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Abstract1

River networks define ecological corridors characterized by unidirectional stream-2

flow, which may impose downstream drift to aquatic organisms or affect their move-3

ment. Animals and plants manage to persist in riverine ecosystems, though, which4

in fact harbor high biological diversity. Here we study metapopulation persistence in5

river networks analyzing stage-structured populations that exploit different dispersal6

pathways, both along-stream and overland. Using stability analysis we derive a novel7

criterion for metapopulation persistence in arbitrarily complex landscapes described8

as spatial networks. We show how dendritic geometry and overland dispersal can pro-9

mote population persistence, and that their synergism provides an explanation for the10

so-called ‘drift paradox’. We also study the geography of the initial spread of a species11

and place it in the context of biological invasions. Applications concerning the persis-12

tence of stream salamanders in the Shenandoah river, and the spread of two invasive13

species in the Mississippi-Missouri are also discussed.14

1 Introduction15

Population persistence in riverine streams represents a long-standing issue in freshwater16

ecology (Speirs & Gurney, 2001; Lutscher et al., 2010). These ecosystems are in fact charac-17

terized by strong unidirectional water flow, which imposes downstream drift to the movement18

of aquatic organisms. In the absence of mechanisms allowing for upstream colonization, the19

persistence of riverine populations would hardly be possible. This ‘drift paradox’ is espe-20

cially relevant to non-sessile organisms with low self-propelled motion capacity, such as the21

larval stages typical of many freshwater species. To explain the long-term persistence of22

such populations several mechanisms have been proposed. As first empirically documented23

by Müller (1954) in Scandinavian freshwater ecosystems, many insect species compensate24

larval drift with upstream-directed flight of adults prior to oviposition (Müller’s colonization25
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cycle; see Müller, 1982). As an alternative explanation, Waters (1972) proposed an excess26

production hypothesis, in which drifting organisms are supposed to be those who exceed27

the balance of numbers at the local scale (thus implicitly assuming that drift represents an28

extra-mortality term). Also, hydrodynamic stream heterogeneities have been shown to cause29

organism retention in hydrodynamic in-flow refugia (e.g. Reynolds et al., 1991; Lancaster &30

Hildrew, 1993a,b).31

The passive movement of an aquatic organism in a river system mainly results from the32

combination of advection, as determined by the dominant uniform streamflow, and diffu-33

sion, as determined by local streamflow heterogeneities. Active movement, occurring via34

swimming, crawling or flying (either directly or through some dispersal vector) further in-35

creases macroscopic diffusion – in some cases becoming the predominant source of motion.36

These factors act within a distinctive landscape topology, usually characterized by a hier-37

archical branching geometry endowed with universal scaling features (Rodriguez-Iturbe &38

Rinaldo, 1997). Riverine ecosystems are in fact among the most representative examples of39

dendritic ecological networks (Peterson et al., 2013). Diffusive dispersal (Speirs & Gurney,40

2001; Pachepsky et al., 2005) and river network topology (Fagan, 2002; Campbell Grant,41

2011) have been recently proposed as key factors for the persistence of riverine populations.42

Topology is particularly important in constraining the dispersal of aquatic species lacking43

life stages that can disperse overland (Fagan, 2002). This mode of dispersal has been both44

theoretically postulated (Lutscher et al., 2005) and experimentally observed (Carrara et al.,45

2012) to facilitate the persistence of riverine populations. Dispersal can occur at different46

life stages, most frequently early in the life history of aquatic organisms. As an example, in47

a massive mark-recapture study (Campbell Grant et al., 2010) of two lungless salamander48

species in stream networks of Virginia, the newly metamorphosed (juvenile) salamanders49

had the highest probabilities of dispersing to other stream reaches, thus being the primary50

responsible for overland connections. While it is relatively common to find freshwater organ-51
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isms that begin their life cycle as motile and reach maturity as sessile (e.g. mussels), there52

are notable exceptions – as in the case of parasites with complex life cycles that involve53

intermediate hosts with low motility (e.g. snails) and final hosts with high motility (e.g.54

fish; see Blasco-Costa et al., 2012).55

Despite their importance, diffusive dispersal, landscape geometry, stage-dependent move-56

ment and exploitation of multiple dispersal pathways have not yet been analyzed together to57

yield a comprehensive description of the conditions leading to the persistence and spread of58

riverine populations. Classical approaches in fact include the analysis of reaction-advection-59

diffusion (Speirs & Gurney, 2001; Pachepsky et al., 2005), integro-differential (Lutscher et al.,60

