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I. INTRODUCTION AND MOTIVATION

N the last years, the automotive industry has looked for in-
I novative brake-by-wire (BBW) solutions: This to increase
the vehicle performance and safety. The possibility of smoothly
and precisely applying a desired braking torque is at the ba-
sis of many vehicle dynamics control [1]-[7] and autonomous
vehicles.

Different technological solutions have been proposed: the
electrohydraulic one (EHB) is based on a hydraulic system,
which is activated by an electric motor or pump controlled by
an electronic unit [8]-[11]. The electromechanical brake (EMB)
solution does not have the hydraulic part but there is an electric
motor as actuator that provides the braking torque [12]-[14]. A
particular EMB technology is known as wedge brake, where an
electric motor controls the force on a wedge that pushes back-
ward and forward the braking pads [15], [16]. In this paper, we
consider a modified EHB solution first presented in [17]-[19]:
an electromechanical actuator that pushes backward and for-
ward the piston of a master cylinder connected to a traditional
hydraulic brake. Compared to well-known EMB and EHB solu-
tions, this one has the advantage to keep the usual hydraulic lay-
out adding just the actuator. This saves weight, space, and cost.
With this architecture, the actuator control problem consists in
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tracking a desired pressure reference. As shown later on, the
control problem is made nontrivial by the nonlinearities of the
system (friction, presence of the brake fluid reservoir, tempera-
ture variation, and oil compressibility) and by the very demand-
ing performance specifications. The BBW system is designed
for racing application, where it is indispensable to have band-
width greater than 10 Hz, no overshoot and good robustness.
For technological constraints, at the end of the braking event
the master cylinder piston must retract before the brake reser-
voir inlet so that a proper fluid compensation can be achieved.
As discussed in the sequel, this introduces a nonlinearity in the
system to be controlled. Furthermore, the control law must be
robust to the so-called knock-off. In racing applications, at times,
the brake disk pushes back the pads at the end of the braking
event. This leads to a variation in the position-pressure charac-
teristic: during the following braking action, the master cylinder
must move further than in the previous one. Then, after this
anomalous braking event, the system returns to the normal be-
havior. This happens in traditional brake too. Professional pilots
feel the knock-off from the return force on the lever, and once
detected, they compensate it by pressing the brake lever more.

To the best of the authors’ knowledge, there are no other ex-
ample of control of EHB for motorcycles, except for authors’
previous works. The authors in [19] showed the need of a more
complex controller than a simple linear pressure controller: the
closed-loop response with a direct pressure controller shows a
big overshoot that prevents its usage in this application. In [17],
the issue is addressed by simply avoiding to completely retract
the piston. In this way, a good pressure tracking performance is
achieved at the cost of the risk of not compensating fluid vol-
ume changes. Moreover, a small pressure is always applied to the
brake pads: This causes a loss of energy and a continuous brake
pad wear. In [18] and [19], a hybrid position—pressure switch-
ing control strategy has been proposed, in this way, through the
position control, it is possible to compensate the fluid volume
variation at the end of each braking event. The main problem
of such an architecture is that in the first phase of the braking
action—when the position controller is enabled—the pressure
is not directly controlled. So, if there is a small error in the
identified position—pressure map, the control performances are
affected. Moreover, the architecture proposed in [18] and [19]
suffers from robustness issues.

In this paper, the aforementioned shortcomings are addressed
by an adaptive cascade control architecture, which guarantees
the required performance and improves robustness with respect
to external disturbances. Also, experimental results that prove
the effectiveness of the control law are presented.



TABLE I
ELECTROMECHANICAL BBW ACTUATOR (DC MOTOR, TRANSMISSION
AND MECHANICAL FRAME) GENERAL SPECIFICATIONS

Weight 950 g

Height 42 mm
Length 105 mm
Width 75 mm

Motor Power 200 w
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Fig. 1. Schematic representation of the BBW system.

This paper is structured as follow: in Section II, there is a
brief description of the system, in Section III, a control-oriented
model is derived; analyzing it, a cascade position—pressure con-
trol architecture is proposed. In Section IV, a gray-box iden-
tification method is adopted to derive the system model that
is then used to tune the pressure and position loops. Since the
pressure control law is nonlinear and time varying, a stability
analysis is performed (see Section V). Finally, Section VI shows
experimental results and Section VII the conclusions.

