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1. INTRODUCTION

Brain shift1–3 represents a major source of error in image-
guided neurosurgery. The skull-fixation system that assures
the rigid transformation between preoperative images and the
patient coordinated space4 does not account for the brain de-
formation relative to the skull. In frameless neurosurgery, the

registration of the intraoperative space to the imaging scans re-
lies on external landmarks (skin surface or fiducialmarkers).5

There are two sources for brain tissue deformation re-
ported in open skull neurosurgery. The first concerns brain
shift and results from a combined effect of tissue resection,
pathology, pharmacologic responses, gravity, edema, and loss
of cerebrospinal fluid.6 Hill et al.1 measured the brain surface
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deformation from a clinical case. These papers also report
surface cortical displacement up to 1 and 2 mm but none
conducted system accuracy or validation tests.

We present a validation method to evaluate the static and dy-
namic accuracy of a stereo camera. A simple phantom is simul-
taneously tracked by the stereo camera and by a commercial
high-accuracy optical tracking system used as gold-standard
reference. Results provide further information about the reli-
ability of stereoscopic systems—not only—in the context of
brain shift/deformation (as usually reported in surface tracking
papers) but more important, for measurements of brain pul-
satility.

To measure the brain motion, we use a stereo camera to
extract, and robustly and continuously track features on the
cortical surface. Three brain motion acquisitions were recor-
ded intraoperative. This paper is organized as follows: Sec. 2
presents in detail the stereo vision system setup, in Secs. 3 and
4 the materials and methods to validate the stereoscopic sys-
tem are described, Sec. 5 shows the validation results, Sec. 6
presents brain motion data acquired in a neurosurgery, and
Sec. 7 includes the discussion and conclusion.

2. STEREO VISION SYSTEM

The stereo vision system includes: a camera module, com-
munication channels, a personal computer, and the tracking
software. The stereo camera module consists of two mvBlue-
Fox 223C CCD cameras (MATRIX VISION GmbH, Oppen-
weiler, Germany, 38.8×38.8×58.5 mm body dimensions)
each equipped with SM25WI 2/3′′ lenses (Rainbow CCTV,
Irvine, Canada, 25 mm 1:1.4 C-Mount, manual iris/focus).
The cameras are able to record 1360×1024 resolution, at a
maximum frame rate of 20 frames/s, although the USB 2.0
connection limits the data transfer of full resolution images
to 10 frames/s. The computer with the tracking software runs
Microsoft Windows 7 64-bit (Intel i7-3770S CPU, 8 GB of
RAM), see Fig. 1.

The tracking software consists of an image acquisition and
a tracking module. The tracking module can be split into
several components: (i) feature detection and stereo match-
ing, (ii) stereo video tracking, and (iii) 3D reconstruction.

Our software includes the following features:

F. 1. Stereo vision system setup. Stereo camera fixed on a bracket, con-
nected to a computer via USB 2.0.

deformation in 21 patients under a craniotomy and reported a 
mean cortical surface displacement of 5.6 mm and a maximum 
displacement over 10 mm.

Another source of brain deformation noticeable in open 
skull surgery is due to systematic blood pressure variations, 
breathing, and vasomotor oscillations, which result in a pul-
sating brain motion.7,8 Britt and Rossi9 quantified t he brain 
pulsation motion of a mammal brain and divided its compo-
nents into arterial component with a displacement 110–266 
µm and a motion frequency between 2–3 Hz, and a respi-
ratory component with a displacement of 300–950 µm and 
a frequency between 0.1–0.2 Hz. Scarce information was 
found related to the characteristics of pulsation/breathing mo-
tion of the human brain. Wagshul et al.8 present a frequency 
analysis of brain pulsatility based on intracranial pressure and 
photoplethysmography, whose main components range be-
tween 1–4 Hz. Poncelet et al.10 reported a pulsating displace-
ment amplitude to be at most 0.5 mm.