2005) or integro-difference equations (Lutscher et al., 2010) in simple one-dimensional (1-D)61

landscapes. Dendritic geometries have been considered in simulation studies of individual-62

based models (Fagan, 2002; Campbell Grant, 2011) and in matrix population models applied63

to stage-structured populations in networks of habitat patches (Goldberg et al., 2010). This64

study is particularly interesting because it is devoted to the analysis of branching spatial65

structure and life history on the asymptotic growth rate of a riverine population – with clear66

implications for population persistence. Also, some analytical results for the persistence of67

a population subject to advection and diffusion on a tree graph have been provided recently68

by Ramirez (2012).69

Here, we use stability analysis to derive a spatially explicit persistence criterion for river-70

ine metapopulations. A technically similar approach has recently been used in an epidemio-71

logical context to determine invasion thresholds for pathogens of waterborne diseases (Gatto72

et al., 2012, 2013). We analyze a model network for a riverine metapopulation with two73

developmental stages (juveniles and adults) in which individuals are allowed to move ac-74

cording to multiple stage-dependent dispersal pathways, typically along the hydrological75

network and overland. We use the criterion to study the effects of contrasting geometries76

and different ecohydrological conditions on metapopulation persistence. We also analyze a77
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case study pertaining the persistence of a metapopulation of stream salamanders inhabiting78

the Shenandoah river (Virginia, US). As the conditions for metapopulation persistence in a79

river ecosystem correspond to those for species spread, we discuss how to use our framework80

in the context of biological invasions, for which the analysis of dispersal pathways is crucial81

to focusing mitigation and conservation efforts. To that end, we study retrospectively two82

recent biological invasions of a large fluvial system (namely, the spread of the zebra mussel83

and of the Asian carp in the Mississippi-Missouri river system, MMRS).84

2 Material and methods85

The model86

We consider a prototypical aquatic metapopulation living in a river network made of n87

nodes (Fig. 1a), each of which represents a river stretch where local ecological conditions are88

identical. We assume that the species has two ecologically distinct developmental stages, thus89

we split the population in young (non-reproductive) individuals (Y ) and adult (reproductive)90

individuals (A). Movement from node to node can occur through different pathways, either91

along the stream network or overland. Local demographic processes (birth, growth and92

death) and dispersal dynamics in each node i of the river network are described by the93

following system of 2n ordinary differential equations94

dYi
dt

= −MY (Yi, Ai)Yi − γYi +N (Yi, Ai)Ai −
NY∑
h=1

lh

(
Yi −

n∑
j=1

PhjiYj

)
dAi

dt
= −MA(Yi, Ai)Ai + γYi −

NA∑
k=1

mk

(
Ai −

n∑
j=1

QkjiAj

)
, (1)

where: MY (Yi, Ai) [MA(Yi, Ai)] is the (possibly) density-dependent per-capita mortality rate95

for juveniles [adults]; γ is the rate at which young individuals become adult (1/γ thus being96
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the average duration of the juvenile phase); N (Yi, Ai) is the (possibly) density-dependent97

natality rate of adults; lh [mk] is the rate at which young [adult] organisms undergo disper-98

sal along to the h-th [k-th] pathway (h = 1..NY [k = 1..NA] being the number of possible99

dispersal mechanisms for juveniles [adults]); and Phji [Qkji] is the fraction of young [adult] or-100

ganisms moving from node j to node i through the h-th [k-th] dispersal mechanism available101

to juveniles [adults]. We assume that the mortality [natality] rate is a monotonically increas-102

ing [decreasing] function of population density (∂MY,A/∂(Yi, Ai) ≥ 0, ∂N /∂(Yi, Ai) ≤ 0 for103

any i), i.e. that there is no depensation or Allee effect. Note that the assumption of spatial104

homogeneity of the parameters can be relaxed, and that the model can also be easily ex-105

tended to describe populations with more complex age/stage structures. A comprehensive106

list of mathematical symbol is reported in Table 1.107

Figure 1 and Table 1 about here108

Connectivity structures and dispersal mechanisms109

Dispersal probabilities Phji and Qkji depend on the connectivity structure provided by the110

environmental matrix and the dispersal mechanisms relevant to the metapopulation being111

investigated. As for connectivity, we consider three hypothetical network structures for112

theoretical analyses and two real river networks (the Shenandoah river and the MMRS)113

for more realistic case studies. The hypothetical networks considered here are a 1-D lattice114

