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1. Introduction

Thermal Hydraulics (TH) codes are used to predict the response
of the systems in nominal and accidental conditions. Conservative
TH codes lead to the definition of safety limits that can be
respected with large safety margins (Zio et al., 2010). Best Estimate
(BE) codes provide more realistic results, thus avoiding over-
conservatism (Zio et al., 2010; 10 CFR 50.46); however, it is neces-
sary to identify and quantify the uncertainties affecting the code
outputs due to simplifications, approximations, round-off-errors,
numerical techniques and variability in the input parameters
values (Pourgol-Mohammad, 2009).

Many approaches have been proposed for this e.g., Code Scaling,
Applicability, and Uncertainty (CSAU) (Boyack et al., 1990; Wilson
et al., 1990; Wulf et al., 1990)), Automated Statistical Treatment of
Uncertainty Method (ASTRUM) and Integrated Methodology for
Thermal-Hydraulics Uncertainty Analysis (IMTHUA) (Glaeser
et al., 1994), which assume statistical distributions for the input
variables, from which N input values sets are sampled and fed to
the BE code (Pourgol-Mohammad, 2009) and the corresponding
N outputs are calculated. A combination of Order Statistics (OS)
(Guba et al., 2003; Zio et al., 2008) and Artificial Neural Networks
(ANN) has been proposed to speed up the computations (Secchi
et al., 2008), which however allows determining only some percen-
tiles and not the whole distribution, and does not provide insights
on the sensitivity to input variability (Langewisch, 2010; Hong
et al., 2011).

For the latter point, sensitivity analysis (SA) methods exist of
three types: local, regional and global (Saltelli et al., 2000). When
considering TH codes and complex models, global SA is most
indicated because capable of dealing with non-linear and non-
monotone models, whereas local and regional SA do not give an
exhaustive representation of the variability of the model (Saltelli
et al., 2008). In fact, local approaches consist in evaluating the
effect on the output of small variations around fixed values in
the input parameters, by calculating partial derivatives of the out-
put with respect to the inputs around the local fixed values on
which the analysis is focused. Regional SA methods aim at calculat-
ing the sensitivity of the model to partial ranges of the inputs
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distributions, thus allowing to calculate the uncertainty reduction
achievable if the inputs parameters distributions ranges were
reduced. Various techniques have been proposed for regional SA
like Contribution to Sample Mean (CSM) plot (Bolado-Lavin et al.,
2009), Contribution to Sample Variance (CSV) plot (Bolado-Lavin
et al., 2012), Variance Ratio Functions (Pengfei, 2014). However,
these methods encounter difficulties when the model mean varies
significantly with respect to the reduced ranges (Pengfei, 2014).
Compared to local and regional SA methods, global SA methods
offer higher capabilities but at a higher computational cost. Exam-
ples of global SA methods are Response Surface Methodology
(RSM), Fourier Amplitude Sensitivity Test (FAST), Delta and Vari-
ance Decomposition Method (Helton, 1993; Saltelli et al., 2000;
Borgonovo, 2007; Cadini et al., 2007; Yu et al., 2010). RSM amounts
to approximating the original model outcomes (i.e., responses) by a
simple and fast empirical global model that fits a database of com-
putations and covers the as large as possible variability of the ori-
ginal model (Devictor et al., 2005); with FAST, the model is
expanded into a Fourier series whose coefficients and frequencies
are used to estimate the mean and variance of the model and the
partial variances of individual input parameters of the model
(Fang et al., 2003). Delta is a moment independent uncertainty
indicator that looks at the influence of input uncertainty on the
entire output distribution from given data (including simulation
input–output data). Variance decomposition is the most used
method for global SA and has the advantage that it does not intro-
duce any hypothesis on the model, but has a high computational
cost (Carlos et al., 2013).