Brain shift is a progressive condition with a very low 
displacement velocity, thus not requiring a high sample rate 
for its quantification. Several approaches have been proposed 
to measure brain shift: magnetic resonance,1,11–14 computed 
tomography,15 ultrasonography,16–20 biomechanical/predic-
tive models,6,21–24 or methods that use a priori knowledge 
of a brain biomechanical model to constrain the registration 
of 3D intraoperative imaging.25 However, the computation 
times, cost of technology, and necessary infrastructures as 
well as the cumbersomeness of user-interface rendered most 
of these solutions inapt.26 In neurosurgeries involving crani-
otomy, cortical surface can be used to infer brain deforma-
tion. Two main research areas stand out: laser range scan-
ning27–29 and stereoscopic systems.30,31 However, the low sam-
ple rate of laser range scanner systems enables its use to 
measure brain shift but not brain pulsation deformation.

The process of tracking a surface with a stereoscopic sys-
tem is a two step process: (1) extraction of 3D positions 
of salient visual features on the surface and (2) tracking of 
these features in video frames at different times. Sun et al.30 

presented in 2005 a system able to measure brain deforma-
tion and pulsation with a stereoscopic microscope (captur-
ing 15 frames/s) achieving a point-localization average error 
of 1.02 mm when compared to a optical stylus probe of a 
Polaris system and capturing the cortical surface shape of 
a phantom model with an average error inferior to 1.2 mm 
when compared to a CT scan. In 2011, Ji et al.32 reported a 
stereo vision system to measure cortical surface strain based 
on differentiation o f b rain m otion u sing o ptical fl ow, with 
high resolution (within 0.05–1 mm) although no explana-
tion is given about how sensitivity is calculated. Later in 
2013,33 Ji et al. presented a noninvasive method, based on 
the approach reported in 2011,32 to produce a dense map of 
cortical surface deformation due to blood pressure and respi-
ratory cycles in patients undergoing brain tumor resections 
via craniotomy. The breakthrough from the previous work is 
based on the use of an average cortical surface deformation to 
compute the relative cortical deformation instead of consider-
ing an arbitrary measurement as the reference state. Ji et al.33 

also presents a fast Fourier transform (FFT) analysis of brain



• Simultaneous operation of multiple cameras (two, in
this work).

• A user-controlled synchronized image capture cycle,
which is critical for correct tracking.

• Saving the acquired images in video files.
• Encoding a timestamp into the acquired images to facil-

itate off-line synchronization.
• Integration with feature tracking and reconstruction al-

gorithms.

2.A. Camera calibration

A calibration of the stereo camera is required prior to its
use. The underlying camera model is taken from the OpenCV
library and includes a pin-hole projection matrix, radial and
tangential lens distortion, and a rigid transform relating the
two cameras in a stereo system. To ease the calibration pro-
cess, we use a coded checkerboard pattern from the CALTag
toolkit34 in which the coordinates of every corner are auto-
matically identified from embedded binary codes, and is thus
robust to rotation, occlusion, or partial views. Snapshots of
the pattern are taken at several different poses (typically 15
to 20) and processed automatically to compute all calibration
parameters.

2.B. Tracking software

The first step of the tracking algorithm is feature detec-
tion. To accelerate the process, we start by asking the user to
specify approximately corresponding rectangular regions of
interest (ROIs) on the left and right images. We then execute
multiple filters on the acquired left image:

(1) Convert the image to a single channel, e.g., from
color to gray.

(2) Apply an intensity threshold above which pixels are
suspected as specular reflections and not used for fea-
tures to prevent tracking false visual items.

(3) Select “interesting” objects which stand out relative to
their neighborhood. For example, cortical blood ves-
sels are typically darker than the surrounding brain
tissue, and therefore we seek for pixels darker than
their neighborhood.

(4) To locate specific features, we use the Harris corner
detector35 on the left camera image. It finds features
with high pixel intensity derivatives in two orthogonal
directions.

approach in Ji et al.,33 which reconstructs a dense displace-
ment map of the surface, we use a relatively sparse set of fea-
tures. The small number of features allows real time tracking.
Notice that normalized cross correlation (NCC) is robust to
variations in the intensity gain of the patch, especially when
compared to the constant intensity of a feature presumed by
the optical flow method in Ji et al.33 This is relevant when a
shadow, not an occlusion, is cast over the tracked region.

