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Abstract

In this paper, we carry out a numerical dispersion analysis for the linear two-dimensional elastodynamics equations approxi-
mated by means of NURBS-based Isogeometric Analysis in the framework of the Galerkin method; specifically, we consider the 
analysis of harmonic plane waves in an isotropic and homogeneous elastic medium. We compare and discuss the errors associated 
with the compressional and shear wave velocities and we provide the anisotropic curves for numerical approximations obtained 
by considering B-spline and NURBS basis functions of different regularity, namely globally C0- and C p−1-continuous, p being 
the polynomial degree. We conclude our analysis by numerically simulating the seismic wave propagation in a sinusoidal shaped 
valley with discontinuous elastic parameters across an internal interface.
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1. Introduction

In the last decade, Isogeometric Analysis (IGA) [1,2] has emerged as a methodology aiming at encapsulating the
exact geometrical representation of the computational domain, namely the field of Computational Geometry (see
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e.g. [3]), into the numerical approximation of Partial Differential Equations (PDEs). This integration is made possible
by the use of the same basis functions considered for the geometrical representation also for the approximation of the
unknown solution fields of the PDEs, introducing the so-called Isogeometric concept [2]. B-spline and Non Uniform
Rational B-spline (NURBS) basis functions [4] have mostly been considered for the IGA methodology being the
foundations of Computer Aided Design (CAD) systems, even if other geometrical representations as T-splines [5]
have been employed as well for their flexibility; see e.g. [6]. So far, NURBS-based IGA has been mostly used in the
framework of the Galerkin method [1,2,7], even if collocation techniques are recently receiving growing attention [8,
9]. The advantages of the IGA methodology in terms of the “exact” geometrical representation have been exploited in
several applications, as e.g. structural mechanics [2,10,11] and fluid dynamics [12–14] among the most common.
Moreover, the use of B-spline and NURBS basis functions in IGA possess several advantages in the numerical
approximation of PDEs regardless of the geometrical considerations, as highlighted, e.g., in fluid dynamics [15],
structural dynamics [16,17], high-order PDEs [18], and phase field problems [19,20]. Such advantages include the
possibility of using globally C p−1-continuous basis functions, p being the polynomial degree, and the k-refinement
strategy, a procedure for the “enrichment” of the discrete function spaces peculiar of B-splines and NURBS for
which the degree and global continuity of the basis functions are increased; see e.g. [21,22]. In particular, the use of
globally C p−1-continuous NURBS basis functions has been shown to be superior to its Finite Elements counterpart
of polynomial degree p by means of extensive spectrum and dissipation analyses, both in terms of analytical and
numerical results for 1D, 2D, and 3D structural, vibration, acoustic, and wave propagation problems [1,16,17,21–25].

Numerical (grid) dispersion analysis for the linear elastodynamics equations, i.e for linear wave propagation in
an elastic medium, is often used to assess the accuracy of numerical schemes for applications in civil, geophysics,
and earthquake engineering. Such analysis has been extensively carried out for the Finite Elements method [26,27],
Discontinuous Galerkin methods [28–32], and the Spectral (element) method [33–35], including non-conforming
high-order discretizations [36]. In [23] a numerical dispersion analysis has been performed for NURBS-based IGA
for the Helmholtz equation in the 1D setting on an infinite line, including linear and p- and k-refined quadratic
approximations. This analysis has been extended in [25] to higher degree NURBS basis functions for vibration
problems of rods and beams of finite length. In addition, a numerical dispersion analysis for 2D vibration problems
described by the Helmholtz equation is reported in [25] for the special case of a bilinear approximation; the associated
anisotropic (dispersion) curve is also reported for this case only.

In this respect, in this paper we propose a numerical dispersion analysis for the elastodynamics equations in 2D,
specifically for the linear wave propagation in an isotropic elastic medium, in terms of the spatial approximation by
means of NURBS-based IGA in the framework of the Galerkin method. We report for the first time the anisotropic
curves and errors associated with the compressional and shear wave velocities in the elastic medium by considering
both B-spline and NURBS basis functions and different material properties (characterized by their Poisson ratio).
Specifically, in our numerical comparison, we consider B-spline and NURBS basis functions defined over uniform
knot vectors with different polynomial degrees p with particular emphasis on their regularity properties, i.e. their
global C0- or C p−1-continuity in the computational domain (this corresponds to either p- or k-refinement, see
[21,22]); we also study the case of a section of an annulus geometrically represented by NURBS. Our dispersion
analysis is based on the procedure proposed in [35] for the coherent comparison of numerical schemes in bounded
computational domains for different wave directions without the need to strongly enforce periodic boundary condi-
tions. Specifically, we adapt the approach of [35], originally developed for Spectral (element) methods, to NURBS-
based IGA in the framework of the Galerkin method with the aim of consistently comparing the results obtained with
basis functions of different polynomial degrees p and global C0- and C p−1-continuity.

We conclude our analysis by numerically simulating a seismic event, i.e. an elastic wave propagation problem, in
a 2D portion of the earth mantle embedding a sinusoidal type valley. The latter is delimited by an internal interface,
which separates two regions with discontinuous material parameters (different media); such configuration is suitably
represented by means of C0/C1-continuous B-spline basis functions. For the numerical simulation of this seismic
event, we use NURBS-based IGA for the spatial approximation and the generalized-α method [37] for the time
discretization with a fully implicit scheme. Through this example we numerically highlight the suitability of NURBS-
based IGA to solve elastodynamics problems with discontinuous material properties across internal interfaces.

The paper is organized as follows. In Section 2 we briefly recall the linear elastodynamics model used in seismic
applications. Section 3 introduces to B-spline and NURBS basis functions, geometrical representations, and the
Isogeometric concept. In Section 4 we discuss the spatial approximation of the elastodynamics equations by means



of NURBS-based IGA in the framework of the Galerkin method, as well as the time discretization. In Section 5
we carry out the numerical dispersion analysis for the problem at hand and specific for NURBS basis functions of
different regularity; next, we report and discuss the associated numerical results. In Section 6 we numerically simulate
a seismic event by solving the elastic wave propagation problem in a sinusoidal valley. Conclusions follow.

2. Mathematical model

In this section we introduce the elastodynamics model, namely the linear elastic equation for a compressible
medium in the standard displacement formulation, similar to [36].

Let us assume that an elastic medium is represented by an open spatial domain Ω ⊂ Rd (|Ω | < +∞) with d =

2, 3. We denote the boundary of Ω as ∂Ω and we partition it into the subsets ΓD , ΓN , and ΓN R such that
◦

Γ D ∩
◦

Γ N =
◦

Γ D ∩
◦

Γ N R =
◦

Γ N ∩
◦

Γ N R = ∅ and ∂Ω = ΓD ∪ ΓN ∪ ΓN R ; we also indicate with n the out-
ward directed, unit vector normal to ∂Ω . We are interested in determining the displacement of the medium, say
u = (u1, . . . , ud)T

= u(x, t), in terms of the spatial x ∈ Ω and temporal t ∈ (0, T ) independent variables under
the action of external forces, where T delimits the time interval such that 0 < T < +∞. The displacement based
equilibrium equations for a linear elastic medium, endowed with suitable boundary and initial conditions, read:

find u : Ω × (0, T ) → Rd
:



ρ
∂2u
∂t2 (t) − ∇ · σ (u(t)) = f (t) in Ω × (0, T ),

u(t) = g on ΓD × (0, T ),

σ (u(t))n = h(t) on ΓN × (0, T ),

non-reflecting b.c.s on ΓN R × (0, T ),

∂u
∂t

(0) = u̇0 in Ω ,

u(0) = u0 in Ω ,

(1)

where σ (u) is the stress tensor (defined later), f = f (x, t) is the vector of external forces, ρ the medium density,
g = g(x) and h = h(x, t) are sufficiently smooth boundary data, and the initial data u̇0 = u̇0(x), u0 = u0(x) are
given and sufficiently smooth functions in Ω ; non-reflecting boundary conditions will be specified later on ΓN R .
We remark that the explicit dependency of the variables on the spatial coordinates in Eq. (1) has been omitted.
By defining the strain tensor as ϵ(u) =

1
2 (∇u + ∇uT), the stress tensor σ (u) satisfies the constitutive relation

σ (u) = λ (∇ · u)I + 2µ ϵ(u), where λ and µ are the Lamé elasticity coefficients of the medium; the latter are
expressed in terms of the Young modulus E and Poisson’s ratio ν as λ =

ν E
(1+ν) (1−2ν)

and µ =
E

2(1+ν)
, respectively.