(Fig. 1b), a deterministic fractal, namely a Peano construct (Fig. 1c) and a so-called Optimal115

Channel Network (OCN, Fig. 1d; Rodriguez-Iturbe & Rinaldo, 1997). While the lattice116

geometry clearly represents an oversimplification of real river networks (although widely117

used to study population persistence in riverine ecosystems; see e.g. Speirs & Gurney, 2001;118

Lutscher et al., 2005), Peano’s topological measures match closely those of real river networks.119

OCNs represent a further step forward, in that their topological and metric properties are120
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virtually undistinguishable from those of real river networks.121

As for dispersal pathways, the first and foremost mechanism to be considered in a riverine122

setting is along-stream aquatic dispersal, which may describe both hydrological drift and123

active movement along river corridors (see Appendix S1 in Supporting Information). Other124

mechanisms can be relevant to the dispersal of riverine populations as well. For instance,125

flying or human/animal-mediated transport processes (Wilson et al., 2009) could be only126

partially constrained by river network geometry and flow direction (see e.g. Collier & Smith,127

1998; Didham et al., 2012, for empirical evidence concerning insect flight), thus potentially128

providing aquatic organisms with suitable pathways for unbiased overland dispersal. This129

can be described by e.g. an exponential kernel (Hanski & Ovaskainen, 2000), but other,130

possibly ad hoc, mechanisms can obviously be introduced to describe dispersal in species-131

specific case studies.132

Dispersal probabilities are subsumed into connection matrices, namely Ph =
[
Phij

]
and133

Qk =
[
Qkij

]
. We assume that

∑n
j=1 Phij ≤ 1 and

∑n
j=1Qkij ≤ 1 for any i, h and k.134

Specifically, row-wise sums can be less than one in the presence of absorbing boundary135

conditions (see again Appendix S1) and/or costly dispersal (Casagrandi & Gatto, 1999),136

which both imply the non-conservation of the abundance of dispersing organisms. Finally,137

the union of the graphs associated with the matrices Ph and Qk is assumed to be strongly138

connected, so that it is always possible for the individuals of the focal species to find a path139

between any two nodes of the river network via the available dispersal pathways.140

Derivation of persistence conditions141

Irrespectively of parameter values, the state X0 characterized by Yi = 0 and Ai = 0 for142

any i is a global extinction equilibrium for model (1). In the absence of an Allee effect,143

metapopulation persistence is related to the stability of this equilibrium. In fact, if X0 is144

stable the population cannot persist in any of the river network nodes. On the contrary, if145
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X0 is unstable, juvenile and adult abundances, even if initially small, are expected to grow146

– thus granting metapopulation persistence. The condition for the extinction equilibrium147

to switch from stable to unstable is that the Jacobian matrix J of system (1) linearized148

at X0 has one zero eigenvalue. Population persistence can thus be assessed by analyzing149

how the eigenvalues of J vary with model parameters, connectivity structures and dispersal150

mechanisms.151

Spatial patterns of species spread152

In our framework, the condition under which a species can invade a river network corre-153

sponds to that for metapopulation persistence. As such, if the global extinction equilibrium154

is unstable, the dominant eigenvector of matrix J pinpoints the direction in the state space155

along which the system trajectories, after a transient period due to initial conditions, will156

diverge from the equilibrium. Specifically, the components of the leading eigenvector cor-157

respond to the evolving abundances of young or adult individuals in different locations of158

the river network. The analysis of the dominant eigenvector of the Jacobian of system (1)159

evaluated at X0 is thus key to understanding the early spatial patterns of species spread,160

and can thus be useful – at least from a qualitative perspective – to study the geography of161

aquatic invasions in riverine ecosystems.162

3 Results163

A spatially explicit persistence criterion164

As detaild in Appendix S2, the stability switch of the extinction equilibrium corresponds to

the condition det (In − J?) = 0, where J? is a matrix of size n, deducible from the 2n-sized
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Jacobian J of (1), defined as

J? = R0In +
1

µY + γ

NY∑
h=1

lh
(
Ph

T − In
)

+
1

µA

NA∑
k=1

mk

(
Qk

T − In
)

+

− 1

µA(µY + γ)