To avoid a large number of TH code runs, in this work we pro-
pose an innovative framework of analysis whose most ‘‘reduced’’
flowchart is shown in Fig. 1. The idea is to directly rely on the infor-
mation available in the multimodal pdf of the output variable for
performing global SA of a TH code. First, a limited number N of sim-
ulations of the TH code are performed and a Finite Mixture Model
(FMM) is used to reconstruct the pdf of the output variable. It is
worth pointing out that (i) the output distribution is linked to
the input distributions that must, then, be selected accurately for
building the FMM approximating the pdf of the output variable,
and (ii) the FMM construction entails learning the structure of
the pdf of the output variable, that is an essential step that is
explained in detail in Section 3. The natural clustering made by
the FMM on the TH code output (McLachlan et al., 2000; Di Maio
et al., 2014b) (i.e., a cluster corresponds to each Gaussian model
fkðyjhkÞ of the mixture, as we shall see in Section 3) is exploited
to develop an ensemble of three SA methods, input saliency (Law
et al., 2004), Hellinger distance (Diaconis et al., 1982; Gibbs
et al., 2002) and Kullback–Leibler divergence (Diaconis et al.,
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Fig. 1. Flowchart of the proposed framework for SA.
1982; Gibbs et al., 2002), for ranking the input variables most
affecting the output uncertainty. The ensemble strategy allows
combining the output of the three individual methods (that
perform more or less well depending on the data at hand) to gen-
erate reliable rankings. The advantage is the possibility to over-
come possible misjudgments of the individual methods. The
innovative idea of using an ensemble of methods for sensitivity
analysis, will be shown to be particularly useful when the number
of TH code simulations is reduced to keep low the computational
cost. Due to the limited quantity of data in this situation, in fact,
possible misleading rankings can arise from individual methods,
whereas the diversity of the methods integrated in the ensemble
allows overcoming the problem.

The proposed framework is generally applicable to active and
passive safety systems. However, its application is here challenged
by the fact that the reliability analysis of passive safety systems
used in advanced Nuclear Power Plants (NPPs) must consider the
uncertainties affecting passive systems operation, under scarce or
null operating experience (Cummins et al., 2003; Pagani et al.,
2005; Burgazzi, 2007; Nayak et al., 2009; Zio et al., 2009). When
counter-forces (e.g., friction) have magnitude comparable to the
driving ones (e.g., gravity, natural circulation), physical phenomena
may fail performing the intended function even if (i) safety margins
are met, (ii) no hardware failures occur (Burgazzi, 2004; Marques
et al., 2005; Burgazzi, 2007b; Zio et al., 2009). It is, therefore, neces-
sary to tailor the analysis framework on the peculiar characteristics
of passive safety systems, for a SA accurate and robust in spite of the
typically scarce TH code simulations (and operating experience)
and large uncertainties affecting the systems behavior.

The successful application of the developed framework is
illustrated, tailored to the sensitivity analysis of a TH code that
simulates the behaviour of the Passive Containment Cooling Sys-
tem (PCCS) of an Advanced Pressurized reactor AP1000 during a
Loss Of Coolant Accident (LOCA). The combination of the three sen-
sitivity methods is shown to make the results more robust, with no
additional computational costs (no more TH code runs are required
for SA).

The paper is organized as follows. In Section 2, the case study
and the relative TH code are illustrated. In Section 3, the bases of
FMM are presented along with the ensemble of sensitivity meth-
ods, i.e., the input saliency, Hellinger distance and Kullback–Leibler
divergence. In Section 4, the experimental results are reported.
Section 5 draws some conclusions.
2. Case study

The Westinghouse AP1000 is a 1117 MWe (3415 MWth) pres-
surized water reactor (PWR), with extensive implementation of
passive safety systems for reduction of corrective actions in case
of accident. The passive safety systems include the passive Resid-
ual Heat Removal System (RHRS) and the Passive Containment
Cooling System (PCCS). The PCCS cools the containment following
an accident, so that the pressure Pcontainment is effectively controlled
within the safety limit of 0.4 MPa. During an accident, heat is
removed from the containment vessel by the continuous, natural
circulation of air, supplemented by evaporation of the water that
drains by gravity from a tank located on top of the containment
shield building by means of three redundant and diverse water
drain valves. The steel containment vessel provides the heat trans-
fer surface through which heat is removed from inside the contain-
ment and transferred to the atmosphere. In addition, even in case
of failure of water drain, air-only cooling is supposed to be capable
of maintaining the containment below the failure pressure (Schulz,
2006). Fig. 2 shows the PCCS of the AP1000 [Westinghouse Electric
Company].