Every feature is identified by a small patch (e.g., 15×15)
of pixels in its neighborhood. This patch serves as a template
for searching the feature in another image. The matching
computes the NCC36 with the template patch over a search re-
gion which is described below. The location of maximal NCC
score is chosen as a first approximation. Since the physical
motion of the tracked feature is not limited to integer pixel
units, we refine this approximation by fitting a quadratic sur-
face to a 3×3 neighborhood of the first guess and taking its
apex (location of zero gradient) as the position of the match.

Feature matching is used in two stages of the algorithm:
between the first left-camera image (image index i = 0 in the
sequence) and the first right-camera image (we call these
“stereo matches”), and between subsequent images (indexes
i and i+1) from the same camera—“video matches” (see
Fig. 2). For each stage, we define a different search region.
For stereo matching search, we use the presumed correspon-
dence between left and right ROI rectangles plus a user-
specified volume depth estimation to allow for some toler-
ance. We reconstruct by triangulation (Sec. 2.C) the four
corners and then add and subtract the depth parameter from
the Z coordinate to receive eight corners of a box. These
are reprojected to the image planes and the maximal offsets
between these corresponding projections define the search
range. The video matching search region is a (small) neigh-
borhood of the current feature position, based on the assump-
tion that the motion of the feature between frames is limited.

False matches, or outliers, must be removed from the data
to achieve an accurate reconstruction of the visible surface.
We identify outliers with the following criteria. First, image
similarity measures of NCC and normalized mutual infor-
mation (NMI)37 are computed between the template and the
match candidate, and a minimal score acceptance criterion
is used. Empirically, we found that thresholding the NCC
alone is insufficient to detect some occlusion cases, and the
NMI criterion adds strength to it. Then, for stereo matching,
two geometric constraints are tested: (1) the distance of the
right-image feature from the epipolar line that is the projec-
tion of the left-image feature on the right image plane and
(2) a parabolic surface is fitted to the collection of 3D recon-
structed features (see below) as a rough approximation of the
brain surface shape, and points too far from this surface are
considered as outliers.

2.C. 3D reconstruction

The pin-hole projection model is based on the following
equation:

To avoid clustering all features in a small region, we sub-
divide the original ROI and attempt to locate several features 
(e.g., 4) in each rectangular subregion, which increases the 
area of coverage within the ROI. The total number of tracked 
features is determined by a specified ceiling amount (typically 
100) and an acceptance threshold on the sensitivity of the Har-
ris corner detector filter. The sensitivity parameter can be low-
ered to increase the number of detected corners present in the 
image, up to specified ceiling. Compared to the optical flow



F. 2. Stereo and video feature matching. Each row shows a video frame, and columns stand for the left and right cameras. Stereo matches are depicted by
green arrows from the left to the right camera at time 0, and blue arrows show video matches for both cameras from time 0 to time 1. Each feature neighborhood
is depicted as a small numbered square.
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where λ is an arbitrary scale; u and v are the coordinates of a
pixel; A is a 3×3 projection matrix (with nonzero elements in
the diagonal and the last column); R is a 3×3 rotation matrix;
and t is a translation. A is constant per camera, and R and t
express the pose of the camera relative to the imaged object
which is acquired in a calibration process and can involve the
stereo relation between the cameras.

The back-projection of a pixel (line L) is henceforth
computed as

L =−R−1 · t+λR−1A−1
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u
v
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Given two pairs of pixel coordinates, (u1,v1) and (u2,v2),
which presumably are projections of the same point x from an
object, the 3D position of x is reconstructed by intersecting the
two rays. Since the rays usually do not intersect (because of
localization ambiguity and numerical roundoff), we seek for
a point that is exactly midway along the shortest line segment
that connects the two rays. This line segment is also perpen-
dicular to both rays. The perpendicular projection of x on a
line L =p+λg is

(x−p)− �(x−p)Tg
�
g= (I−ggT)(x−p).