NY∑
h=1

lh
(
Ph

T − In
) NA∑

k=1

mk

(
Qk

T − In
)
. (2)

In the previous expression, R0 = νγ/µA/(µY + γ) is the quantity controlling population165

persistence in a non-spatial setting and can be interpreted as the average number of daughters166

successfully reaching maturity generated by one mother during her entire lifetime. The167

condition for an isolated population to persist is thus R0 > 1. In the presence of dispersal,168

instead, metapopulation persistence is determined by the dominant eigenvalue λmax(J?).169

Specifically, the persistence-extinction boundary (i.e. the curve or surface in the system170

parameter space that separates parameter combinations corresponding to metapopulation171

extinction from those corresponding to persistence; Casagrandi & Gatto, 1999) is given by172

the condition173

E0 = λmax(J?) > 1 . (3)

In other words, the occasional introduction of some individuals in some network nodes results174

in a successful colonization if (and only if) E0 > 1. In this case, the assumption of strong175

connectivity made above implies that persistence is granted in all the network nodes.176

Criterion (3), shows that not only local demographic processes (first term in the right-177

hand side of eq. (2)), but also average net immigration from connected sites (second and178

third terms) is relevant to the persistence of riverine metapopulations. It also shows that the179

intertwining between different dispersal pathways may have nontrivial effects on metapop-180

ulation persistence or extinction (last term in the right-hand side of eq. (2)). As a matter181

of fact, the persistence condition is based on the dominant eigenvalue of J?, which is not182

simply deducible from R0 and the eigenvalues of matrices Ph and Qk. Note that, close to the183
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persistence-extinction boundary, E0 also sets a timescale for metapopulation dynamics and,184

in particular, for metapopulation extinction (see again Appendix S2). Criterion (3) can be185

extended to account for spatial heterogeneities in the model parameters whenever relevant186

for the underlying ecological processes (Appendix S3).187

The role of network structure and dispersal pathways188

As a basic test case to study persistence in a river network, we have analyzed a population in189

which adults are sessile and juveniles are subject to drift/operate along-stream dispersal (l1 >190

0, lh = 0 for any h > 1, mk = 0 for any k, P1 = F, with F being the hydrological connection191

matrix; see Appendix S1). Fig. 2a (gray lines) shows that high values of along-stream192

dispersal and bias are always detrimental to species persistence, and that network topology193

remarkably influences the fate of the metapopulation. Specifically, more complex networks194

(Peano, OCN) favor metapopulation persistence compared to simpler geometries (lattice)195

with the same backbone length. Quite interestingly, the largest relative differences emerging196

from the three contrasting topologies are found for high dispersal rates and low values of197

the transport bias. In these conditions, along-stream movement is significantly influenced198

by geomorphological dispersion, i.e. by the intertwining of hydrodynamic dispersion within199

individual reaches and the morphology of the network structure (Rinaldo et al., 1991).200

Figure 2 about here201

Changes in the flow regime can obviously affect the persistence of metapopulation dispers-202

ing through water pathways. Fig. 2b (gray lines) shows that the metapopulations that cannot203

compensate higher bias of aquatic dispersal with higher natality are doomed to extinction204

– i.e. that downstream drift reduces metapopulation capacity (sensu Hanski & Ovaskainen,205

2002). Close to the persistence-extinction boundary the dynamics of the metapopulation206

is very slow, because E0 ≈ 1 (and λmax(J) ≈ 0). Therefore, extinctions may occur over207
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long (yet still ecological) timescales depending on the distance from the bifurcation curve208

characterized by E0 = 1. This delay generates an extinction debt (sensu Tilman et al.,209

1994). As an example, the model predicts extinction for all the parameter settings lying210

below the persistence-extinction boundaries in Fig. 2b – yet in the light-gray-shaded regions211

metapopulation extinction will take more than 10 years, approximately corresponding to212

10 generation times for the population under study (see again Appendix S2).213

To analyze how different dispersal pathways can influence metapopulation persistence,214

we have studied populations in which juveniles disperse not only along the hydrological215

network but also overland (l1 > 0, l2 > 0, lh = 0 for any h > 2, mk = 0 for any k,216