II. SYSTEM DESCRIPTION

The BBW system here considered is composed of an elec-
tromechanical actuator mechanically connected to a traditional
hydraulic brake; in Table I, the BBW actuator general specifica-
tions are listed. Fig. 1 shows a schematic representation of the
system.

The main components are as follows.

1) Brake lever: The pilot generates the reference pressure

through it.

2) BBW actuator: An electronic control unit controls a dc
motor that moves the master cylinder forward and back-
ward through a mechanical transmission. In particular, the
electronic board has a power bridge able to apply a volt-
age v on the motor clamps. The motor control is done
through a current loop with a 100 — Hz bandwidth. The
motor spinning is transformed into a linear movement by
means of a mechanical transmission. The actuator has a
return spring that pushes the master cylinder backwards
when no force is applied.

3) Hydraulic brake: The master cylinder piston movement
varies the pressure in the hydraulic pump, that, through
the pipe, is transmitted to the brake caliper. An important
part of this subsystem is the brake reservoir: at the end of
each braking event, the master cylinder piston must retract
before the brake reservoir holes. In this way, the system
compensates fluid volume variation due to temperature
and brake pad wear.

4) Mechanical brake: Depending on the pressure in the brake
caliper, the brake pads push against the brake disk, gener-
ating the braking torque.

The aim of this study is to find a control law that tracks the
desired pressure. Available measures are the linear position of
the master cylinder piston (x), the pressure in the hydraulic part
(p), and the motor current (/). By convention, x = 0 mm is
when the master cylinder is completed retracted and as it moves
forward, x increases.

The pressure control law is implemented on a real-time mi-
croprocessor with a 200-Hz sample frequency.

III. SYSTEM MODELING

Starting from the physical elements composing the BBW ac-
tuator, the complete model can be derived [17], [18]. Instead, in
this study, a control-oriented model is presented, its lineariza-
tion in different working points gives considerations that lead to
the control architecture here presented.

Consider the following assumptions:

1) thanks to the presence of the motor current loop, which is
an order of magnitude faster than the pressure dynamics,
the electrical dynamics can be discarded. Therefore, the
current is considered as the control variable;

2) the pressure in the master cylinder and the pressure in the
brake caliper are the same. In other words, we neglect the
pressure wave propagation dynamics (the first resonance
mode is usually around hundreds of hertz);

3) the amount of fluid volume in the system is not influenced
by master cylinder position changes;

4) the static Coulomb friction is disregarded. This can be
done if a dithering signal is applied to the control variable
([18]-[20]) or if a suitable friction compensation tech-
nique is applied ([21]-[23]). Under this assumption, we
consider just the viscous friction contribution.

It is then possible to derive a second-order control-oriented
model.

Moqi' + Kdan1pj3 + Kspringx +p(x)Amc = chq (1)

where

1) M. represents the mechanical inertial force and it can
be computed as Moq = Mpist + Jmot /K2, where Mg is
the master cylinder piston mass, Jy, . is the motor moment
of inertia, and K is the transmission ratio;

2) Kjamp® represents the damping force (due to viscous
friction) and in general, it is unknown;

3) Kpring® represents the return spring force;

4) p(xz)Ap. represents the return force due to the pressure in
the master cylinder;



TABLE II
BBW COMPONENTS PHYSICAL PARAMETERS

Mpist 1073 kg
Jmot 1.37107° kg/m?
Ane 1.1310°* m?
Krp 0.0168 Nm/A
K 0.303610%°  m/rad
Ks‘pxing 3000 N/Hl
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Fig. 2. Master cylinder position and pressure relationship with new and wore
braking pads.

5) iQ.q represents the equivalent force applied by the motor
to the master cylinder piston and can be computed as
Kr /K, where K is the motor torque constant.

The model parameters are listed Table II. Note that they can
be found from the BBW physical components, the only un-
known parameter is Kamp,. In order to model the relationship
between position and pressure, we exploit the quasi-static ex-
perimental response of the system when an increasing current
ramp followed by a decreasing one is applied, depicted in Fig. 2
(0OA — 10A in 30 s, then 10A — OA in 30 s). This is a
nonlinear static map.