And the midway point satisfies the equation

(I−g1g1
T)(x−p1)+ (I−g2g2

T)(x−p2)= 0 (3)

which is easily solved.
To address the radial and tangential lens distortion of the

OpenCV camera model, we use the solution of the linear equa-
tion as an initial guess in Levenberg–Marquardt optimization
to minimize the squared difference between the projection of
x on the respective image and the located pixel coordinates of
the feature.

1

where the first t erm i s t he p osition o f t he c amera’s prin-
cipal point relative to the imaged object, and the second is 
the direction of the ray that pierces the pixel. In short nota-
tion, we will write L = p+ λg and assume that g is a unit-
norm vector.



F. 3. Validation setup. The three reference frames: stereo camera {C},
optical tracking system {O}, and custom designed plate which includes the
features’ reference frame {F} and the divots’ reference frame {D}, which
are overlapped to each other. CTF represents the transformation from {F} to
{C}, OTD from {D} to {O}, and OTC from {C} to {O}.

3. MATERIALS

To validate the stereoscopic system (Fig. 3), a custom de-
signed plate was synchronously tracked by the stereo cam-
era and an industrial optical tracking system considered as
the gold-standard reference for this paper: Optotrak CERTUS
(NDI, Ontario, Canada). The choice of the optical tracker
was held based on the reported 3D tracking accuracy 0.1 mm
(system datasheet).

3.A. Synchronization logic

To validate the stereo camera against the reference sys-
tem, both systems must track the same or a related object
synchronously. The synchronization between both systems
was achieved through a logic hardware component connect-
ing each system’s IO modules and modulating the output
signal from CERTUS to trigger the stereo camera (Fig. 4).

The short clock acquisition pulse from CERTUS occasion-
ally caused the cameras not to trigger. A monostable multivi-
brator (HCF4047BE) was included in the logic component to
increase the duty cycle of Ctrg and avoid not-detection prob-
lems.

3.B. Custom plate

The custom designed plate (Fig. 5) was built from a 80
×80 mm plexiglass and machined with a PowerWASP EVO

3D printer (WASProject, Massalombarda, Italy), which has a
0.1 mm motion resolution.

The plate includes three groups of elements:

• Features, small drilled conical holes of 0.5 mm diameter
and depth. These details have high pixel intensity deriva-
tives along two orthogonal axes, which make them salient
visual features easily recognized and tracked by the ste-
reo camera’s corner-detector algorithm.

• Markers (or active-LEDs) are the elements fixed on the
corners of the plate (Fig. 3), tracked by CERTUS. A
rigid body or dynamic reference frame (DRF) {M} was
created with the markers using the 6D Architect soft-
ware (NDI, Ontario, Canada) and is recorded, instead of
the position of each single marker.

• Divots are 3 mm etched hemispherical holes with the
center coplanar to the plate’s DRF x y-plane, and are
used to calibrate the plate’s DRF {P} (Fig. 5) to the
markers’ DRF.

The relation between features tracked by the stereo cam-
era and markers tracked by CERTUS was inferred through
the plate layout. To avoid the marker localization error (dis-
tance between its true position and the layout position on the
plate’s DRF {P}) that depends on the fixation of each marker
to the plate, divot sockets were used to compute the transfor-
mation from {P} to the markers’ DRF, since divot positions
can be directly measured and they are in the x y-plane of {P}
like the features (cf., Sec. 4.A).

The nominal homogeneous coordinates (pi = [xi yi zi 1])
of divots in {P} are (in mm)

pND=
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A group of six features were selected to be tracked. The
nominal homogeneous coordinates of the chosen features in
the plate’s DRF {P} are (in mm)

pNF=
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10 5 0 0 0 0
0 0 10 5 −5 −10
0 0 0 0 0 0
1 1 1 1 1 1
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T

. (5)

4. METHODS

To assess the accuracy of the stereo vision system based
on the accuracy of the reference system, the transformation
between both tracking systems (OTC) and the transformation
between the tracked elements (DTF) must be known.