P1 = F, P2 = G, with G being the connection matrix describing overland isotropic dispersal217

with characteristic dispersal length D; see Appendix S1). Figs. 2a and 2b (black lines)218

show that overland dispersal can remarkably benefit riverine metapopulation persistence,219

in particular for high values of the bias of along-stream dispersal. Under these conditions,220

corresponding in fact to advection-dominated environments, overland dispersal can provide221

riverine populations with an effective mean of upstream propagation, thus mitigating the222

downstream drift imposed to offspring and juveniles by passive hydrological transport. These223

results hold qualitatively for all the considered network topologies (not necessarily riverine;224

see Appendix S4 for some examples of 2-D lattice geometries). However, it is apparent that225

topological complexity and the multiplicity of dispersal pathways operate synergistically (last226

term in eq. (2)), thus greatly favoring the persistence of metapopulation inhabiting complex227

river networks (Fig. 2c). The effects of this synergism are very robust not only to changes228

of the demographic rates, but also to variations in the exploitation of different dispersal229

pathways in relation to specific life histories (Appendix S5).230

One might wonder whether enhanced persistence due to the superimposition of different231

dispersal pathways is simply due to higher overall (i.e. along-stream + overland) dispersal.232

We have thus repeated some of the analyses above considering different dispersal strategies,233

11



defined as the combination of overland and aquatic dispersal operated by a population.234

Specifically, we assume that a fraction φ of the total movement rate K is allocated to overland235

movement, while the remaining fraction 1 − φ is allocated to water-mediated dispersal.236

Fig. 2d reports a systematic exploration of the parameter space (K,φ), each point of which237

represents a different dispersal strategy, and shows that even relatively small fractions of238

total movement rate allocated to overland dispersal are sufficient to guarantee persistence.239

The exploitation of alternative dispersal pathways (specifically, of overland dispersal) can240

thus remarkably affect the fate of a population subject to downstream drift in a riverine241

ecosystem.242

Persistence of an amphibian metapopulation in a river system243

The framework presented above can be adapted to study the persistence of a real metapopu-244

lation in a river network. As a proof of concept, here we study the fate of a metapopulation245

of stream salamanders in the Shenandoah river network (Virginia, US; Fig. 3a). Model (1)246

has been parameterized with demographic (Organ, 1961) and dispersal (Campbell Grant247

et al., 2010) data relative to the salamander species Desmognathus fuscus and D. monti-248

cola (technical details in Appendix S6). The juveniles of these two amphibian species can249

move both along stream corridors and overland, while larvae and adults are almost sessile.250

Quite interestingly, juveniles’ along-stream dispersal is known to be biased towards upstream251

sites in the river network. Despite the ongoing decline of amphibian abundances worldwide,252

populations of stream salamanders in Eastern North America are reportedly stable – an253

observation that has been linked to their ability to exploit multiple dispersal pathways (see254

again Campbell Grant et al., 2010).255

Our analysis shows that if the cost of dispersal (here defined as the fraction of individuals256

that disperse outside their suitable habitat) is negligible, both along-stream (low εs) and257

overland (low εo), then the salamander metapopulation is predicted to persist (E0 � 1).258
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However, for increasing values of the cost of dispersal (possibly due to the alteration of the259

habitat template), the metapopulation can cross the persistence-extinction boundary, and260

can thus be doomed to extinction (Fig. 3b). It is also possible to test the sensitivity of E0261

to changes of the model parameters. Besides expected positive [negative] effects of increased262

natality ν [mortality µY and µA] on E0, increasing levels of overland dispersal l2 can promote263

metapopulation persistence (as suggested by Campbell Grant et al., 2010), provided that the264

cost of overland movement is lower than that of along-stream dispersal. E0 can actually peak265

for intermediate values of the overland dispersal rate (as in Fig. 3c), a result that mirrors the266

intermediate dispersal principle of metapopulation ecology (e.g. Casagrandi & Gatto, 1999,267

2006).268

Figure 3 about here269

The geography of riverine biological invasions270

The dominant eigenvector of the linearized model nearby extinction is a synthetic spatial271

indicator of the initial spread of a riverine population, not only in theoretical settings (as in272

Appendix S7) but also in real applications, as it turns out by adapting model (1) to qual-273

itatively describe two paradigmatic examples of biological invasion recorded in the MMRS274

(Fig. 4a). Here we report the results for the first example only (the zebra mussel colonization275

of the MMRS; technical details in Appendix S8), while the second example (the Asian carp276

invasion of the MMRS) is discussed in Appendix S9.277

The zebra mussel (Dreissena polymorpha), a freshwater bivalve native to Eurasia, invaded278

the Great Lakes region in the late 1980’s and rapidly spread across North America inland279

waters (e.g. Strayer, 2009, see also panels b and c of Fig. 4). The main vectors of species280

dispersal during the early phase of the invasion were hydrological transport of larvae (the281

so-called ‘veligers’) and long-distance port-to-port veliger dispersal because of inland com-282