The position—pressure map can be divided in two different
zones (see Fig. 2): in the dead zone, where the master cylinder
is before the brake reservoir, the piston moves with no pressure
variation. The dead zone is not affected by temperature and
brake pad wear. The second part of the position—pressure curve
is the operative zone; the master cylinder is after the brake
reservoir and a position increment corresponds to a pressure
increment. This part of the position—pressure curve is strongly
affected by temperature and brake pads wear. Note that the
position—pressure map depicted in Fig. 2 presents an hysteresis:
The average curve is considered for modeling purpose. The
position—pressure curve introduces a time varying nonlinearity
in the model (1), as it changes with temperature and pads wear.

The linearized model allows for a quantification of the effect
of the nonlinearity. Two different dynamics are analyzed: the
current-to-position dynamics and the current-to-pressure one.
Consider the linearized model

Mcq(sj + Kdampéfb + Kspring(sx + Amcp,(g_;)(sx = (%ch
2

where

p(z)= 3)

is the slope of the pressure—position map in the working point
(). The transfer function between current and position is

Qeq
MeqSQ + Kdamps + Anlcp/ (j:)
where K ing has been considered negligible compared to

Apcp (Z). From (4), it can be seen that:
1) the low-frequency gain is

Gals) = @)

. Qeq
lim G, (s) = ——— 5
I Ga(s) = 5@ ©
thus, it decreases as the working position increases.
2) the high-frequency gain is
. Qeq
m Gols) = 3752 ©

which is independent from the working point.
Also, by recalling the linearized link dp = p (Z)dz, the trans-
fer function between current and pressure can be derived.

_ Qeqp/(j)
Mcq52 + Kdamps + Amcp/(j) .

Then, analyzing the obtained transfer function:
1) the low-frequency gain is

(N

Gy(s)

_ ch
Am c

therefore, it is independent from the working point.
2) the high-frequency gain is

lim G, (s) (®)

s—0

. Qeqp ()
Mo Cr () = fgs? ®
which is working point dependent (its gain increases with

it).

IV. CONTROL SYSTEM DESIGN

The transfer function analysis is the base to design the control
architecture. The control architecture must deal with the pres-
ence of the dead zone (where a position controller is strictly
needed), with different working points and with variations in
the position—pressure map. Exploiting the fact that the position
transfer functions are working point independent above a certain
frequency, a specifically tuned linear position controller could
make the closed loop robust with respect to the working point.

Furthermore, an outer pressure loop is needed: in fact, the
position—pressure map is time varying due to temperature and
pads wear; so adopting just a position control would not be
precise in terms of pressure tracking. These considerations lead
to a position—pressure cascade control architecture (see Fig. 3).

In the identification phase, we followed a gray-box identi-
fication approach. The control-oriented model derived in the
previous section, beside being adopted to decide the control ar-
chitecture, is exploited to determine the transfer functions order.

A. Position Loop

The aim of this section is to design a position loop able to
track the reference with a closed-loop bandwidth around 50
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Fig. 4. Identified current — position transfer function in different working
points.

Hz. The current-to-position model identification is performed
around different working points (). The system is maintained
around Z by means of a 1-Hz bandwidth position controller. The
excitation signal is a multifrequency sinusoidal current added
into the loop as a load disturbance. The excitation signal fre-
quency ranges from 10 to 200 Hz; this is consistent with the
goal that we want to achieve.

Note that, in the identification process since the closed-loop
bandwidth is low compared to the excitation signal frequency,
the control action and the excitation signal are decoupled in
frequency. The same process is done maintaining the system
around different working points, for each of them, the input
(current) and the output (the position) are collected. The fre-
quency response around each working point can be derived (see
Fig. 4) as the quotient of the cross power spectral density out-
put (7, (jw)) and input (T}, (jw)), i.e., the generic frequency
response G(jw) is computed as follows:

Ty (jw)

. 10
T, (j) (10)

G(jw) =

Fig. 4 shows the identified frequency responses from 10 to
100 Hz in different working points, where their convergence
after 10 Hz can be appreciated, this confirms the analysis of
Section III. Note that from that analysis, the phase of the fre-
quency response should be —180°. The loss of phase in the
experimental frequency response around 10 Hz is determined
by the low-frequency poles that the current-to-position transfer
function have. The position of the two poles is influenced by
the working point [see (4)]. Instead, the phase difference around
100 Hz is caused by the low energy that the output signal has at
those frequencies.
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Fig. 5. Position loop validation.