4.A. Plate calibration

Initially, a calibrated 4 Marker Digitizing Tool (Optotrak
CERTUS accessory, NDI) recorded the position of each divot

F. 4. External signals from CERTUS: (1) Oact is high while the markers’ 
positions are being recorded and (2) Oclk goes low for 1 µs with each 
acquisition of the marker’s positions. The input signal of the stereo camera 
Ctrg consists of a high-level pulse synchronous to the CERTUS clock (Oclk) 
when it is recording (Oact is high).



F. 5. Custom designed plate symmetrical along the x and y-axis of its dynamic reference frame, denominated {P}. Plate dimensions depicted with a “zoom
in” of the region with the six tracked features. The divots’ {D} and features’ DRF {F} are assigned to be coincident to the plate’s DRF {P}.

(pD) in the CERTUS’s static reference frame (SRF) {O},
following the order depicted in Fig. 5, from 1 to 8. The posi-
tion and orientation of the markers’ DRF in {O} was also
recorded (OTM). The divots’ positions in the markers’ DRF
(pD,M) were computed:

pD,M = (OTM)−1 ·pD. (6)

Taking advantage of the plate shape and to minimize the
divots’ localization error, pD,M were projected to a plane
fitted to them by least squares, and thus the projections of the
divots on that plane (pD,P) were computed.

Knowing pD,P and the markers’ DRF (OTM) in the CER-
TUS SRF {O}, we calculated the divots’ positions in {O},
pD,O, for each acquisition.

pD,O =
OTM ·pD,P. (7)

To simplify the notation, a reference frame was assigned
to PD,O to be coincident to plate DRF {P} (see Figs. 3 and 5).
The divots’ DRF {D} x-axis is denoted as dxx, y-axis as dyy,
and z-axis as dzz, and are unit vectors (d̂):

dxx=

G
*.
,

i
i=1,2,3,4

pD,O(i)−
j

j=5,6,7,8

pD,O( j)+/
-

(8)

d′yy=

G
*.
,

i
i=1,2,5,6

pD,O(i)−
j

j=3,4,7,8

pD,O( j)+/
-

(9)

dzz=dxx×d′yy (10)

dyy=dzz×dxx. (11)

The origin of the divots’ DRF (d0) is computed:

d0=
1
8

8
i=0

pD,O(i). (12)

Fig. 5). Likewise to the divots, a reference frame was as-
signed to pF coincident to the plate DRF {P} (see Figs. 3 and
5). Since {D} and {F} are assigned coincident to the {P},
the transformation between the tracked elements (DTF) is the
identity matrix,

DTF = I4. (13)

Being the DRF {F} x-axis denoted as fxx, y-axis as fyy and
z-axis as fzz, and being unit vectors (f̂)

fxx=
G

1
2
(pF(1)+pF(2))−pF(6)


(14)

f ′yy=
G

1
2
(pF(3)+pF(4))−pF(5)


(15)

fzz= fxx× f ′yy (16)

fyy= fzz× fxx. (17)

The origin of the features’ DRF (f0) is computed:

f0=
1
4

i
i=2,4,5,6

pF(i). (18)

With the divots’ {D} and features’ DRF {F}, at each syn-
chronous acquisition from the stereo camera and CERTUS,
we know the transformation from {D} to the CERTUS SRF
{O} - OTD - and the transformation from {F} to the stereo
camera SRF {C} - CTF (see Fig. 3).

4.B. Registration

To close the loop and compare both tracking systems, the
transformation from the stereo camera SRF to the CERTUS
SRF (OTC) was computed. The stereo camera and CERTUS
remained immobile during the whole test.

The plate was placed at ten different positions and orien-
tations, exploring the stereo camera depth of field and field

From a stereo camera acquisition, we got the position (pF) 
of the six selected features in the stereo camera SRF (see



T I. Test performed.

Static analysis Dynamic analysis

Number of sets 4 4
Acquisitions per set 10 10
Frames per acquisition 1 50

of view—keeping the features visible by the stereo camera
and the markers visible by the CERTUS. It means a plate
motion range volume of 0.05×0.05×0.1 m3 and a rotational
motion within 60◦ around the x and y-axis, and 360◦ around
the z-axis of the stereo camera’s SRF {C}. The plate motion
range will henceforth be referred to as, plate workspace.