13



mercial navigation (Mari et al., 2011). The veligers may in fact be shipped within the ballast283

water of commercial vessels, thus allowing the species to disperse over very long distances284

and to colonize stretches of the river network that could not have been reached otherwise.285

Figure 4 about here286

We have parameterized model (1) to describe zebra mussel invasion dynamics (Casagrandi287

et al., 2007; Mari et al., 2009, 2011), namely by considering sessile adults and a juvenile stage288

during which veligers can undergo dispersal through hydrological transport and port-to-port289

relocation (described by a port-to-port connectivity matrix Γ with characteristic dispersal290

distance ∆; see Appendix S8). The resulting value of E0 � 1 implies that the zebra mussel291

can persist and spread in the MMRS (as indeed observed; note that a high value of E0292

corresponds to a great risk of invasion). The dominant eigenvector of the linearized model293

computed under these hypotheses turns out to be a satisfactory qualitative indicator of the294

risk of mussel spread in the early phase of the invasion (Fig. 4d). Interestingly, the dominant295

eigenvector of matrix J correctly predicts the widespread occurrence of zebra mussel colonies296

throughout the MMRS, not only in the Upper and Lower Mississippi, but also in the lower297

course of the Missouri river, as well as in the Ohio river – i.e. in the rivers where most298

of the largest MMRS commercial ports are located (see also Fig. 2a in Mari et al., 2011).299

Numerical experiments suggest that the dominant eigenvector of matrix J is also rather a300

robust descriptor of the spatial patterns of early population spread, even in the presence of301

non-negligible uncertainty in the model parameters (see again Appendix S7).302

4 Discussion303

In this work we have proposed a novel way to determine conditions for population persistence304

and spread in a river network. Our study has shown that metapopulation persistence is305
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determined by complex interactions between network geometry and dispersal mechanisms –306

among which along-stream movement plays a prominent role in fluvial settings. In particular,307

we have shown that a dendritic geometry does enhance metapopulation persistence in a river308

network. This result echoes recent theoretical and experimental findings that have linked309

dendritic topologies to long species persistence times and high local biodiversity (e.g. when310

compared to 2-D landscapes; Bertuzzo et al., 2011; Carrara et al., 2012; Suweis et al., 2012;311

Altermatt, 2013). Our work has also formally confirmed that overland dispersal can favor312

metapopulation persistence, especially (but not only) for species subject to hydrological313

drift. Moreover, extra-range dispersal, i.e. the movement of organisms from the current314

range to a new area of suitable habitat (e.g. Wilson et al., 2009), is expected to influence315

both metapopulation persistence and spatiotemporal invasion patterns, as indeed found in316

the zebra mussel invasion of the MMRS. We can thus conclude that diffusive dispersal,317

landscape geometry, and exploitation of multiple dispersal pathways may offer a multifaceted318

solution of the ‘drift paradox’ for riverine populations. More in general, our work shows that319

these ingredients are key to understanding metapopulation persistence in realistic (or even320

real) landscapes.321

Although derived in the context of river systems, the persistence criterion proposed in322

this work can be adapted to populations living in different ecosystems, possibly character-323

ized by high levels of spatial complexity. As an example, an interesting application would324

be the analysis of 2-D lattice geometries, which would allow to address the study of per-325

sistence conditions for terrestrial metapopulations. Preliminary explorations (Appendix S4)326

confirm that, also in 2-D lattices, metapopulation persistence is deeply related to the con-327

nectivity of the underlying environmental matrix, as well as to the dispersal mechanisms328

relevant to the metapopulation. The flexibility of our tools is essentially granted by the329

multi-layer network framework (Mari et al., 2011), which generalizes previous network-based330

approaches in metapopulation ecology (e.g. Hanski & Ovaskainen, 2000) and allows a hier-331
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archical description of the interactions between ecological and spatial dynamics at different332

level of organizational complexity. In addition, our mathematical framework can be readily333

applied to real case studies whenever there is sufficient information on the focal species to: i)334

formalize a demographic model for its local-scale dynamics; ii) identify the underlying envi-335

ronmental matrix constituting its habitat (such as river stretches in a fluvial system, patches336

in a fragmented forest, etc.); iii) sort out its main dispersal pathways (e.g. Appendices 6,337