Also, we introduce the shear cs and the compressional cp wave velocities defined as:

cs :=


µ

ρ
and cp :=


λ + 2µ

ρ
, (2)

respectively. In order to include a damping factor into the linear elastic equation, we introduce an internal forcing term
f visc(u) := −2ρ ζ ∂u

∂t − ρ ζ 2 u, where ζ is a suitable decay factor, dimensionally consistent with the inverse of time.
Therefore, the equilibrium equation (1) with damping term reads:

ρ
∂2u
∂t2 (t) − ∇ · σ (u)(t) − f visc(u(t)) = f (t) in Ω × (0, T ). (3)

On the subset ΓN R of the boundary we introduce a fictitious traction, being a linear combination of time and space
derivatives, in order to set the non-reflecting boundary conditions. Similar to [36], by introducing the tangential unit
vector τ such that τ ·n = 0 on ΓN R , the non-reflecting boundary conditions of Eq. (1) read in the two-dimensional
case (d = 2):

∂

∂n
(u ·n) = −

1
cp

∂

∂t
(u ·n) +

cs − cp

cp

∂

∂τ
(u ·τ ),

∂

∂n
(u ·τ ) = −

1
cs

∂

∂t
(u ·τ ) +

cs − cp

cp

∂

∂τ
(u ·n),

on ΓN R × (0, T ), (4)



where the coordinates {n, τ } are defined by the vectors n and τ . We refer the reader to [38,39] for the general form of
the non-reflecting boundary conditions in the three-dimensional case (d = 3).

3. B-splines and NURBS: the isogeometric concept

In this section we briefly recall the B-spline and NURBS basis functions, their properties, their use for the
geometrical representation of computational domains, and the so called Isogeometric concept. For a more detailed
review of the topic, we refer the interested reader to [4].

3.1. B-spline basis functions

A univariate B-spline basis function is a piecewise polynomial of a given degree p ∈ N; specifically, a B-splines ba-
sis is represented by n ∈ N basis functions, determined from a knot vector, that is an ordered set Ξ = {ξ1, . . . , ξn+p+1}

of real values. Specifically, we consider open knot vectors, for which the first and last knots of Ξ are repeated p + 1
times; if the internal knots are equally spaced, Ξ is a uniform knot vector. The interval Ω = (ξ1, ξn+p+1) ⊂ R
determines a patch or a parameter domain, while (ξi , ξi+1), for some i = p + 1, . . . , n, identifies a knot span. If
the size of a knot span is greater than zero, it is called mesh element in the parameter domain Ω and denoted asK j for some j = 1, . . . , nel , where nel is the number of mesh elements in the parameter domain; the set of mesh
elements in the parameter domain is simply called mesh of the parameter domain, say Kh :=

K j : j = 1, . . . , nel

.

A B-splines basis


Ni,p(ξ)
n

i=1 is determined by the basis functions Ni,p(ξ) for some i = 1, . . . , n by using the
Cox–de Boor recursive formula applied to the knot vector Ξ [4]. The global regularity of B-spline basis functions in
the parameter domain depends on Ξ , namely on the multiplicity of the knots. Indeed, the basis functions are C∞-
continuous inside each element of non-zero size; however, if a knot value ξi is repeated 1 ≤ mi ≤ p + 1 times, the
basis functions possess only p − mi continuous derivatives across ξi . Therefore, a B-spline basis function is globally
Cα-continuous in the parameter domain Ω if the internal knots of Ξ are repeated at most m times, where α = p − m
and m = maxi=p+2,...,n mi . We obtain the following algebraic relation between the number of mesh elements nel > 1
and the number of basis functions, say nα , depending on their Cα-continuity across each internal knot:

nα = (p − α) nel + α + 1 for α = 0, . . . , p − 1. (5)

As we can observe, the number of basis functions for a fixed number of mesh elements nel increases when the regu-
larity of the basis functions α decreases.2 Examples of univariate B-spline basis functions of different regularities are
reported in Fig. 1 for the polynomial degrees p = 2 and 3.

Multivariate B-spline basis functions are built by means of the tensor product of univariate basis functions. For
example, let Ξ = {ξ1, . . . , ξn+p+1} and H = {η1, . . . , ηm+q+1} be two knot vectors, then, the bivariate B-spline
basis functions are defined in the parameter domain Ω = (ξ1, ξn+p+1) × (η1, ηm+q+1) for ξ = (ξ, η) such that
Qi,p,q(ξ) = Qi,p,q(ξ, η) = N j,p(ξ) Mk,q(η) for i = j+(k−1)n = 1, . . . , Nb f , with j = 1, . . . , n and k = 1, . . . , m;
N j,p and Mk,q are the univariate basis functions built from the knot vectors Ξ and H, respectively and Nb f = n m
indicates the total number of basis functions. In this work we consider basis functions for which the same polynomial
degree is used along all the parametric directions, e.g. for which p = q in the bivariate case; therefore, multivariate
basis functions will be generically indicated by using the same notation of univariate basis functions, i.e. Ni,p for
some i = 1, . . . , Nb f . We observe that the tensor product structure extends the regularity properties of the univariate
basis to the multivariate case. Multidimensional mesh elements in the parameter domain are constructed by means of
the tensor product of one dimensional mesh elements, similar to the univariate case; we indicate the set of such mesh
elements as Kh :=

K j : j = 1, . . . , Nel

, where Nel is its total number.

3.2. NURBS basis functions

NURBS, Non Uniform Rational B-splines [4], are built from B-splines by introducing a set of weights. By
considering directly the multivariate case for which the same polynomial degree p is used along all the parametric

2 In addition, B-spline basis functions are pointwise non-negative, represent a partition of the unity, and possess compact support in p + 1 knot
spans (therefore, there are p + 1 basis functions with support in each knot span).



(a) Ξ = {0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1} and p = 2; the
n = 6 basis functions are globally C1-continuous.

(b) Ξ = {0, 0, 0, 1/4, 1/2, 1/2, 3/4, 1, 1, 1} and p = 2;
the n = 7 basis functions are C1-continuous across the
knots 1/4 and 3/4, but only C0-continuous across the
knot 1/2 of multiplicity 2.

(c) Ξ = {0, 0, 0, 0, 1/4, 1/2, 3/4, 1, 1, 1, 1} and p = 3;
the n = 7 basis functions are globally C2-continuous.

(d) Ξ = {0, 0, 0, 0, 1/4, 1/2, 1/2, 1/2, 3/4, 3/4, 1, 1, 1, 1}

and p = 3; the n = 10 basis functions are C2-continuous
across the knot 1/4, C1-continuous across the knot 3/4 of
multiplicity 2, and only C0-continuous across the knot 1/2
of multiplicity 3.

Fig. 1. Univariate B-spline basis functions obtained from open knot vectors Ξ and polynomial degrees p = 2 and p = 3 with different regularities.

directions, we introduce the weights {wi }
Nb f
i=1 ⊂ R and we define the weighting function W (ξ) =

Nb f
i=1 Ni,p(ξ) wi ,

where {Ni,p(ξ)}
Nb f
i=1 are the B-spline basis functions. In our analysis, we bound ourself to the standard case of

weights real and strictly positive. We define a set of NURBS basis functions {Ri,p(ξ)}
Nb f
i=1 as Ri,p(ξ) :=

Ni,p(ξ) wi
W (ξ)

for
i = 1, . . . , Nb f , that is the ratio of two piecewise polynomials, both of degree p; therefore, we refer to p as the degree
of the NURBS basis functions. We notice that B-splines are a particular case of NURBS by construction, obtained
by setting all the weights to the same value; henceforth we will use the notation Ri,p, for some i = 1, . . . , Nb f , to
indicate indifferently a B-spline or NURBS basis function.