The current-to-position identification confirms the analysis
carried out in Section III, thus, designing a position controller
with a bandwidth greater than 10 Hz and a wide phase mar-
gin, robustness with respect to the working point is guaranteed
with a fixed structure linear controller. A PID controller is de-
signed on the worst case scenario using classical loop shaping
techniques to obtain a 50-Hz bandwidth with a phase margin
¢m = 85°, Fig. 5 plots series of closed-loop position reference
step adopting the designed controller. The experiment validates
the robustness and performance of the control loop.

B. Pressure Loop

The final control objective is pressure tracking and since the
position—pressure relationship has a hysteresis and it is time
varying, a standalone position loop is not enough, a pressure
loop is required. The pressure loop must deal with the position—
pressure nonlinearity depicted in Fig. 2 and it has to provide
the same tracking performance under every condition. Since
in the dead zone the pressure growth is negligible, the pressure
controller will be designed to work in the operative zone. To cope
with the presence of the dead zone, however, a supervising finite-
state machine is presented, that guarantees the proper controller
working throughout the entire position—pressure map.

When designing the pressure controller in the cascade archi-
tecture, the control variable of interest is the reference position.
The reference position — pressure transfer function is, there-
fore, identified. The identification scheme adopted exploits the
position controller designed in the previous subsection: a multi-
frequency reference position is injected; note that its average
value establishes the working point where the identification is
performed. Collecting the system input (reference position), to-
gether with the output (the pressure), a transfer function in each
working point can be computed from the input/output cross
power spectral density (solid lines in Fig. 6).

Note that the static gain of the transfer function corresponds
to the slope of the position—pressure map presented in Fig. 2.
Moreover, the dynamic behavior is the same in every working
point. The frequency response identified around 3.5 mm (solid
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Fig. 7. Schematic representation of the pressure control problem.

line in Fig. 6) can be considered reliable up to 20 Hz; after that
frequency, the system does not have enough excitation to collect
consistent data.

For this, the position—pressure relationship is modeled as a
Hammerstein system, i.e., with a cascade connection of a static
nonlinearity block followed by a linear dynamic system [24].

The static nonlinearity is modeled by a second-order polyno-
mial

(1)

pst = a(x — 34.)% + b(z — 245)

x4, represents the position where the master cylinder pis-
ton completely overcomes the brake reservoir, so where the
operative-zone starts (see Fig. 6). In (11), a gives the concavity
of the curve, which is always positive.

The system dynamics (represented in Fig. 7 with G(s)) are
modeled as a first-order system with unitary gain

1

G(s) = Terl

12)
Note that in the modeling section (see Section III) the position—
pressure relationship was assumed to be static: the consid-
erations done that brought to the choice of the proposed
cascade architecture hold also if we consider the dynamics
between them.

Assuming that the position loop is much faster than the pres-
sure dynamics and that ¢ and b are constant, the position—
pressure relationship can be exploited and inverted in the con-
troller. Referring to Fig. 7, applying the following static map
between v and et

—b, + /b2 + da,u

2a,

(13)

Lyef =

DEAD ZONE

Pressure Control = OFF
zpp=0

OPERATIVE ZONE

Pressure Control = ON
Tff=Tdz

Fig. 8. Finite-state machine that supervises the cascade control architecture.
and assuming that the controller parameters are the same of the
plant ones (a, = a and b, = b), the series of the two nonlinear-
ity becomes a unitary block, i.e., u = pg. So, the closed loop
becomes linear and the design of R(s) on G(s) is trivial. In
particular, adopting a simple PI controller with a zero at the
same frequency of the system pole, the loop transfer function
becomes

(14)

where £, determines the closed-loop bandwidth. In this ideal
case, the loop transfer function is an integrator and the closed-
loop performances are pressure invariant. The design of R(s)
is done in order to achieve a 15-Hz bandwidth (phase mar-
gin ¢, = 90° and gain margin ;, = 00). In Section V, the
stability of the pressure loop is discussed when a # a, and
b #b..