For the quantification of the functional failure of the PCCS of the
AP1000 following a LOCA, a TH model that simulates the post-
reflood phase dynamics of the stratified heat transfer process with
non-condensed heat has been developed.

In general terms, a LOCA evolution typically entails four phases
(Rahim et al., 2011): (1) blowdown, from the accident initiation (by
a double-ended guillotine pipe break in a primary coolant line
determining the leakage of a mass flow rate G, whose initial vapor
mass Mvapor is at temperature Tsteam, and affecting the normal oper-
ation of the reactor at steady-state full power) to the time at which
the primary circuit pressure reaches the containment pressure; (2)
refill, from the end of the blowdown to the time when the Emer-
gency Core Cooling System (ECCS) refills the vessel lower plenum;
(3) reflood, which begins when water starts flooding the core and
ends when this is completely quenched; (4) post-reflood, which
starts after the core quenching and during which energy is released
to the Reactor Coolant System (RCS). In the post-reflood phase, the
steam produced in the RCS is cooled at the internal face of the steel
containment vessel (of volume V and diameter D) and, then, the
heat is conducted by the vessel and transferred (among the wall
thickness tw with coefficients a and Cp) to the air in the air channels
(see Fig. 2). Cold air enters (at temperature Tinlet and pressure Pinlet)
the channels (with speed uair) through the three rows of air inlets
and flows down to the bottom of the channels (whose heights are
Z1 and Z2, and flowing area is A), where it is heated by the steel ves-
sel up to the air diffuser to the environment.

The TH code simulates the dynamics of the heat transfer pro-
cesses in the post-reflood phase with a stratified dome of the PCCS
vessel (Yu et al., 2013). The output variable is the pressure value of
Pcontainment after 1000 s from the initiation of the LOCA. The D = 51
input variables are listed in the Appendix A together with their dis-
tributions (hereafter, also called common densities) chosen from
expert judgment and literature review (Burgazzi, 2004; Zio et al.,
2008b; Zio et al., 2010b). Three families of distributions have been
used: seasonal, normal and uniform. Seasonal relates to the exter-
nal air temperature Tinlet and pressure Pinlet variability, as inferred
by historical data collected by a representative Chinese Automatic
Weather Station (CAWS) in different months. Normal distributions,
e.g., for the LOCA steam temperature, Tsteam, are truncated distribu-
tions with mean l and support equal to 4r, where r is the standard
deviation. For uniform distributions, e.g. for the friction factors, the
supports from ‘‘Lower value’’ to ‘‘Upper value’’ are reported.
Fig. 2. AP1000 Passive Containment Cooling System [Westinghouse Electric
Company].
3. Uncertainty and ensemble based sensitivity analysis

Let y denote the output of a TH model m, viz:

y ¼ mðx1; x2; . . . ; xl; . . . ; xDÞ l ¼ 1; . . . ;D ð1Þ

where xl is the l-th input variable. The random output variable y
follows a finite mixture density f(y) with K models if:

f ðyÞ ¼
XK

k¼1
pkfkðyjhkÞ ð2Þ

where fk(y|hk) are K different probability density functions, hk is the
set of parameters of the k-th model of the mixture and pk are the
mixing probabilities that satisfy:X

k
pk ¼ 1 with 8 k;pk P 0 ð3Þ

In particular, if fk(y|hk) is Gaussian, then:

fkðyjhkÞ ¼
1ffiffiffiffiffiffiffi

2p
p

rk

e
�ðy�lk Þ

2

2r2
k ð4Þ

where hk = (lk, rk) are the mean and the standard deviation of the
k-th Gaussian mixture model, respectively.