We remark that the NURBS and B-spline bases can be enriched by using the so called h- or p-refinement
procedures obtained by means of the knot insertion and order elevation techniques, respectively. In addition, the
k-refinement procedure, which is peculiar of the B-splines and NURBS and consists of the sequential application of
the order elevation and knot insertion techniques on the initial knot vector Ξ , may be used to enrich the basis by
introducing a limited number of basis functions. For more information, we refer the reader to [1,2,4].

3.3. Geometrical representations by B-splines and NURBS

Given a set of univariate B-spline or NURBS basis functions {Ri,p}
Nb f
i=1 and a set of control points {Pi }

Nb f
i=1 ⊂ Rd in

the physical domain Rd for d = 1, 2, 3, a NURBS geometry is a parametrization x : Ω → Rd defined as:

x(ξ) =

Nb f
i=1

Ri,p(ξ) Pi . (6)

In this work, we consider the standard case for which the dimension of the physical domain Ω , represented by the
geometrical entity x, coincides with that of the parameter domain Ω ⊂ Rκ , i.e. for which κ ≡ d . Moreover, we
consider bivariate NURBS basis functions, for which κ = 2, and computational domains Ω in the two-dimensional
physical space R2, i.e. such that d = κ = 2.

The mesh Kh defined in the Ω for the construction of the B-spline and NURBS basis functions yields the mesh Kh
in the physical domain Ω in virtue of the geometrical mapping (6), i.e. Kh :=


K j : j = 1, . . . , Nel


, where K j is



the geometrical mapping of the element K j in the parameter domain Ω for some j = 1, . . . , Nel . Finally, we observe
that with the h-, p-, or k-refinement procedures the geometrical representation (6) is preserved in the sense that the
geometrical mapping x(ξ) and its Jacobian remain the same for all the applied refinement procedures.

3.4. The isogeometric concept

Let us assume that a physical (computational) domain Ω is represented by means of the geometrical mapping (6)
from a parameter domain Ω by using the NURBS basis functions Ri,p for i = 1, . . . , Nb f ; in addition, let us assume
that a function uh = uh(ξ) is defined in Ω , as e.g. the approximate solution of a scalar PDE. Then, according
to the Isoparametric concept, any candidate to represent each scalar component of the solution approximating the
solution u in Eq. (1) at any t will feature the following expansion with respect to the spatial parametric coordinate:uh(ξ) =

Nb f
i=1 Ri,p(ξ) Ui , where Ri,p, for i = 1, . . . , Nb f , are the same NURBS basis functions used in the

geometrical representation (6) and the coefficients Ui ∈ R are the corresponding control variables; the properties
of the function uh follow from those of the NURBS basis functions. By assuming that the geometrical mapping x(ξ)

of Eq. (6) is invertible, the function uh can be rewritten in the physical domain Ω as uh : Ω → R, with uh = ûh ◦x−1.
For simplicity, in virtue of the invertibility of the geometrical mapping x(ξ), here henceforth we will not distinguish
between uh and uh by writing uh regardless which domain, parametric Ω or physical Ω , we are referring to.

Finally, by using the B-splines or NURBS basis functions introduced in Sections 3.1 and 3.2, we define the B-
splines or NURBS function space of dimension Nb f as:

Nh := span


Ri,p, i = 1, . . . , Nb f

. (7)

4. Numerical approximation of PDEs: Isogeometric Analysis

We discuss the numerical approximation of the elastodynamics equations described in Section 2. For the spatial
approximation we consider NURBS-based IGA in the framework of the Galerkin method [1,2], while the generalized-
α method for the time discretization [37].

4.1. Spatial approximation: NURBS-based IGA

Let us introduce the space of square integrable functions in Ω , i.e. L2(Ω), and the Hilbert space H1(Ω) = {v :

Ω → Rd such that Dαv ∈ L2(Ω) and|α| ≤ 1}, where α = {α1, . . . , αd} ∈ Nd is a multi-index, |α| =
d

i=1 αi and
Dα the multi-index distributional derivative operator; see e.g. [40,41]. By referring to Eq. (1), we set the trial function
space (actually, an affine manifold) S := {v : Ω → R such that v ∈


H1(Ω)

d
and vi |ΓD

= gi , ∀ i = 1, . . . , d},
where ΓD ⊂ ∂Ω and vi denotes the i th components of the vector v, and the test function space V := {w : Ω →

Rd such that w ∈

H1(Ω)

d
and w|ΓD

= 0}. Moreover, we define the bilinear forms A, a, c, m : V × S → R
from Eqs. (1) and (3) as A(w, u) = a(w, u) + c(w, u) + m(w, u), a(w, u) =


Ω σ (u) : ϵ(w) dΩ +


Ω ρζ 2 u · w dΩ ,

c(w, u) =

Ω 2ρζ ∂u

∂t · w dΩ , and m(w, u) =

Ω ρ ∂2u

∂t2 · w dΩ , respectively and the linear functional F : V → R
as F(w; t) =


Ω f (t) · w dΩ +


ΓN

h(t) · w dΩ . Then, the weak form of the linear elastodynamics equation (1) with
viscous terms (3), in the case ΓN R = ∅, reads:

find u(t) ∈ S : A(w, u(t)) = F(w; t) ∀w ∈ V, ∀t ∈ (0, T ), (8)

for u(0) = u0 and u̇(0) = u̇0. The bilinear form A(·, ·) and the linear functional F(·; t) can be suitably modified to
apply the non-reflecting boundary conditions (4) on ΓN R ⊂ ∂Ω if ΓN R ≠ ∅.

Let us introduce two suitable finite dimensional subspaces Sh ⊂ S and Vh ⊂ V ; specifically, by using the
Isogeometric concept of Section 3.4 and the B-splines or NURBS function space Nh of Eq. (7), we set Sh = S ∩[Nh]d

and Vh = V ∩ [Nh]d .3 Then the approximation of the problem (8) by means of NURBS-based IGA in the framework
of the Galerkin method reads:

find uh(t) ∈ Sh : A(wh, uh(t)) = F(wh; t) ∀wh ∈ Vh, ∀t ∈ (0, T ). (9)

3 We assume that the Dirichlet data g belongs to the restriction of the NURBS space


Nh
d onto ΓD ; see Eq. (1).



The problem (9) is in semi-discrete form with the approximate solution reading uh(t) = (u1,h(t), . . . , ud,h(t))T
: Ω

→ Rd , with u A,h =
Nb f

i=1 Ri,p UA,i (t), being

UA,i

Nb f
i=1 the time dependent control variables for each vectorial

component A = 1, . . . , d; the vector of control variables is U(t) =

UT

1 (t), . . . , UT
d (t)

T
∈ R(d Nb f ). However, by

taking into account the strong imposition of the essential boundary conditions and indicating with Nh the dimension of
the function space Sh , for which generally Nh ≤ d Nb f , we still refer to the vector of control variables as U(t) ∈ RNh

for the sake of simplicity. Also, we indicate with M, C, K ∈ RNh×Nh and F(t) ∈ RNh the mass, damping, stiffness
matrices, and vector of external forces obtained by the spatial discretization of the forms m(·, ·), c(·, ·), and a(·, ·),
and the functional F(·; t), respectively; similarly, U0 and U̇0 represent the L2-projections of the initial data u0 and u̇0
onto Nh , respectively. Then, the semi-discrete problem reads:

find U : (0, T ) → RNh :

M Ü(t) + C U̇(t) + K U(t) = F(t) ∀t ∈ (0, T ),

U(0) = U0,

U̇(0) = U̇0,

(10)

where U̇(t) and Ü(t) are the time derivatives of the displacement vector U(t).
We remark that the matrices M, C, and K and the vector F(t) are assembled from the corresponding bilinear forms

and linear functional by means of suitable quadrature formulas for the evaluation of the integrals. In IGA a standard
procedure consists of using the d-dimensional Gauss–Legendre quadrature formula [42] induced by the tensor product
construction of multivariate basis functions. The quadrature formula is applied at the level of each element of the mesh
Kh ; more commonly, in virtue of the isogeometric paradigm, the formula is applied in the parametric domain Ω at the
level of the elements K ∈ Kh or in a parent domain [1]. For example, the integral of a function ϕ(ξ) defined in the
parametric domain Ω ⊂ R2, i.e. ϕ : Ω → R is approximated as:


Ω ϕ(ξ) dΩ ≃


K∈Kh

 r2
j=1

ϕ 
ξ r

j

 wr
j

 , (11)

where r is the number of quadrature nodes defining the Gauss–Legendre formula, while

ξ r

j

r2

j=1
and

wr
j

r2

j=1
are the quadrature nodes and weights in the parameter domain, respectively. In the standard approach to NURBS-
based IGA, we set r = p + 1, which ensures the exact assembly of the matrices M, C, and K when B-splines
are considered; conversely, the matrices are approximated when NURBS basis functions are considered, even if the
same Gauss–Legendre formula with r = p + 1 is used by convention. We observe that more efficient quadrature
formulas than the element-wise Gauss–Legendre formula may be used in NURBS-based IGA by taking advantage of
the properties of NURBS basis functions; see [43,44].