For each plate position, a single snapshot acquisition was
recorded by both systems. In the end, we had ten DRFs of the
divots in the CERTUS’s SRF (OTD, i) and the ten correspond-
ing DRFs of the features in the stereo camera’s SRF (CTF, i).
As seen in Fig. 3, and given (13),

OTD, i =
OTC

CTF, i i = 1,. . ., 10. (19)

An adaptation to the algorithm presented in De Momi
et al.38,39 was applied to compute the OTC transformation,
which is expressed as six independent parameters: three for
translation (x,y , and z) and three for rotation. The itera-
tive algorithm is used to minimize the cost function F with
respect to the six translation and rotation unknowns, with
Levenberg–Marquardt optimization algorithm

F = ∥OT−1
D, i ·

OTC
CTF, i∥ i = 1,. . ., 10. (20)

In each iteration step, the translational and rotational pa-
rameters are computed against the translation and rotation
errors, which are scaled to the same order of magnitude.

4.C. Acquisitions

A static and a dynamic analysis were performed, and the
number of samples for each analysis is presented in Table I.
For both static and dynamic analysis, four sets of ten acqui-
sitions were recorded. In each static/dynamic set of acquisi-
tions, the plate was moved in different depths relative to the
stereo camera (see Fig. 6), within its workspace.

In a different study, we performed acquisitions on 12 drug
resistant epileptic patients and measured the craniotomy areas,
and obtained the distribution quartiles: Q25= 2107.62 mm2,
Q50= 2332.75 mm2, and Q75= 2552.12 mm2. Generally, the

craniotomy was ellipsoid in shape, but approximating to a cir-
cumference it leads to a craniotomy diameter between 50 and
60 mm. The SM25WI 2/3′′ lenses have an intrinsic angle field
of view of 20.1◦×15.1◦. At a distance of 40 cm, one camera
has a field of view of 141.78×106.03 mm and at 50 cm, the
camera field of view is 177.23×132.54 mm. Given that both
cameras field of view is as overlapped as possible, the distance
between the stereocamera and the surgical field was chosen in
order for the field of view to cover a typical craniotomy.

4.C.1. Static acquisitions

Likewise to the registration process (cf., Sec. 4.B), the plate
was placed at ten different positions and orientations within
the plate workspace. For each acquisition, one snapshot of the
plate is taken from the stereo camera (of features’ DRF) and
from CERTUS (of divots’ DRF), respectively, CTF and OTD.

4.C.2. Dynamic acquisitions

For each acquisition, the plate is manually moved within
its workspace and is tracked by both stereo camera and CER-
TUS for 5 s at 10 frames/s. Due to the velocity requirements
to track the cortical surface, we limited the linear and angular
speed of the plate during the test. The linear velocity norm
(referred as linear speed) and the angle from the “axis–angle
representation” of the plate motion throughout all acquisi-
tions have mean values of 5 mm/s and 1.471 deg/s and a
maximum value of 25 mm/s and 9.699 deg/s, respectively.

4.D. Data analysis

For each static and dynamic acquisition and according to
the registration from the stereo camera SRF to the CERTUS
SRF, an error matrix E was computed:

E= ∥OT−1
D,a ·

OTC
CTF,a∥ a = each acquisition. (21)

In both static and dynamic analysis, the translation error
ET is computed as the norm of the translation component of
the error matrix E:

ET =


x2+ y2+ z2. (22)

To represent the rotation error (ER), the angle from angle–axis
representation is used.

F. 6. Distance from the stereo camera at which the plate was tracked in each test set.



4.D.1. Static analysis

A nonparametric test (Kruskal–Wallis p < 0.05 and Bon-
ferroni correction) was performed to test whether the ste-
reo camera translation and rotation errors—with an immo-
bile target—are significantly different between each test set
(different regions of the depth of field).