For simplicity of illustration, and without loss of generality, let
us consider a mixture of two Gaussians:

f ðyÞ ¼ p1f1ðyjh1Þ þ p2f2ðyjh2Þ ð5Þ

The Expectation Maximization (EM) algorithm (Dempster et al.
1977) (McLachlan et al., 2000) can be used to fit f(y) to N available
data y = {y1, . . ., yN}, i = 1, . . ., N and identify its parameters h = (h1,
h2) and p = (p1, p2). To do that, we resort to two classification vari-
ables z1i, z2i i.e., (z1i + z2i = 1) that assign one among the two models
to a data point yi:

z1i ¼
1 if yi follows f 1ðyjh1Þ
0 if yi follows f 2ðyjh2Þ

�
z2i ¼

0 if yi follows f 1ðyjh1Þ
1 if yi follows f 2ðyjh2Þ

�
ð6Þ

with h = (h1, h2).
For each i-th datum, the conditional probabilities in Eqs. (7) and

(8) hold:

Pðyijz1i; z2i; hÞ ¼ f z1i
1 ðyiÞf

z2i
2 ðyiÞ ð7Þ

Pðz1i; z2ijhÞ ¼ pz1i
1 ð1� p1Þz2i ð8Þ

Substituting Eqs. (7) and (8) into Eq. (9):

Pðyi; z1i; z2ijhÞ ¼ Pðyijz1i; z2i; hÞPðz1i; z2ijhÞ ð9Þ

and taking its logarithm,

logðPðyi; z1i; z2ijhÞÞ ¼ z1i logðf1ðyiÞÞ þ z1i logðp1Þ
þ z2i logðf2ðyiÞÞ þ z2i logð1� p1Þ ð10Þ

The likelihood function for all the N data can be written as:

Lðy; zjhÞ ¼ logðPðy; zjhÞÞ

¼
XN

i¼1
z1i logðf1ðyiÞÞ þ z1i logðp1Þ

þ z2i logðf2ðyiÞÞ þ z2i logð1� p1Þ ð11Þ

The maximum likelihood of L(y, z|h) cannot be found analytically;
this is why we resort to an Expectation Maximization (EM)
algorithm for the identification of the model parameters h(h1, h2)
and p(p1, p2), with an initial random estimation of z,z(1):

lð1Þ1 ¼
PN

i¼1zð1Þ1i yiPN
i¼1zð1Þ1i

; lð1Þ2 ¼
PN

i¼1zð1Þ2i yiPN
i¼1zð1Þ2i

ð12Þ

r2ð1Þ
1 ¼

PN
i¼1zð1Þ1i yi � lð1Þ1

� �2

PN
i¼1zð1Þ1i

; r2ð1Þ
2 ¼

PN
i¼1zð1Þ2i yi � lð1Þ2

� �2

PN
i¼1zð1Þ2i

ð13Þ



Fig. 3. Mixture model decomposition illustrative example.
pð1Þ1 ¼
PN

i¼1zð1Þ1i

n
; pð1Þ2 ¼

PN
i¼1zð1Þ2i

n
¼ 1� pð1Þ1 ð14Þ

The expectation step follows by application of Bayes rule (McLach-
lan, 2008):

zðjÞ1i ¼ P z1i¼1jhðj�1Þ;yi

� �
¼

pðj�1Þ
1 f1 yi;h

ðj�1Þ
� �

pðj�1Þ
1 f1 yi;h

ðj�1Þ
� �

þ 1�pðj�1Þ
2

� �
f2 yi;h

ðj�1Þ
� �

ð15Þ

zðjÞ2i ¼ P z2i¼1jhðj�1Þ;yi

� �
¼

1�pðj�1Þ
2

� �
f2 yi;h

ðj�1Þ
� �

pðj�1Þ
1 f1 yi;h

ðj�1Þ
� �

þ 1�pðj�1Þ
2

� �
f2 yi;h

ðj�1Þ
� �

ð16Þ

The maximization step follows the expectation step, to update hj

and pj for any j-th step until the optimum is reached (Figueiredo
et al., 2002):