4.2. Time discretization: the generalized-α method

We discretize in time the problem (9) by means of the generalized-α method [37], which controls numerical
dissipation at high-frequency modes, while minimizing low-frequency dissipation.

Let us partition the time interval [0, T ] into Nt sub-intervals of equal size ∆t =
T
Nt

for which the discrete time
steps are tn = n∆t for n = 0, . . . , Nt . Also, let us indicate with dn , vn , and an the approximations of the vectors
U(tn), U̇(tn), Ü(tn) at the discrete time step tn , respectively. Then, one step of the generalized-α method at tn reads,
for any n = 0, . . . , Nt − 1:

find dn+1, vn+1, an+1 ∈ RNh :


dn+1 = dn + ∆t vn + ∆t2


1
2

− β


an + β an+1


,

vn+1 = vn + ∆t

(1 − γ ) an + γ an+1


,

M an+1−αm + C vn+1−α f + K dn+1−α f = F(tn+1−α f ),

(12)

given dn , vn , and an ; the parameters αm , α f , γ , and β ∈ R characterize the method with the following definitions:

dn+1−α f := (1 − α f ) dn+1 + α f dn, vn+1−α f := (1 − α f ) vn+1 + α f vn,

an+1−αm := (1 − αm) an+1 + αm an, tn+1−α f := (1 − α f ) tn+1 + α f tn,
(13)



Fig. 2. Examples of exact and numerical waves; dimensionless quantities on both the axes.

At the time step t0 = 0, we can set d0 = U0, v0 = U̇0, and a0 = M−1 
F(0) − C U̇0 − K U0


. We recall that

the generalized-α method is a second-order accurate scheme for linear problems, provided that γ =
1
2 − αm + α f ;

moreover, it is unconditionally absolutely stable if αm ≤ α f ≤
1
2 and 1

4 +
1
2 (α f −αm) ≤ β. Further, the generalized-α

method maximizes high frequency dissipation for β =
1
4 (1 − αm + α f )

2, while minimizes low frequency dissipation
for α f =

αm+1
3 . Following [37] and by introducing the spectral radius of the amplification matrix for ∆t → ∞, say

ρ∞ ∈ [0, 1], all the previous properties can be satisfied by choosing the parameters as αm =
2ρ∞−1
ρ∞+1 , α f =

ρ∞

ρ∞+1 ,

β =
1

(ρ∞+1)2 , and γ =
3−ρ∞

2(ρ∞+1)
. In this manner, a family of second-order and absolutely stable generalized-α methods

controlling the numerical dissipation is defined in terms of the unique parameter ρ∞.

5. Numerical dispersion analysis

In this section, we are interested in quantifying the errors associated with the wave propagation in elastodynamics
problems, specifically in evaluating the quality of the numerical wave length and velocities of propagation; see Fig. 2.
Due to the mesh structure associated with the spatial approximation method, such errors are dependent on the direction
of wave propagation. The analysis of these errors is typically called numerical (grid) dispersion analysis.

5.1. Harmonic plane waves

Let us consider the isotropic linear elastic equation (1) without the source term and in the space–time domain
Ω × R:

ρ
∂2u
∂t2 (t) − ∇ · σ (u(t)) = 0 in Ω × R. (14)

In our analysis, we consider the computational domain Ω ⊂ Rd open and bounded, with d = 2, 3. In order to
study the dispersion of the numerical scheme, we consider particular solutions in the form of harmonic plane waves
uPW (k, ω) : Ω × R → Rd , reading:

uPW (k, ω) = uPW (x, t; k, ω) = eι(k·x−ω t) 9, (15)

where ω ∈ R is the angular frequency, k = (k1, . . . , kd)T
∈ Rd is the wave vector, the vector 9 = (Ψ1, . . . ,Ψd)T

∈

Rd , which is independent of x and t , represents the direction and magnitude of the displacement, and ι is the imaginary
unit such that ι2 = −1. For convenience, we rewrite Eq. (15) as:

uPW (x, t; k, ω) = e−ι ω t zPW (x; k) 9 with zPW (x; k) := eι k·x. (16)

By substituting Eq. (15) into Eq. (14) and by simplifying the term eι(k·x−ω t), we obtain that the plane wave uPW (t)
satisfies Eq. (14) for some Ψ ∈ Rd , provided that:

−


ω2

κ2 − c2
s


9 + (c2

p − c2
s )


9 ·kk = 0, (17)



where κ := |k|,k =
k
κ

and cp and cs are the compressional and shear wave velocities defined in Eq. (2), respectively.
Eq. (17) admits two solutions; the first, say (ωp, 9 p), such that:

ωp = κ cp and 9 p = αpk ∀αp ∈ R, (18)

the second, say (ωs, 9s), such that:

ωs = κ cs and 9s = αs nk ∀αs ∈ R, (19)

where the unit vector nk ∈ Rd is normal to k, i.e nk ·k = 0. The first wave, called compressional wave or P-wave,
travels with velocity cp and induces a displacement in the direction of the wave vector k, while the second wave,
called shear wave or S-wave, travels with velocity cs and induces a displacement orthogonal tok, namely along nk.

5.2. Formulation of the discrete eigenvalue problem

For the definition of the discrete eigenvalue problem, we consider the approach introduced in [35] for the com-
parison of different Spectral (element) methods [45,46]. The proposed approach is based on the spatial discretization
of the elastodynamics equation (14) for a general undetermined solution u(t) and the approximation of the harmonic
wave particular solution uPW (k, ω) of Eq. (15) by using the same numerical scheme. Then, the discrete wave solution
is combined with the discrete elastodynamics wave equation into a discrete eigenvalue problem yielding the discrete
angular frequencies corresponding to compressional and shear wave velocities. According to [35], this approach al-
lows the computation of the wave velocities in bounded computational domains Ω without the need of using periodic
boundary conditions [30,33,34], a constraint that would be difficult to fulfill when comparing different numerical
schemes for different wave directions k.

Let us consider the isotropic elastic wave equation (14) endowed with homogeneous Neumann conditions on
∂Ω , i.e. for which σ (u)n = 0; then, by setting S = V =


H1(Ω)

d
, we can rewrite the problem in the weak

formulation (8). Similarly, the problem approximated with NURBS-based IGA in the framework of the Galerkin
method reads as in Eq. (9), where the function spaces Sh = Vh have dimension Nh = d Nb f ; similarly to Eq. (10),
the matrix–vector form of the discrete problem, which is continuous in time, reads:

find U : R → RNh : M Ü(t) + K U(t) = 0 ∀t ∈ R. (20)

Following the approach of [35], we proceed to determine the discrete harmonic plane wave, obtained by L2-
projection of the harmonic plane wave uPW (k, ω) (15) onto the NURBS space Nh (7). From Eq. (16), we obtainzPW,h(k) : Ω → R, reading zPW,h(k) =

Nb f
i=1 Ri,p Z PW,i (k), by solving the following L2-projection problem for

some given wave vector k:

findzPW,h(k) ∈ Nh :


Ω

whzPW,h(k) dΩ =


Ω

wh zPW (k) dΩ ∀wh ∈ Nh, (21)

with the control variables ZPW (k) ∈ CNb f .4 Then, from Eq. (21), the discrete harmonic wave, sayuPW,h(k, ω) : Ω ×