With the aim of extending the control architecture (see Fig. 3)
to the dead zone, the finite-state machine shown in Fig. 8
is introduced. Its main goal is to enable the pressure control
only when the system is in the operative zone, otherwise no
pressure tracking is necessary, therefore, the position loop suf-
fices. When there is no pressure request (p,t = 0), the DEAD
ZONE state is enabled, so the pressure controller is switched
OFF and the position reference is null. In this state, the posi-
tion feed-forward (xg) is null too. Then, when there is pressure
request (pyer > 0), the system goes in the OPERATIVE ZONE
state, where the pressure controller is enabled and the position
reference feed-forward is set in order to overcome the dead zone
with the position loop response time (zg = xq;).

C. Adaptation Mechanism

Until now, we considered the static nonlinear gain between
position and pressure as constant; in fact it varies with temper-
ature and brake pad wear. This static map can be recursively
estimated. Recalling (11)

ﬁSt (t) - qj)E (t)T ’ é = [I(t) — Tdy (:Z}(t) - «sz)Q] ’ I:bi:|

a
15)

the estimation error can be computed as
€(t) = pst(t) — Pt (t).

A recursive least-square algorithm with a fixed forgetting
factor (1) has been implemented as

0 =0, 1 + K(t)e(t)

K(t)=V(t)op(t)

V()= (V1) -84V (t - 1)ér(t)
pp )TV (t—1))

Bi1=p+ o) V(- 1)gp ().

(16)
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Pressure loop seen as a Lur’e system: A nonlinear block with a linear

Fig. 9.
one.

The estimation process is enabled by the finite-state machine
in Fig. 8. The forgetting factor iz needs to be chosen so that
the estimation algorithm tracks the variation due to tempera-
ture and pad wear; if too high, a forgetting factor is employed,
the controller will not adapt to variation; if too low, a forget-
ting factor affects the reliability and could compromise the
stability of the closed loop. Ideally, the estimation algorithm
weights data from two or three braking events. This is obtained
with p = 0.995.

V. STABILITY ANALYSIS

The pressure controller has been tuned under the assumption
of perfect compensation of the nonlinearity. In this section, the
controlled system stability in the case of nonperfect compensa-
tion is analyzed. The nonlinearity estimation error is modeled
as a multiplicative uncertainty

a. = kia
by = kob
where k; and ko represent the discrepancy between the real
parameters and the ones used in the controller. The estimator
dynamics is decoupled from the closed loop one, thus, we can
treat k; and ky as unknown but constant. The pressure con-

troller has a dynamic part that cancels the system pole; also this
simplification may not be perfect

(18)

T = k3T (19)

so ks represents the pole estimation error. We can reasonably
assume that the sign of the parameters is correctly identified;
in other words, k; > 0. As previously done in the pressure con-
troller design phase, assuming that the position loop is fast
enough compared to the pressure one, it is considered as ideal.

Proposition 1: The closed-loop system depicted in Fig. 7,
composed of the position-controlled BBW system (see Sec-
tion A) and the nonlinear characteristic (13) compensating
the PI control action, is globally asymptotically stable for
all k; € [0.25,4].

Proof: The block diagram depicted in Fig. 7 is manipulated,
obtaining a Lur’e system as shown in Fig. 9.

Therefore, the closed-loop system can be seen as a series
connection between a dynamic part (the controller and the plant)

_ k(1 +Ths)

Ls) = R(s)G(s) = =7 g (20)

and a static part

ko b? (ki —Fks L an
Gl b k) = u + BEER) (Tt 1)

which describes the relationship between u and ps;. Equation
(21) is composed of a linear term and a nonlinear one.