lðjÞ1 ¼
PN

i¼1zðjÞ1i yiPN
i¼1zðjÞ1i

; lðjÞ2 ¼
PN

i¼1zðjÞ2i yiPN
i¼1zðjÞ2i

ð17Þ

r2ðjÞ
1 ¼

PN
i¼1zðjÞ1i yi � lðjÞ1

� �2

PN
i¼1zðjÞ1i

; r2ðjÞ
2 ¼

PN
i¼1zðjÞ2i yi � lðjÞ2

� �2

PN
i¼1zðjÞ2i

ð18Þ

pðjÞ1 ¼
PN

i¼1zðjÞ1i

n
; pðjÞ2 ¼

PN
i¼1zðjÞ2i

n
¼ 1� pðjÞ1 ð19Þ

Once the parameters h(h1, h2) and p(p1, p2) of the mixture models
are known, the best approximation of the pdf of the output of the
TH model is completely characterized with a small number N of
TH code simulations. In addition, ‘‘natural’’ clusters corresponding
to each Gaussian model fk(y|hk) of the mixture are defined: some
may be representative of normal conditions, whereas others of acci-
dental conditions, allowing for a direct calculation of the probability
of exceeding a certain safety limit (i.e., of functional failure). These
clusters will be exploited for SA within an ensemble of the three
methods of input saliency, Hellinger distance, Kullback–Leibler
divergence, whose individual outcomes will be aggregated for iden-
tifying the input variables most affecting the output uncertainty
(Fig. 1).

3.1. Input saliency

For global sensitivity analysis, the FMM of Eq. (2) can be rewrit-
ten as a function of the D input variables of the TH model, if we
assume input variables independence:

f ðyÞ ¼
XK

k¼1
pkfkðyjhkÞ ¼

XK

k¼1
pkm

YD

l¼1

f ðxljhklÞ
!

ð20Þ

where m is the TH model function and f(xl|hkl) is the pdf of the l-th
input x in the k-th cluster. The l-th input does not affect the output
if its distribution is independent from the cluster, i.e., it follows its
common density qðxljklÞ among all the clusters (e.g., its original dis-
tribution as in Table 7 in the Appendix A, from which the N set of
input decks for building the FMM are sampled) (Pudil et al., 1995;
Vaithyanathan et al., 1999). In Eq. (20), f(xl|hkl) can be decomposed
in a distribution accounting for the contribution of the l-th input in
the k-th cluster f(xl|hkl) and in the common distribution qðxljklÞ, with
weights ql, obtaining:

f ðyjhÞ ¼
XK

k¼1
pkm

YD

l¼1

qlf ðxljhklÞ þ ð1� qlÞqðxljklÞ
!

ð21Þ

The saliency ql is the importance of the l-th input in affecting the
output y. In fact, if ql is large it means that the input variable
distribution varies significantly from one cluster to another and,
thus, the input is important in determining the variability of the
output; otherwise, if ql is small the inputs follow the common
distribution in any cluster and, thus, the input is not relevant in
shaping the distribution of the output. For example, Fig. 3 shows
the FMM decomposition of f(y) in case of two input variables x1

and x2: x1 contributes in shaping the model output f(y) with
f(x1|l11, r11) and f(x1|l21, r21), whereas x2 only follows its common
distribution qðx2jk2Þ.