R → Cd , for k and ω given, reads:

uPW,h(t; k, ω) = e−ι ω t zPW,h(k) 9. (22)

We remark that the notation uPW,h(t; k, ω) is used to indicate that the discrete harmonic plane wave is not obtained
by solving the Galerkin problem under the assumption (15), which would yield the approximated harmonic plane
uPW,h(t; k, ω), but rather its approximation in the NURBS space Nh by means of L2-projection. For the sake of
simplicity, we rewrite uPW,h(t; k, ω) in matrix–vector form; with this aim we introduce the matrices Rp : Ω →

RNh×d and Z PW (k) ∈ CNh×d reading, e.g. for the two-dimensional case d = 2:

Rp :=


Rp 0
0 Rp


and Z PW (k) :=

ZPW (k) 0
0 ZPW (k)


, (23)

4 The Gauss–Legendre quadrature formula used to approximate the integrals in the weak form (21) will be discussed in Section 5.3.



where Rp : Ω → RNb f is the vector of the NURBS basis functions Rp =

R1,p, . . . , RNb f ,p

T. Then, the discrete
harmonic plane wave uPW,h(t; k, ω) reads:

uPW,h(t; k, ω) = e−ι ω t RT
p

Z PW (k) 9 = RT
p
UPW (t; k, ω) (24)

where UPW (k, ω) : R → CNh , being UPW (t; k, ω) := e−ι ω t Z PW (k) 9.
According to the procedure proposed in [35], we replace the control variables U PW (t; k, ω) of the discrete

harmonic plane wave uPW,h(t; k, ω) into Eq. (20), thus obtaining:
−ω2M + K

 Z PW (k)Ψ = 0, (25)

after having simplified the term e−ι ω t . By pre-multiplying the previous equation by the matrix
Z PW (k)

H
corre-

sponding to the transpose complex conjugate of Z PW (k), we obtain the following d-dimensional generalized eigen-
value problem for a prescribed wave vector k:

find ωh(k) ∈ R, Ψh(k) ∈ Rd
: KZ PW

(k) Ψh(k) = (ωh(k))2 MZ PW
(k) Ψh(k), (26)

where:

KZ PW
(k) :=

Z PW (k)
H K Z PW (k) (27)

and

MZ PW
(k) :=

Z PW (k)
H M Z PW (k). (28)

Following [35], one can show that the d eigenvalues ωh(k) are real.
By specializing in the two-dimensional case for which d = 2, we can associate the largest of the two eigenvalues,

say ωp,h(k), to the discrete compressional wave (P-wave), while the smallest, say ωs,h(k), to the discrete shear wave
(S-wave). Then, from the previous discrete angular frequencies ωp,h(k) and ωs,h(k) we compute the numerical wave
velocities for a given k:

cp,h(k) :=
ωp,h(k)

κ
and cs,h(k) :=

ωs,h(k)

κ
, (29)

together with the corresponding wave velocity errors:

ep(k) :=
cp,h(k)

cp
− 1 and es(k) :=

cs,h(k)

cs
− 1; (30)

from the previous errors we introduce the corresponding relative errors, often used in studying the effect of the wave
direction (i.e. the angle θ ), reading:

ep(k) := ep(k) + 1 and es(k) := es(k) + 1. (31)

5.3. Dispersion analysis for NURBS

We aim at performing the numerical dispersion analysis following the procedure outlined in Section 5.2 with
NURBS basis functions of different degrees p and different regularity, namely Cα-continuous in Ω for some
α = 0, . . . , p − 1 as discussed in Section 3. Specifically, we are interested in performing such analysis when
considering the same number of NURBS basis functions in each parametric direction per wave length. We remark
that this represents an adaptation to the NURBS context of the numerical grid dispersion analysis performed with
Finite Elements [30–34] or Spectral methods [35,36] for which basis functions are interpolatory at the grid nodes.

Let us specifically consider the two-dimensional case for which d = 2 with the computational domain Ω ⊂ R2

and assume that the wave vector k is in the form:

k = 2π k (cos(θ), sin(θ))T , (32)



Fig. 3. P- and S-waves velocity errors ep(k) (top) and es (k) (bottom) vs. H for ν = 0.1, ϑ = 0◦ (θ = 0), and p = 1, 2, 3, 4; B-spline basis
functions globally Cα-continuous with α = 0 (left) and α = p − 1 (right).

with k > 0 the circular wavelength and θ ∈ [0, 2π); we notice that when the angle θ is expressed in degrees, it
is indicated as ϑ ([◦]) reading ϑ = θ 180◦

π
. We recall that bivariate NURBS basis functions are built by applying

the tensor product rule to the univariate basis functions, which we assume to possess the same degree p and global
continuity α along all the parametric directions (i.e. built from the same knot vectors Ξ along both the parametric
directions). By recalling the notation of Section 3.1, we indicate with Nb f = n2 the total number of basis functions,
where n is the number of basis functions along the single parametric direction, which we fix a priori equal for both the
parametric directions. We define the number of NURBS basis functions in each parametric direction per wave length,
say G, and its inverse measuring the wave length per resolution, say H , as:

G :=
n

k
and H :=

k

n
. (33)

Since we are aiming at comparing the numerical dispersion for NURBS basis functions of different regularity, namely
Cα-continuous for α = 0, . . . , p − 1, for fixed values of H , that is with a fixed number of univariate basis functions n
for a prescribed wave length k, we need to built such basis functions from knot vectors possessing a different number



Fig. 4. P- and S-waves velocity errors ep(k) (top) and es (k) (bottom) vs. H for ν = 0.1, ϑ = 45◦ (θ = π/4), and p = 1, 2, 3, 4; B-spline basis
functions globally Cα-continuous with α = 0 (left) and α = p − 1 (right).

of non-zero elements nel , say nel,α . According to the formula (5), we have:

nel,α =
nel,α


, with nel,α :=

n − α − 1
p − α

for α = 0, . . . , p − 1, (34)

for a prescribed number of univariate basis functions n > p + 1 and degree p ≥ 1.5

On the other side, since we are operating in the Galerkin framework, the numerical dispersion analysis
stemming from the solution of the generalized eigenvalue problem (26), involves the use of quadrature formulas for
approximating the integrals related to the assembly of the matrices M and K of Eq. (20), as well as to the computation
of the control variables ZPW (k) of L2-projection problem (21). When considering B-spline basis functions, the
standard Gauss–Legendre quadrature formula (11) with r = p+1 quadrature nodes per element along each parametric
direction ensures the exact assembly of the matrices M and K, while this is not the case of the integrals involved in
the problem (21), since the harmonic plane wave function zPW (k) is not of polynomial type. Indeed, the assembly of
the matrices M and K with the standard Gauss–Legendre formula with r = p + 1 is exact regardless the regularity

5 For example for n = 10 and p = 3, we have nel,α = 3, 4, and 7, for α = 0, 1, and 2, respectively.



Fig. 5. P- and S-waves velocity errors ep(k) (top) and es (k) (bottom) vs. H for ν = 0.4, ϑ = 0◦ (θ = 0), and p = 1, 2, 3, 4; B-spline basis
functions globally Cα-continuous with α = 0 (left) and α = p − 1 (right).