The closed-loop stability depends on ¢ (u, k1, ko) and on k.
In particular:

1) if the position—pressure map is perfectly known (k; =
ks = 1), then ©(u, ki, ko) = u. This is the ideal case dis-
cussed in Section IV-B;

2) if ky = ky # 1, then py, = ﬁ The loop transfer function

is linear and it is equal to %:) The stability of such a

system depends on the pole identification precision (k3)
and can be studied adopting the Bode’s method (i.e., phase
and gain margin);

3) if ky # ko # 1, the relationship between u and py; is de-
scribed by (21). In this case, the stability proof is based on
the circle criterion [25], [26]. First of all, the nonlinearity
is studied in order to prove that it is a sectorial nonlin-
earity, i.e., that u < v(u, k1, ko) < u. Rewriting (21)

as
1
blu, by ke) = u— + A (\/1 T Bu-— 1) (22)
1
where A = % , B = ié})? and differentiating it
v 2

with respect to u

o 1 AB
o 22 23
ou ki - 2v/1+ Bu 23)

we can note that:
a) since a is always positive, then B > 0;
b) ’L/)|u:0 = 0;
¢) if k1 > ks (A > 0), then g—‘ﬁ is decreasing, other-
wise is increasing as w increases;
P
d) 0%|u:0 = klfl + %;
e) lim, .o 52 = £ > 0.
¥(u, k1, ke) is monotonically increasing, and since
¥(0, ky, ko) = 0 for every ky, ko
Y(u, ki, k) € [0,400). (24)
Furthermore, an upper (1) and a lower limiting functions
(xpu) can be found. If k1 > ks, considering the following
limiting functions:

— u  ABu
vu=p g
! (25)
bu=g
then
ult +A(VI+Bu—1) < &+ 48
1 1 (26)
E+AWVT+Bu—1)> £
which yields to
B 50 Vu
! @7
AW1+Bu—-1)>0 Vu.
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Fig. 10.  Graphical proof of the validity of the circle theorem: L(s) Nyquist

plot varying k3 (dotted lines) and circles passing through —1 /7 and -1/
varying k; and ky (solid lines).

Otherwise, if k; < k2 and considering the following lim-
iting functions

Yu=—
Y = £+ ABu (28)
L
then
up-+A(V1+Bu—1) > &+ 42«
(29)
up-+A(WT+Bu—1) <
which yields to

% >0 Yu
(30)

A(WVIFBu—-1)<0

Therefore. the nonlinearity is sectorial.
Exploiting the circle criterion, if the Nyquist diagram of
L(s) does not enter in the circle that passes through 73:)

Y.

and through —i, the closed-loop system is exponential

globally stable. The method can be used to numerically
check the robust stability of the control system. Fig. 10
is a graphical verification of the hypothesis of the circle
theorem: the dotted lines are the L(s) Nyquist plot varying
ks so the loop transfer function varying the position of the
dynamic part of the Hammerstein system (7; in (12)).
The solid lines are the circles passing through —1 /v and
—1/4 varying ki and ks. The results shown in Fig. 10
are obtained considering parameters variations as stated
in proposition 1 (k; € [0.25,4)).

The system is thus able in the face of a rather large uncertainty

in the estimation.

VI. EXPERIMENTAL RESULTS

In this section, the experimental results are presented: first
the tracking performances are shown, then the effectiveness of
the adaptation algorithm is validated.

A professional rider tested the BBW system on a racing cir-
cuit. He rode two identical high-performance motorbikes, one
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Fig. 11. Experimental results obtained during tests on a real circuit—zoom

of the first part of a sharp braking event.
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Fig. 12. Experimental results obtained during tests on a real circuit—zoom

of the first part of a fine braking modulation.

equipped with the BBW on the front wheel, the other one with
standard brakes. From the experimental tests, it turned out that
the most critical part of the braking action is the first part, where
the controller must be fast enough in order to cross the dead
zone, and then, track the pressure reference without exhibit-
ing a delay. Furthermore, if the pressure loop is tuned with a
bandwidth lower than 10 Hz, the driver can feel a delay in the
front braking system. Also, if an overshoot greater than 25% is
present the rider perceives it as a nonlinear braking response.
Fig. 11 shows the first part of a sharp braking action at the
end of a straight when the main goal of the pilot is to decelerate
the vehicle in the shortest time; while Fig. 12 shows a fine brak-
ing pressure modulation that typically happens during a curve.
At the beginning of both braking events, the pressure loop is
disabled and when the pressure reference becomes greater than
zero, the position feed-forward term becomes x4, so that the
master cylinder overcomes the dead zone with a speed related
to the position loop bandwidth. Then, once the dead zone is
overcome, the pressure loop is enabled and the BBW system
tracks the pressure reference. Note that, when the master cylin-
der piston quickly overcomes the dead zone a small pressure
overshoot happens. This is due to the fast master cylinder move-
ment in the dead zone. Experimental tests showed that the rider
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Fig. 14.  Pressure MSE and coefficient estimation errors during braking events

starting from a wrong initial conditions.

does not perceive the small overshoot at the beginning of the
braking event.