The estimation of the input variable importance ql is a model
parameter identification problem that does not admit any closed
form analytical solution (Figueiredo et al., 2002). The problem
can again be tackled by the EM algorithm, fitting Eq. (21) to data.
In this case, for a FMM with K = 2, parameters h(h1, h2) and p(p1,
p2) have already been identified with Eqs. (17)–(19), whereas
q(q1, q2, . . ., ql, . . ., qD) is initially estimated to q(1) and updated
at each following j-th step as:

qðjÞl ¼
P

i;kuðjÞikl

N
ð22Þ

where

uðjÞikl ¼
aðjÞikl

aðjÞikl þ bðjÞikl

� �wðjÞik ð23Þ

measures how important the i-th datum is in the k-th model
(cluster), when the l-th input is considered,

aðjÞikl ¼ Pðxiljzki ¼ 1; f ðxiljhklÞÞ ¼ qðjÞl f ðxiljhklÞ ð24Þ

is the probability that the l-th input of the i-th code run belongs to
the k-th cluster

bðjÞikl ¼ P xiljzki ¼ 1; qðxiljklÞð Þ ¼ 1� qðjÞl

� �
qðxiljklÞ ð25Þ

is the probability that the l-th input of the i-th code run does not
belong to any cluster, and

wðjÞik ¼ Pðzki ¼ 1jyiÞ ¼
pk

Y
l

aðjÞikl þ bðjÞikl

� �
P

kpk

Y
l

aðjÞikl þ bðjÞikl

� � ð26Þ

is the probability that the output of the i-th code run belongs to the
k-th cluster.

It is worth noticing that the term
P

i,kuikl in Eq. (22) represents
the contribution of the l-th input to the definition of all K models



(clusters) when supported by N evidences, and thus ql can be con-
sidered as a sensitivity index for the l-th input.

3.2. Hellinger distance

The Hellinger distance Hlkðf ðxljhklÞ; qðxljklÞÞ measures the differ-
ence between the pdf of the l-th input contributing to shape the
k-th cluster f(xl|hkl) and its common distribution qðxljklÞ. It can be
defined as (Diaconis et al., 1982; Gibbs et al., 2002):

Hlk f ðxljhklÞ; qðxljklÞð Þ ¼ 1
2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxljhklÞ

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðxljklÞ

p� �2

dx

" #1
2

¼ 1�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f ðxljhklÞqðxljklÞ
q� �2

dx

" #1
2

ð27Þ

which satisfies the inequality 0 � Hðf ðxljhklÞ; qðxljklÞÞ � 1.
In the particular case of f ðxljhklÞ � N l1;r2

1

� 	
and qðxljklÞ � N

l2;r2
2

� 	
; the Hellinger distance can be written as:

Hlk f ðxljhklÞ; qðxljklÞð Þ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r1r2

r2
1 þ r2

2

s
e
�1

4
ðl1�l2 Þ

2

r2
1
þr2

2ð Þ
2
4

3
5

1
2

ð28Þ

The quantity HLl is the importance of the l-th input variable in
affecting the output y, defined as:

HLl ¼
XK

k¼1
Hlk f ðxljhklÞ; qðxljklÞð Þ ð29Þ

where the l-th input variable is important if HLl is large (in relative
terms).

3.3. Kullback–Leibler divergence

The Kullback–Leibler divergence measures the different infor-
mation carried by the pdf of the l-th input in the k-th cluster
f(xl|hkl) and its common distribution qðxljklÞ (Diaconis et al., 1982;
Gibbs et al., 2002):

KLlk f ðxljhklÞ; qðxljklÞð Þ ¼
Z þ1

�1
f ðxljhklÞ log

f ðxljhklÞ
qðxljklÞ

� �
dx ð30Þ

with values in [0, 1].
A symmetric Kullback–Leibler divergence, can be defined

(Kullback et al., 1951):

KLsymlk
f ðxljhklÞ; qðxljklÞð Þ ¼ KLsymlk

qðxljklÞ; f ðxljhklÞð Þ

¼ 1
2

KLlk f ðxljhklÞ; qðxljklÞð Þ

þ 1
2

KLlkðqðxljklÞ; f ðxljhklÞÞ ð31Þ
Fig. 4. Histogram of the model output and mixture
The quantity KLSl can be taken to represent the importance of the
l-th input variable in affecting the output y:

KLSl ¼
XK

k¼1
KLsymlk

f ðxljhklÞ; qðxljklÞð Þ ð32Þ

where the l-th input variable is important if HLl is large (in relative
terms).