α = 0, . . . , p −1 of the B-spline basis functions. Conversely, the computation of the control variables ZPW (k) for the
harmonic plane waves is sensitive to the regularity of the B-spline basis functions α, since a different total number of
quadrature nodes per parametric direction, say nqn,α , is used, being nqn,α = r nel,α for α = 0, . . . , p − 1. It follows
that if we aim at comparing the numerical dispersion obtained by B-spline basis functions of different regularity
α = 0, . . . , p − 1 under the same conditions, namely the same value of the parameter G of Eq. (33), we also have
to ensure that the errors associated with the numerical quadrature are “sufficiently” small and, above all, comparable;
the latter goal can be achieved by considering the same total number of quadrature nodes per wave length, say Q, for
all the regularities α = 0, . . . , p − 1, which is defined as:

Q :=
nnq

k
, (35)

where nqn is the prescribed number of quadrature nodes along each parametric direction and k is the circular
wavelength of Eq. (32). Since the number of elements nel,α decreases when the regularity of the B-spline basis
functions decreases according to the formula (34) for a prescribed value of n, i.e. for α = p − 1, . . . , 0, the number
of quadrature nodes nqn also decreases for the standard Gauss–Legendre formula with r = p + 1, thus making



Fig. 6. P- and S-waves velocity errors ep(k) (top) and es (k) (bottom) vs. H for ν = 0.4, θ = 45◦ (θ = π/4), and p = 1, 2, 3, 4; B-spline basis
functions globally Cα-continuous with α = 0 (left) and α = p − 1 (right).

the parameter Q smaller and smaller. In this manner, the comparison of the numerical dispersion for B-spline basis
functions of different regularity α with a fixed value of the parameter G would occur under different conditions, due
to the discrepancies in the quadrature errors for problem (21). Therefore, in order to perform a comparison with the
same values of both the parameters G and Q for α = 0, . . . , p − 1, we need to change the order of the quadrature rule
according to the regularity α. With this aim, we set the reference number of quadrature nodes nqn = rp−1 nel,p−1,
where rp−1 = r = p + 1 for the standard Gauss–Legendre quadrature formula. By enforcing nqn,α := rα nel,α ≥ nqn
for all α = 0, . . . , p − 2, we obtain from Eqs. (5) and (34) that the number of Gauss–Legendre quadrature nodes per
mesh element rα should vary for Cα-continuous B-spline basis functions as:

rα = ⌈rα⌉ , withrα :=
nnqnel,α

= r (p − α)
n − p

n − α − 1
for α = 0, . . . , p − 1. (36)

We remark that according to the previous formula, the total number of Gauss–Legendre quadrature nodes per mesh
element rα is larger for smaller values of α; in this manner, the total number of quadrature nodes per wave length Q
(see Eq. (35)) is slightly biased in favor of C0-continuous basis functions with respect to basis functions which are



Fig. 7. P- and S-waves velocity relative errors ep(k) (top) and es (k) (bottom) vs. ϑ ∈ [0, 360◦) (θ ∈ [0, 2π)) in polar coordinates, obtained with
G = 4 (H = 0.25), for ν = 0.1 (blue) and ν = 0.4 (red); B-spline basis functions of degree p = 1 and globally C0-continuous. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

globally C p−1-continuous, i.e. nqn,0≥nqn,p−1.6 We use the above Gauss–Legendre quadrature formulas also when
considering NURBS basis functions, even if in this case the assembly of the matrices M and K of Eq. (20) also
involves some numerical quadrature errors other than the computation of the control variables ZPW (k) in Eq. (21) as
for B-spline basis functions.

5.4. Dispersion analysis: numerical results

We propose and discuss some numerical results for the dispersion analysis according to the generalized eigen-
value problem outlined in Section 5.2. We consider both the cases of B-spline and NURBS basis functions by

6 For example for n = 10 and p = 3, we have rα = 10, 7, and 4 and nqn,α = 30, 28, and 28, for α = 0, 1, and 2, respectively. We remark
that if we were using the standard Gauss–Legendre formula with rα = r = p + 1 for all α = 0, . . . , 2, we would obtain nqn,α = 12, 16, and 28,
respectively.



Fig. 8. P- and S-waves velocity relative errors ep(k) (top) and es (k) (bottom) vs. ϑ ∈ [0, 360◦) (θ ∈ [0, 2π)) in polar coordinates, obtained with
G = 4 (H = 0.25), for ν = 0.1 (blue) and ν = 0.4 (red); B-spline basis functions of degree p = 2 and globally Cα-continuous with α = 0 (left)
and α = p−1 = 1 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

comparing different polynomial degrees p and regularity α = 0 and p − 1, i.e. basis functions which are either
C0- or C p−1-continuous; we remark that in the comparison both the B-spline and NURBS basis functions are de-
fined over uniform knot vectors. We propose a comparison both in terms of the phase velocity errors ep(k) and es(k)

of Eq. (30) associated to the compressional and shear waves (P- and S-waves) vs. the parameter H of Eq. (33),
i.e. the resolution per wavelength. We also discuss the influence of the Poisson’s ratio ν on the numerical dispersion
analysis.

Following the discussion about the Gauss–Legendre quadrature formulas in Section 5.3, we recall that all the
numerical results presented in this section have been obtained with the quadrature rule rα provided in Eq. (36).
Indeed, numerical evidence highlights that, for relatively “large” values of the parameter H of Eq. (33) (e.g. H≥0.5),
the quadrature errors associated with problem (21) may affect the results of the numerical dispersion analysis for
B-spline and NURBS basis functions of low regularity α (e.g. α = 0) if the standard formula r = p + 1 is used.
Conversely, this effect is less evident if the quadrature rule rα of Eq. (36) is used, including the case α = p − 1
(globally C p−1-continuous basis functions) for which rp−1 = r = p + 1.



Fig. 9. P- and S-waves velocity relative errors ep(k) (top) and es (k) (bottom) vs. ϑ ∈ [0, 360◦) (θ ∈ [0, 2π)) in polar coordinates, obtained with
G = 4 (H = 0.25), for ν = 0.1 (blue) and ν = 0.4 (red); B-spline basis functions of degree p = 3 and globally Cα-continuous with α = 0 (left)
and α = p−1 = 2 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

For the numerical tests considered in this section, we set the density ρ = 2 ·103 kg/m3 and the exact compressional
wave (P-wave) velocity cp = 3·103 m/s; the remaining elastic parameters are computed from ρ, cp, and the Poisson’s

ratio ν by means of Eq. (2). Specifically, the exact shear wave (S-wave) velocity is determined as cs = cp


1−2ν

2(1−ν)
;

e.g. we have cs = 2 · 103 m/s and cs = 1.225 · 103 m/s for ν = 0.1 and ν = 0.4, respectively. We consider both
B-spline and NURBS basis functions defined over uniform knot vectors and with a fixed number of univariate basis
functions equal to n = 25, regardless of their polynomial degree p = 1, 2, 3, and 4 and their global C0- or C p−1-
continuity; the resolution per wave length determined by the parameter H is varied by changing the modulus of the
circular wavelength k (see Eq. (32)).

B-spline basis functions
We start our numerical dispersion analysis for B-spline basis functions by comparing the phase errors ep(k) andes(k) associated with the P- and S-waves velocities of Eq. (30), respectively, vs. H . The analysis is performed for the



Fig. 10. P- and S-waves velocity relative errorsep(k) (top) andes (k) (bottom) vs. ϑ ∈ [0, 360◦) (θ ∈ [0, 2π)) in polar coordinates, obtained with
G = 4 (H = 0.25), for ν = 0.1 (blue) and ν = 0.4 (red); B-spline basis functions of degree p = 4 and globally Cα-continuous with α = 0 (left)
and α = p−1 = 3 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

computational domain Ω = (0, 1)2, the unitary square. We consider different values of the Poisson’s ratio ν = 0.1
and 0.4, with the angles ϑ = 0◦ and 45◦ for the direction of the wave vector k of Eq. (32). In Figs. 3–6 we report the
results obtained for B-spline basis functions of polynomial degrees p = 1, 2, 3, and 4 and globally Cα-continuous
for α = 0 and α = p − 1. We notice that the errors corresponding to basis functions of the maximum regularity,
i.e. globally C p−1-continuous, are generally smaller than their C0-continuous counterpart of the same polynomial
degree p, also for relatively large values of the parameter H ; this is evident for example in the approximation of
the shear S-wave velocity for ϑ = 45◦ for the values of the Poisson’s ratio ν = 0.1 and 0.4 in Figs. 4(c)–(d)
and 6(c)–(d), for which we report a significantly smaller error es(k) with globally C p−1-continuous basis functions.
As for example, we observe from Figs. 6(c)–(d) that the values of the computed S-wave velocities cs,h(k) obtained
with B-spline basis functions of polynomial degree p = 2 for H = 0.3 are about 30% and 10% larger than the
exact one cs(k) when considering basis functions which are C0- and C1-continuous, respectively; similar results are
obtained for p = 3 and 4. We also observe that the superiority of C p−1-continuous basis versus the C0-continuous
ones is not affected by the choice of the Poisson’s ratio ν and the angle ϑ of the wave vector k; moreover, from



Fig. 11. NURBS geometry and example of mesh comprised of Nel = 8 × 8 = 64 elements.