In order to precisely evaluate the pressure closed-loop band-
width, a step reference variation test is performed (see Fig. 13).
On the top, subplot is superimposed the ideal pressure response,
i.e., the pressure reference filtered with a 15-Hz low-pass filter.
Note that the pressure closed loop has the expected bandwidth
and that the current in this test does not saturate. For wider steps,
the current saturation could slow down the pressure response.

The required closed-loop specifications are met: the pressure
tracks the reference with a 15-Hz bandwidth, without overshoot
and with delays shorter than the ones perceivable by a profes-
sional rider.

The final analysis validates the effectiveness of the adaptation
algorithm. Starting from wrong initial parameters value estima-
tion, the pressure mean square error (MSE) is analyzed as

tena

(Pret (1) — p(t))*
MSE = —_— 31
; o E))
where pyf(t) and p(t) represent the reference pressure and the
measured pressure at the time ¢ in the braking event considered.
N is the number of samples collected between ¢ and ¢, 4. Fig. 14
shows that the adaptation algorithm updates the parameter val-
ues until k£, and k5 reach the right values. It can be appreciated
how the MSE decreases as the estimated parameters converge
to the real ones. This proves the effectiveness of adopting an
adaptive control system.
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Furthermore, note that, since k; and ko were initialized with a
considerable error to test the closed-loop robustness, they reach
negative values. This means that the stability analysis is con-
ducted under conservative hypotheses: in fact the closed-loop
system remains stable even if k; and k- are out of the specified
bounds. Initializing the estimation algorithm with more realistic
values, k; and k, remains positive. Also, note that the estimator
dynamic is decoupled from the pressure one.

The control architecture has been tested also in the presence
of the knock-off, i.e., when a position—pressure curve modifica-
tion happens from one braking event to another: the pressure
tracking in the presence of the knock-off is shown in Fig. 15,
while Fig. 16 shows the variation of the position—pressure in
the same two braking events. The control architecture shows
a good robustness with respect to position pressure changing.
This is not surprising, when knock-off happens, it causes a sud-
den variation of @ and b; in Section V, we proved that the system
remains globally asymptotically stable even in the presence of
parameter estimation errors.



VII. CONCLUSION

In this paper, the control of a novel BBW actuator is pre-
sented; such actuator presents nonlinear and time variant char-
acteristics. The control architecture chosen derives from the
analysis of the control-oriented model. In particular, the trans-
fer function between current and position exhibits an important
propriety: above a certain frequency, the system is insensitive to
the working point. Exploiting this peculiarity, a cascade control
is adopted: the inner loop is a position one, the outer loop a
pressure one. Model identification procedure and controller de-
sign are presented for both loops. The pressure controller aims
to invert the intrinsic nonlinear position—pressure relationship.
Since this nonlinear relationship is influenced by temperature
and brake pad wear, an estimation algorithm has been intro-
duced. The complete control architecture is thus a cascade con-
trol with a nonlinear and adaptive pressure controller. Moreover,
since the pressure controller bases the control law on the estima-
tion of the plant parameters, an analytical stability analysis has
been done. This study highlighted that the closed loop remain
stable, even if the estimated parameters have relevant differences
from the real ones. This study can be interpreted as a robust-
ness proof: assuming that the position—pressure relationship is
estimated correctly from (17), when a knock-off phenomenon
happens, it is equivalent to a position—pressure curve instan-
taneous dilatation on the position axis. As the stability proof
states, the closed-loop algorithm is able to handle parameters
variation in this range: k; € [0.25, 4].

In conclusion, the main improvements of the adaptive non-
linear cascade architecture are:

1) good robustness with respect to knock-off, i.e., with re-
spect to sudden position—pressure changing. The stability
analysis proves it analytically;

2) pressure tracking in every part of the braking event, even
in the first part;

3) closed-loop bandwidth of 15 Hz.
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