3.4. Ensemble

A combination of the outputs of the three SA methods in
ensemble can be considered for the evaluation of the sensitivity
of the output variable on the different inputs. As anticipated in
the Introduction, the resulting ensemble is expected to strengthen
the results by agreement among the rankings produced by the sin-
gle methods, without requiring any additional TH simulations for
this. In fact, considering the information provided by the three dif-
ferent methods it is possible to gain more confidence on the rank-
ing, when they agree and overcome singular misjudgments by
aggregation, when they disagree. The central issue is to decide
how to aggregate the sensitivity ranking outcomes provided by
the different methods in the ensemble (Baraldi et al., 2011; Di
Maio et al., 2012). In this paper, we adopt and compare two simple
strategies of aggregation: majority voting Rmv and Rsum aggregation
(Kukkonen et al., 2007). The former consists in taking the majority
voting among the three methods: the ranking orders (each one of
length D = 51) provided individually by the three methods (i.e.,
Oq, OHL and OKLS) are aggregated by assigning to each ranking posi-
tion Rmv,l the l-th input voted by majority, viz:

Rmv ;l ¼ argðmaxðiÞÞ where
i ¼ 1 if

Oq;l ¼ OHL;l

Oq;l ¼ OKLS;l

OHL;l ¼ OKLS;l

Oq;l ¼ OHL;l ¼ OKLS;l

8>>><
>>>:

i ¼ 0 otherwise

8>>>>>><
>>>>>>:

ð33Þ

Thus, the l-th ranking position Rmv,l is assigned to the input that has
been ranked as l-th by at least 2-ou-of-3 methods; if for one l-th
position none of the methods agree, no input is placed in that
ranking position. The main advantages of this aggregation are its
simplicity and negligible computational burden.

On the other hand, the Rsum aggregation (Kukkonen et al., 2007)
consists in taking for each l-th input variable the sum of the
ranking positions provided by the individual methods and, then,
sorting them with respect to Rsum,l, viz:

Rsum;l ¼ Oq;l þ OHL;l þ OKLS;l ð34Þ
model reconstruction with N = 1000 code runs.



4. Results

The SA ensemble approach described in Section 3 is applied to
the case study of Section 2. In order to test the effect of different
amounts of available information, different numbers of LOCAs are
simulated with N = 1000, 600, 400, 200, 100, samples of the input
variables values drawn from the distributions reported in
Appendix A.

The distribution (histogram) of the output variable Pcontainment

and its FMM (line) obtained using two Gaussian distributions
fkhk; k ¼ 1;2; are shown in Figs. 4–8 for N = 1000, 600, 400, 200,
Fig. 5. Histogram of the model output and mixture

Fig. 6. Histogram of the model output and mixture

Fig. 7. Histogram of the model output and mixture
and 100 TH code simulations, respectively. The parameters of the
mixture model found for different sizes of N are reported in Table 1.
The choice of using two Gaussian distributions for the FMM param-
eters identification is the result of a trial and error procedure, but
automatically optimizing the number K of distributions to be used
in the FMM is also possible (Figueiredo et al., 2002). It is worth
pointing out that resorting to the FMM method for any application
requiring a number K of distributions larger than two is straight-
forward (Di Maio et al., 2014).

It can be seen that the multinomial pdf of Pcontainment,
f(Pcontainment) is well reconstructed by all the FMMs built with a
model reconstruction with N = 600 code runs.

model reconstruction with N = 400 code runs.

model reconstruction with N = 200 code runs.



Fig. 8. Histogram of the model output and mixture model reconstruction with N = 100 code runs.