Figs. 4 and 6 we observe that the errors obtained with C0-continuous basis functions are more sensitive to the choice
of the Poisson’s ratio ν with respect to B-spline basis functions C p−1-continuous, as clearly highlighted for the
errors es(k).

In Figs. 7–10 we compare the relative P- and S-waves velocity errors ep(k) and es(k) of Eq. (31) by means of the
so-called anisotropic curves, that is the representation of such errors in polar coordinates for different wave directions
k obtained by changing the angle ϑ (or θ ) in Eq. (32). In this comparison we consider the results obtained with
globally C0- and C p−1-continuous B-spline basis functions of polynomial degrees p = 1, 2, 3, and 4 with ν = 0.1
and 0.4; such results are obtained by setting the number of control variables per wave length G = 4, or equivalently
H = 0.25 according to the definitions (33). As we can observe already from Fig. 7, both the numerical P- and S-
wave velocities overestimate the exact ones, with the maximum errors occurring at ϑ = 0◦ for the P-wave, while
at ϑ = 45◦ for the S-wave. Also, we observe that the error associated with the S-wave velocity is very sensitive
to the chosen Poisson’s ratio, conversely to the P-wave velocity error for which the anisotropic curves qualitatively
overlap. As evident from all the Figs. 8–10, the curves obtained by means of globally C p−1-continuous basis functions
outperform the corresponding ones obtained with the corresponding globally C0-continuous ones.

NURBS basis functions

We perform the dispersion analysis for NURBS basis functions in a computational domain Ω represented by
NURBS. Specifically, we consider the annulus of Fig. 11 for which Ω = (1, 4) × (θ1, θ2) in radial coordinates, with
θ1 = (3π − 8)/12 and θ2 = π/2 − θ1; the annulus is spanning an angle δ = 4/3 which is chosen in such a manner
that the length of the inscribed arc of radius 5/2 is equal to 3. We represent the annulus starting from the knot vector
Ξ = {0, 0, 0, 1, 1, 1} along both the parametric directions for which p = 2. The positions of the control points are
set as in the standard construction of the annulus [4]; unitary weights are chosen along the first parametric direction
(the radial one), while the weights w1 = w3 = 1 and w2 = cos(δ/2) are selected along the second parametric
direction (the circumferential one). Depending on the desired regularity of the basis functions, bivariate NURBS are
obtained by means of the application of the k-refinement procedure (see Section 3.2 and [1]). We recall that for this
specific choice of the computational domain Ω the distribution of the same number of basis functions n along the two
parametric directions also yields a quasi-uniform distribution in the physical domain Ω ; this is somehow represented
in Fig. 11 through the visualization of knots lines in the physical domain Ω for a mesh comprised of Nel = 8 × 8
elements.

By using the same data considered for the B-spline basis functions, we report in Figs. 12–14 the errors ep(k) andes(k) vs. H obtained for p = 2, 3, and 4 and ν = 0.1 with the angles of the wave vector ϑ = 0◦, 45◦, and 135◦,
respectively. As we can observe the behavior of the errors is not easily predictable and interpretable for relatively
“large” values of H (e.g. H > 0.2), both for globally C0- and C p−1-continuous NURBS basis functions; moreover,
the errors are also strongly dependent on the angle ϑ . However, we remark that when the value of H is “small”



Fig. 12. P- and S-waves velocity errors ep(k) (top) and es (k) (bottom) vs. H for ν = 0.1, ϑ = 0◦ (θ = 0), and p = 2, 3, 4; NURBS basis
functions globally Cα-continuous with α = 0 (left) and α = p − 1 (right).

(e.g. H < 0.2), the errors associated with the globally C p−1-continuous NURBS basis functions are visibly inferior
than those obtained with C0-continuous basis functions.

In Fig. 15 we report the anisotropic curves obtained with the globally C0- and C1-continuous NURBS basis
functions described previously for the case p = 2 and H = 1/10; we consider both the cases of Poisson’s ratio
ν = 0.1 and 0.4. Once again, we remark the superiority of the smooth basis with respect to the continuous ones.
We notice that the anisotropic curves are symmetric along the bisecting lines of the circle at the angles ϑ = 45◦ and
ϑ = 135◦, due to the NURBS construction of the geometry of Fig. 11.

6. Simulation of seismic waves

We consider the numerical approximation of the elastodynamics equations presented in Section 2 by means of
NURBS-based IGA in the framework of the Galerkin method with the aim of simulating the propagation of seismic
waves in a portion of the earth mantle. In particular, we consider an earthquake event occurring in a sinusoidal
valley, inspired by the problem proposed in [36,38]; the two-dimensional computational domain under consideration
is depicted in Fig. 16. Specifically, the simulation aims at reproducing a seismic event occurring in a valley composed



Fig. 13. P- and S-waves velocity errors ep(k) (top) and es (k) (bottom) vs. H for ν = 0.1, ϑ = 45◦ (θ = π/4), and p = 2, 3, 4; NURBS basis
functions globally Cα-continuous with α = 0 (left) and α = p − 1 (right).

of sediments as sandstone, namely “soft” material, deposited over the course of thousands of years on a bedrock of
granite, namely “hard” material.

As anticipated, the computational domain Ω = (0, L) × (0, H) is represented in Fig. 16, where L = 2 · 104 m
and H = 104 m; the sinusoidal type valley of “soft” material is delimited by the B-spline curve x(ξ) (6) determined
by the knot vector Ξ = {0, 0, 0, 1/5, 2/5, 3/5, 4/5, 1, 1, 1} and control points P1 = (0, Hv1)

T, P2 = (∆Lv, Hv1)
T,

P3 = (2∆Lv, Hv2)
T, P4 = (3∆Lv, Hv2)

T, P5 = (4∆Lv, Hv1)
T, and P6 = (L , Hv1)

T, where Hv1 = (H − 102) m,
Hv2 = (H − 103) m, and ∆Lv = 4 · 103 m. Homogeneous Neumann boundary conditions are considered for the
top boundary of Ω , i.e. edge 3 in Fig. 16; on the edges 1, 2, and 4 the non-reflecting boundary conditions (4) are
imposed with the aim of simulating the propagation of the seismic waves only in a limited part of the earth mantle, by
avoiding significant reflections. The material properties are discontinuous across the interface representing the valley,
as reported in Table 1; we remark that the “harder” material possesses higher compressional (cp) and shear (cs) wave
velocities than the “softer” material. A point source of seismic excitation is placed in the rock region. Specifically,
following [36], the forcing term f of Eq. (1) is a point source load of the form:

f (x, t) = d(x) q(t), (37)



Fig. 14. P- and S-waves velocity errors ep(k) (top) and es (k) (bottom) vs. H for ν = 0.1, ϑ = 135◦ (θ = 3π/4), and p = 2, 3, 4; NURBS basis
functions globally Cα-continuous with α = 0 (left) and α = p − 1 (right).

where the function d describes a Dirac distribution function in space:

d(x) = δ(x − P)d, (38)

P = (104, 5 · 103)T m is the source location, and d = (1, 0)T the direction of the applied force; the function q(t) in
Eq. (37) represents the time history through a Ricker-type function defined as:

q(t) = q0


1 − 2λ(t − t0)

2


e−λ(t−t0)2
, (39)

where q0 = 1010 Nm−2 is a suitable scaling factor, t0 = 2 s is the time shift, and λ = 9.870 s−1 is a parameter
determining the “width” of the wavelet. We are interested in the seismic propagation of a time lapse of 30 s, for which
T = 30 s, starting from the initial conditions u0 = u̇0 = 0.