4.D.2. Dynamic analysis

In the dynamic analysis, the tracking error was analyzed
as a function of the linear and angular speed of the plate (v
and ω). To the translation and rotation errors in each frame, it
is associated the linear and angular speed of the plate, based
on the CERTUS acquisitions.

Each “error-speed” measurement from each frame was
grouped according to the linear and angular speed of the plate
in three populations. The speed limits that define each pop-
ulation were assigned in order to keep the same number of
samples in each population. Thus, the error-speed measure-
ments for linear speed are grouped in (a) low linear speed
(v < 3), (b) medium linear speed (3 ≤ v ≤ 6) and high linear
speed (v > 6) mm/s. While the error-speed measurements for
angular speed are grouped in (a) low angular speed (ω < 0.5),
(b) medium angular speed (0.5 ≤ v ≤ 1.5) and high angular
speed (v > 1.5) deg/s.

A nonparametric test (Kruskal–Wallis p < 0.05 and Bon-
ferroni correction) was performed to test for the null hypoth-
esis that the error is significantly different for each population
of low, medium and high linear and angular speed, in all
depth of field.

5. RESULTS

T II. Registration residual errors.

x̄ σ max(x)

Translation (mm) X 0.131 0.096 0.331
Y 0.288 0.183 0.594
Z 0.162 0.105 0.349

Rotation (deg) α 0.497 0.293 1.078
β 0.552 0.324 0.948
γ 0.573 0.301 0.913

means that there is no statistically significant impact on the
error by detecting an object nearer or farther in the depth of
field.

As depicted in Fig. 8, the tracking error of the stereo cam-
era for all acquisitions is inferior to 2 mm and 2.5◦. The trans-
lation error median value is higher as the plate linear speed
increases. According to the nonparametric statistical test per-
formed, there is a significant difference in the translation error
when the plate is moving at a different linear speed.

The statistical test also rejects the null hypothesis that the
rotation error for different angular speeds fits the same distri-
bution. Although, there is no statistically significant differ-
ence in the distribution of the rotation error between low
and medium angular speeds, higher angular speed produces
significantly greater rotation errors.

(a)

(b)

F. 7. Static analysis—Detection error (translation and rotation component)
of an immobile object for each test set.

The plane fitting error is the Euclidean distance from the 
detected position to the plane projected position of the feature 
or divot. The divot plane fitting w as o nly p erformed once 
(cf., Sec. 4.A) and the errors present a mean, standard devi-
ation, and maximum for the eight divots of: 0.042, 0.030, 
and 0.089 mm. The feature plane fitting procedure was per-
formed in each frame of each acquisition, and presented a 
mean, standard deviation, and maximum error for the six fea-
tures of: 0.053, 0.039, and 0.193 mm. Given the shape of the 
features in the plate, there is an uncertainty of detection of
±0.25 mm.

The registration matrix OTC minimizes the function (20). 
The residual errors of the iterative registration method are 
computed from the error matrices of all calibration acquisi-
tions. The descriptive statistic analysis of these errors across 
all acquisitions is presented in Table II.

As shown in Fig. 7, the stereo camera detection error of 
an immobile plate across all frames is inferior to 0.6 mm 
and 1.6◦ (Fig. 7). The translation error between sets 2 and 4 
are significantly different (∗ means “populations significantly 
different”).

Besides the difference in sets 2 and 4, for the significance 
level of the nonparametric test performed, the null hypothesis 
was not rejected for either translation or rotation error, which



(a)

(b)

F. 8. Dynamic analysis—Tracking error of a moving object across all
test sets. Low, medium and high linear and angular speeds depicted in left
and right figures. Statistically significant difference of median translation
error among all angular speeds. Statistically significant difference of median
rotation error among all angular speeds, except between low and medium
angular speeds.

6. BRAIN DATA ACQUISITION

(a)

(b)

F. 9. Time and frequency analysis of brain motion in the three acquisitions,
25, 33, and 58 s. Left plots depict the displacement of the cloud of features’
center of mass throughout the acquisition. Continuous component of the sig-
nal was subtracted. Right plots represent the FFT analysis of the displacement
of the cloud of features’ center of mass.

cloud of features center of mass in each acquisition frame
was analyzed in the time and frequency domain, see Fig. 9.