8 and 9). In the absence of detailed information on the dynamics of the focal population338

(which is often the case for endangered species), scaling relations could assist in the defini-339

tion of its demographic parameters (Marquet et al., 2005). The model can then guide the340

analysis of persistence conditions for metapopulations living in realistic ecosystems, possibly341

subject to habitat alterations.342

Human activities represent a main driver for such alterations. Damming, for instance,343

is usually cited as a primary threat to the integrity of riverine habitats (see e.g. Allan &344

Castillo, 2007). From an ecological perspective, one of the main effects of damming (in345

addition to changes of water quality and assemblage composition) is that of reducing along-346

stream dispersal and migration, especially in the upstream direction. This would in turn347

entail a highly biased hydrological dispersal. Our analysis has shown that increasing bias348

could reduce metapopulation capacity (Hanski & Ovaskainen, 2002), i.e. it could doom to349

extinction species that rely on aquatic dispersal and that cannot compensate higher drift350

with higher natality. In contrast, species that can disperse overland at some specific life351

stage are predicted to be more resilient to environmental changes, such as alterations of the352

flow regime or habitat fragmentation. Extinction debts and average times to metapopulation353

extinction (also known as relaxation times; see e.g. Tilman et al., 1994; Hanski & Ovaskainen,354

2002; Kuussaari et al., 2009; Hylander & Ehrlén, 2013) can also be quantified through the355

analysis of persistence-extinction boundaries.356

The presented framework could obviously be made even more realistic in many respects.357

16



In its present form, for instance, it does not account for the possible temporal variability of358

the environmental conditions which, however, has already been proposed – along with spatial359

heterogeneity – as an important factor for population persistence in advective environments360

(e.g. Speirs & Gurney, 2001; Lutscher et al., 2006; Lutscher & Seo, 2011). Incorporating361

spatial heterogeneity in the model parameters is relatively straightforward and does bear362

major changes to our derivation of persistence conditions – although the algebra required is363

rather involved (Appendix S3). On the contrary, adding seasonal variability would demand364

a considerably more elaborated mathematical treatment, possibly relying on Floquet (e.g.365

Klausmeier, 2008) or Lyapunov exponents (e.g. Ferrière & Gatto, 1995). Another aspect366

that certainly deserves future investigations is demographic stochasticity, that has already367

been shown to play an important role for metapopulations dynamics close to the extinction368

threshold (e.g. Casagrandi & Gatto, 1999, 2006).369

Despite its limitations, the theoretical framework used to derive persistence conditions370

(i.e. the stability analysis of an ordinary differential equation network model) can be applied371

to study other ecological problems. We envisage that similar persistence criteria could in372

fact be usefully applied to design natural reserves aimed at preserving ecologically important373

species, as already proposed for marine protected areas (White et al., 2010; Aiken & Navar-374

rete, 2011) and fragmented landscapes (Hanski & Ovaskainen, 2000). In these cases, too,375

metapopulation persistence can be established by properly accounting for the relevant spatial376

interactions and studying the conditions under which the extinction equilibrium changes its377

stability properties. Eigenvector analysis could then assist in designing spatially-calibrated378

conservation efforts. In an even broader perspective, extending our framework to interacting379

functional groups would allow to study persistence of aquatic metacommunities (rather than380

metapopulations). With functional diversity being tightly related to ecosystem functioning381

and services (Naeem et al., 2012), achieving a better understanding of how we can preserve382

it through suitably targeted actions would certainly represent a major accomplishment for383
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current conservation ecology.384
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Tables553

Table 1: Mathematical symbols used in the text and their definitions.

