derivatives of the field at the boundary 
are clumped to zero; other discretization methods for fourth order problems could be 
considered in the future. However, we have observed numerically that whenever g0 does not 
satisfy the homogeneous Dirichlet boundary conditions on ΓD, the extra error is of the same 
order as the bias contribution and therefore does not really compromise the optimal 
convergence rate of the method.

The convergence studied in this work concerns the bias of the estimator when the charac-
teristic mesh size h goes to zero and neglects instead the error induced by the presence of noise 
in the observations. Classical results concerning smoothing splines and thin-plate splines (see, 
e.g., [6, 7, 8, 16]) show the consistency of these estimators when the smoothing parameter 
λ(n) goes to zero, as n → +∞, with a proper rate. Unfortunately these results cannot be 
directly extended to SR-PDE, and a different approach needs to be developed to show the 
consistency of these models. We are currently studying the (infill) asymptotic properties of 
the estimator when the number of observations n goes to infinity. In particular we are study-
ing the convergence of the variance term ŵ, in both the continuous and the discrete settings, 
when n goes to infinity, and we are looking for a proper rate of λ that makes both the bias 
and variance vanish.

It will also be interesting to balance the discretization error induced by the finite element



approximation with the bias of the estimator and the variance term related to the noise 
of the observations. A possible way to solve the problem is the development of a proper 
mesh adaptation technique, based on a posteriori estimates of noise, variance, and bias. This 
technique should locally refine the mesh in order to obtain a local discretization error that is 
of the same order or smaller than the bias and the noise standard deviation σ.
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