The combined displacement of the cloud of features on
the brain surface is inferior 0.8 mm in all three acquisitions.
In the last acquisition frequency analysis (Fig. 9 acquisi-
tion 3), four peaks between 0 and 1 Hz are clearly visible.
The first peak between 0.03 and 0.05 Hz can be attributed
to pressure or temperature control (sympathovagal balance).
The second peak has the biggest displacement amplitude with
0.2 Hz and is caused by breathing. After 0.2 Hz, there are

For clinical data, three stereo image acquisitions were 
recorded from 53 yr old male patient, with cryptogenic epi-
lepsy, who underwent left antero-mesial temporal lobectomy. 
After the craniotomy, the stereo camera was positioned on a 
tripod at 40 cm from the skull opening and pitched 45◦ down-
ward to avoid touching the sterile drapes. Cortical surface 
motion was recorded in three videos of 25, 33, and 58 s at 
10 frames/s.

In each acquisition, features are selected from the brain 
surface salient visual points and their positions in the stereo 
camera’s SRF are tracked. In the first acquisition, 91 features 
were tracked, in the second video 99, and in the last video 
57. To account for brain motion, the combined motion of 
the cloud of features was considered rather than the motion 
of singular features. Occluded features are dropped from the 
analysis.

Due to the limited hard drive access time, some frames 
were not recorded. Using the timestamp of each frame (cf., 
Sec. 2), the missing frames were identified and a cubic inter-
polation method was applied to reconstruct signal of the posi-
tion of each feature along time. The displacement of the



breathing harmonics with lower amplitude, which are found
at integer multiples of the breathing frequency. A pronounced
peak at 1 Hz is coherent with the heart rate, and is caused by
the blood pressure variations. Comparing to the results pre-
sented by Ji et al.,33 both show respiration motion component
(around 0.2 Hz) as the major cause for brain motion followed
by the blood pressure variations component (around 1 Hz).

We also evaluated each features’ linear velocity norm
between acquisitions. The maximum registered speed was
1.119 mm/s with a mean and standard deviation of 0.184 and
0.137 mm/s, respectively. These features velocities fit the low
linear speed population of the dynamic validation analysis.

7. DISCUSSION

sensible compared to the maximum brain motion values re-
ported by Greitz et al.11 of 1.5 mm/s, both fit low linear speed
population of the dynamic validation analysis, which presents
a median linear error of 0.5 mm and the maximum 1.03 mm.

The stereo vision system was tested in the operating room.
Cameras were placed at a safe distance from the patient, and
three acquisition videos were acquired during 25, 33, and
58 s at 10 frames/s. The cortical pulsatile motion amplitude
quantified after the center of mass of the features was inferior
to 0.8 mm. Breathing is the largest contribution to cortical
brain motion amplitude with frequency of 0.2 Hz.

Due to the short duration of the video recordings, it was
not possible to quantify the brain shift. An integration of
the stereo vision system with the surgical equipment would
enable the quantification of brain shift and pulsatility, which
could potentially be applied into surgical field stabilization
and robotic motion compensation.

Tracking brain shift deformation, before the surgeons
perform brain resection, could benefit the intraoperative
functional mapping phase in which the surgeon stimulates
brain cortex. Although not reliable as 3D imaging techniques
like CT and MRI to measure the deformation of deep brain
structures,25 cortical surface information can be used by
biomechanical models to update the brain model displayed
on the navigation system. As further development, we plan
to incorporate a real-time volumetric deformation model that
extends the estimation of the deformation from the cortical
surface to brain deep structures.40 It will allow an easier
correlation between the functional and the anatomical map-
ping. Nonetheless, once the tissue is removed, the features
cannot be tracked anymore.

Another limitation is due to the possible interference of
the cameras to the surgeon movements on the operating field,
this could be solved using a microscope, with 3D cameras
option. Since this can be displaced during the surgical proce-
dure, it should be continuously tracked with an external local-
ization system.
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