Symbol Definition
State variables

Yi Abundance of juveniles in node i
Ai Abundance of adults in node i

Network geometry
n Number of nodes in the network
nb Number of nodes in the network backbone
Lb Length of the network backbone

Demographic parameters
MY Density-dependent mortality rate of juveniles
µY Mortality rate of adults at low population density
MA Density-dependent mortality rate of adults
µA Mortality rate of adults at low population density
N Density-dependent natality rate
ν Natality rate at low population density
γ Rate at which juveniles reach maturity

Dispersal parameters
NY Number of dispersal pathways available to juveniles
lh Dispersal rate of juveniles along the h-th pathway
Ph Connectivity matrix for the h-th juveniles’ dispersal pathway
NA Number of dispersal pathways available to adult individuals
mk Dispersal rate of adults along the k-th pathway
Qk Connectivity matrix for the k-th adults’ dispersal pathway

Persistence criterion
X0 Extinction equilibrium
In Identity matrix of size n
R0 Reproduction number
J Jacobian matrix of size 2n associated with model (1) (Appendix S2)
J? Matrix of size n deducible from J (Appendix S2)
E0 Dominant eigenvalue of matrix J? (Appendix S2)

Figure 2
l1 Juveniles’ along-stream dispersal rate
F Hydrological connectivity matrix (Appendix S1)
b Bias of along-stream dispersal (Appendix S1)
l2 Juveniles’ overland dispersal rate
G Connectivity matrix for overland dispersal (Appendix S1)
D Average distance of the overland dispersal kernel (Appendix S1)
K Total movement rate
φ Fraction of the total movement rate allocated to overland dispersal

Case studies
N Connectivity matrix for salamanders’ overland dispersal (Appendix S6)
εs Cost of salamanders’ along-stream dispersal (Appendix S6)
εo Cost of salamanders’ overland dispersal (Appendix S6)
Γ Port-to-port veligers’ connectivity matrix (Appendix S8)
∆ Average distance of veligers’ port-to-port dispersal (Appendix S8)
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Figure legends554

Figure 1. Schematic representation of the model metapopulation and theoretical river555

networks used in numerical analyses. (a) A hypothetical sketch of our multi-layer network556

model (1); hydrological connections (in the example involving juveniles only) are in light gray,557

while overland connections (in the example adults only) are represented as dashed arrows.558

(b–d) Different river network topologies; the backbone of each hydrological network has the559

same number of nodes (nb = 33) and the same arbitrary length (Lb = 33) independently of560

topology, and is indicated by the white-filled nodes (the southmost node being the network561

outlet).562

Figure 2. Persistence conditions for populations with sessile adults and juveniles dispersing563

via water and overland. Metapopulation persists for parameter combinations below (a)564

[above (b–d)] the persistence-extinction boundaries (E0 = 1 contour lines, gray and black565

curves). All rates in year−1. (a) Effect of aquatic dispersal parameters without (gray, l2 = 0)566

[with (black, l2 = 5)] overland dispersal. (b) Effect of transport and demographic parameters567

in an OCN without (gray) [with (black)] overland dispersal; gray-shaded areas indicate568

extinction debts longer than 10 years. (c) Effect of overland dispersal parameters (l1 = 400,569

b = 0.9). (d) Effect of dispersal strategies (l1 = (1−φ)K, b = 0.8, l2 = φK, with K = l1+l2).570

Other parameters: ν = 25, γ = 1, µA = 1, µY = 5, P1 = F, P2 = G, D = 0.1, lh = 0 for571

any h > 2, mk = 0 for any k.572

Figure 3. Persistence of stream salamanders in the Shenandoah river network (Virginia,573

US). (a) River network geometry; inset: Desmognathus monticola (from USGS). (b) Effect574

of dispersal cost on population persistence. (c) Sensitivity of E0 to variations of the model575

parameters. Parameters: ν = 3.9 juveniles adult−1 year−1, γ = 0.25, µY = 0.40, µA = 0.92,576

l1 = 1.58, P1 = F, b = −0.49, l2 = 1.04, P2 = N, lh = 0 for h > 2, mk = 0 for any k. All577

rates in year−1. See Appendix S6 for details on the parameterization of the model.578
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Figure 4. Zebra mussel invasion of the MMRS. (a) River network geometry and localization579

in the conterminous USA. (b) Fraction of hydrological units (DTAs) invaded by D. polymor-580

pha (inset, from USGS). (c) Spatial occurrence of zebra mussels during the initial phase of581

the invasion (red in b). (d) Normalized components (adult individuals) of the dominant582

eigenvector of J. Parameters: ν = 106 larvae adult−1 year−1, γ = 26, µY = 120, µA = 0.33,583

l1 = 180, P1 = F, b = 0.8, l2 = 3.6, P2 = Γ, ∆ = 0.2, lh = 0 for h > 2, mk = 0 for any k.584

All rates in year−1. Parameters have been chosen to reproduce the basic timescales of zebra585

mussels’ lifecycle (Appendix S8).586
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