For the spatial approximation we use NURBS-based Isogeometric Analysis in the framework of the Galerkin
method, even if we specifically consider B-splines for this problem. Indeed, B-spline basis functions of polynomial
degree p = 2 are used in both the parametric directions for representing the computational domain as well as for
defining the finite dimensional NURBS (B-splines) function space Nh for the solution of problem (9). The B-spline



Fig. 15. P- and S-waves velocity relative errorsep(k) (top) andes (k) (bottom) vs. ϑ ∈ [0, 360◦) (θ ∈ [0, 2π)) in polar coordinates, obtained with
G = 10 (H = 0.1), for ν = 0.1 (blue) and ν = 0.4 (red); NURBS basis functions of degree p = 2 and globally Cα-continuous with α = 0 (left)
and α = p−1 = 1 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Sinusoidal type shaped valley for the simulation of the earthquake.



Fig. 17. A mesh of the valley in Fig. 16 comprised of 1512 elements.

Table 1
Material parameters for the simulation of the earthquake.

Material cp
 m

s


cs
 m

s


ρ


kg
m3


ζ


1
s


1 (“soft”) 0.7000 · 103 0.3500 · 103 1.900 · 103 3.141 · 10−2

2 (“hard”) 3.500 · 103 1.800 · 103 2.200 · 103 6.283 · 10−2

basis functions are chosen as C1-continuous in the computational domain Ω except across the curve representing the
sinusoidal valley, where they are only C0-continuous; such basis functions can be obtained as tensor product rule of
the univariate B-splines basis depicted in Fig. 1(a) and (b) (see Section 3). We remark that the flexibility of NURBS
(B-spline) basis functions in allowing the local reduction of the smoothness is particularly suitable in this case; indeed,
the basis functions are only C0-continuous through such interface, where the material properties are discontinuous and
a reduced regularity of the solution is expected. The NURBS (B-splines) space Nh is composed of Nb f = 63,560
basis functions, with a quasi-uniform computational mesh with 62,272 mesh elements of sizes indicatively h1 ≃ 3 m
in the basin and h2 ≃ 76 m in the bedrock; as for example, we report in Fig. 17 a similar mesh comprised of 1512
elements in the physical space for which we highlight the relatively “small” mesh size in the proximity of the edges
2 and 4 in Fig. 16 which facilitates the accurate imposition of the non-reflecting boundary conditions.. For the time
discretization we use the fully implicit, generalized-α method described in Section 4.2 for which we set the time step
∆t = 0.01 s and ρ∞ = 0.5 for the definition of the parameters αm , α f , β, and γ characterizing the method. Since
problem (1) is linear in the unknown u, in the case of smooth solutions, we expect a second order convergence of
the error with respect to the time discretization, as well as for the spatial approximation error in seminorm H1, being
basis functions of polynomial degree p = 2 used.

The propagation of the seismic waves in the earth mantle is illustrated in Fig. 18 at different times. We notice the
propagation of the waves from the source point P, where the forcing term is located, and an amplification of the wave,
when the seismic waves enters into the “soft” material from the bedrock (Fig. 18(d) and (f)). In the Fig. 18(e)–(h) we
observe that the main wave is reflected from the internal interface, where the material properties are discontinuous,
and travels a second time upwards to the surface, without losing a significant amount of energy. In Fig. 19(a)–(h)
we compare the horizontal and vertical displacements recorded at the receiver stations R1–R4 reported in Fig. 16.
We remark that the receiver R4 is placed at the same distance from the source location as the two receivers R2 and
R3 and that the receivers R1, R2, and R3 are located at the surface of the valley, i.e. the “soft” material region;
specifically, the receivers R1, R2, R3, and R4 are located in (104, 104)T m, (5.1 · 103, 104)T m, (14.9 · 103, 104)T m,
and (3 ·103, 5 ·103)T m, respectively. By comparing the displacements recorded in R1, R2, and R3 we confirm that the
displacement of the material remains significant in magnitude for a longer period of time than in the bedrock material,
where the amplitude of the seismic waves is damped in a shorter period of time. Indeed, we remark that most of the
seismic waves do not cross the material interface immediately, but once entered in the “soft” material valley they are
basically trapped inside at significant amplitude for longer time than in the bedrock.

We numerically validate the results obtained in Figs. 18 and 19 by solving the problem for different discretizations,
including an “overkill” one. Specifically, we consider the IGA discretizations highlighted in Table 2, for which we
recall that Mesh 3 corresponds to the case previously considered, while Mesh 4 yields an “overkill” numerical solution.



(a) t = 1.5 s. (b) t = 2.0 s.

(c) t = 2.5 s. (d) t = 3.0 s.

(e) t = 4.0 s. (f) t = 7.0 s.

(g) t = 10.0 s. (h) t = 13.0 s.

Fig. 18. Evolution of the seismic waves in the sinusoidal shaped valley: displacement magnitude |u| (m) at different times.



(a) Horizontal displacement in R1. (b) Vertical displacement in R1. (c) Horizontal displacement in R2.

(d) Vertical displacement in R2. (e) Horizontal displacement in R3. (f) Vertical displacement in R3.

(g) Horizontal displacement in R4. (h) Vertical displacement in R4.

Fig. 19. Computed horizontal u1 and vertical u2 displacements (m) vs. time t (s) at the receiver stations R1, R2, R3, and R4 in Fig. 16
(displacements’ magnitudes on different scales).

Table 2
Meshes 1–4 and corresponding dimensions Nb f of the NURBS (B-splines) spaces Nh
for the numerical comparisons of Fig. 20 and Table 3.

Mesh 1 2 3 4
(Figs. 18–19) (“overkill”)

Nb f 5,192 17,480 63,560 241,736

In Fig. 20 we compare for the different discretizations the displacements u1 and u2 recorded at the receiver stations
R1 and R2, respectively; we observe that the results obtained with Meshes 3 and 4 are significantly and qualitatively
similar, from which we deduce that the results of Figs. 18 and 19 are sufficiently accurate. Moreover, to further



(a) Horizontal displacement in R1. (b) Vertical displacement in R2.

Fig. 20. Comparison of the computed horizontal u1 displacement (m) at the receiver R1 (left) and the vertical u2 displacement (m) at the receiver
R2 (right) vs. time t (s) for the Meshes 1 (green), 2 (red), 3 (blue) (Figs. 19(a) and (d)), and 4 (black) (“overkill” solution). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3
Comparison of the five most dominant frequencies f1−5 (Hz) computed for the displacements u1 at the receiver R1 and u2 at the receiver R2 of
Fig. 20 for the Meshes 1–4.

Mesh f1−5 (Hz)
u1, R1 (Fig. 20(a)) u2, R2 (Fig. 20(b))

1 0.5998 0.6331 0.7997 0.8664 0.9997 0.2999 0.8997 0.9330 0.9663 1.133
2 0.5998 0.6664 0.7997 0.9663 1.133 0.2999 0.8664 0.9330 0.9663 1.033
3 0.5998 0.6664 0.7997 0.9663 1.133 0.2999 0.8664 0.8997 0.9330 0.9663
4 0.5998 0.6664 0.7997 0.9663 1.133 0.2999 0.8664 0.8997 0.9330 0.9663

support this claim, we compute by means of FFT the five most dominant frequencies, say f1−5, associated with
the displacements vs. time of Fig. 20 for the different discretizations; as highlighted in Table 3, we remark that the
frequencies f1−5 computed for the Meshes 3 and 4 are identical.

7. Conclusions

In this paper we numerically approximated the linear elastodynamics equations by means of NURBS-based
Isogeometric Analysis (IGA) in the framework of the Galerkin method, for which we considered the numerical
solution of elastic wave propagation problems, specifically in seismic applications. In particular, we carried out a
numerical dispersion analysis for the elastodynamics equations, our focus being on the comparison of the use of
globally C0- and C p−1-continuous NURBS basis functions, where p is the polynomial degree. In our discussion,
we included the anisotropic curves for two-dimensional problems, i.e. the study of the errors associated with the
compressional and shear wave velocities for different directions of the wave vector. Based on such dispersion
analysis, we conclude that the use of globally C p−1-continuous NURBS basis functions is more efficient than their
C0-continuous counterpart of polynomial degree p. In fact, the associated errors are significantly smaller when
considering the same number of degrees of freedom. However, we remark that a complete analysis should involve
the comparison of the computational costs associated with the use of NURBS basis functions with different regularity,
a matter that should be further investigated.
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