Table 1
Parameters of the finite mixture of Gaussian distributions computed with the EM algorithm for different sample sizes.

Sample size, N Probabilities (p1, p2) Means (l1, l2) Standard deviations (r1, r2)

1000 (0.93, 0.07) (0.3715, 0.4006) (0.0119, 0.0047)
600 (0.93, 0.07) (0.3720, 0.4015) (0.0121, 0.0052)
400 (0.92, 0.08) (0.3727, 0.4022) (0.0119, 0.0057)
200 (0.94, 0.06) (0.3707, 0.3993) (0.0122, 0.0025)
100 (0.93, 0.07) (0.3717, 0.3998) (0.0119, 0.0030)

Fig. 9. Input variables saliencies (Eq. (22)) obtained with N = 1000 TH code runs.

Fig. 10. Hellinger distance (Eq. (29)) obtained with N = 1000 TH code runs.
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Fig. 11. Kullback–Leibler divergence (Eq. (32)) obtained with N = 1000 TH code runs.

Table 2
Input variables ranking obtained with N = 1000 TH code runs.

1� 2� 3� 4�

Saliency, ql (Eq. (22)) Tinlet (0.127) G (0.014) a1 (0.007) D3 (0.006)
Hellinger distance, HLl (Eq. (29)) Tinlet (0.241) G (0.135) a1 (0.101) D3 (0.079)
Kullback–Leibler, KLSl (Eq. (32)) Tinlet (0.384) G (0.086) a1 (0.046) D3 (0.029)
Ensemble Rmv Tinlet G a1 D3

Ensemble Rsum Tinlet G a1 D3
number of code runs from N = 1000 down to N = 100. The case of
N = 100 brings a considerable time saving since N = 1000 TH code
runs take 277.3 h on an Intel Core2Duo P7550, whereas N = 100
only 28 h.

4.1. Sensitivity analysis

The three SA methods illustrated in Section 3 have been applied
exploiting the analytical pdf obtained by the FMMs and the related
clustering. In general terms, the methods backtrack the contribu-
tion of the inputs variables pdfs into the K clusters in which the
analytical output pdf, obtained by the FMM, can be represented.
Their individual rankings and that obtained by their ensemble
are analyzed in the following, for the different cases of code runs
form N = 1000 to N = 100.

Figs. 9–11 show ql, HLl and KLSl for the L = 51 input variables,
calculated using Eqs. (22), (29), and (32), respectively, on the basis
of f(Pcontainment) obtained with N = 1000 TH code runs. The results of
this case are taken as reference, i.e., as correct ranking. The ranking
is reported in Table 2 along with the values of the sensitivity
indexes (in the brackets). All the three methods and their ensemble
(with both aggregation Rmv and Rsum) identify input variable Tinlet
Table 3
Input variables ranking obtained with N = 400 TH code runs.

1�

Saliency, ql (Eq. (22)) Tinlet (0.081)
Hellinger distance, HLl (Eq. (29)) Tinlet (0.246)
Kullback–Leibler, KLSl (Eq. (32)) Tinlet (0.357)
Ensemble Rmv Tinlet

Ensemble Rsum Tinlet
(l = 2) as the most important one and, in fact, agree on the ranking
of the four most important input variables Tinlet, G, a1 and D3 (l = 2,
1, 44, 17, respectively). These input variables play a direct role in
the heat transfer process of the PCCS operation. In particular, Tinlet

(i.e., the temperature of the ultimate heat sink) is related to the
capability of the atmosphere to absorb the heat generated, G (i.e.,
the steam mass flow rate) is related with the energy entering the
containment, a1 (i.e., the conductivity of the containment) has an
active role in determining the heat flux leaving the containment,
and D3 (i.e., the containment diameter) determines the internal
volume and the heat exchange surface, both critical quantities for
internal pressure and heat transfer.

Table 3 shows the results obtained with N = 400 TH code runs:
the ranking of the first four most important input variables agrees
with that of Table 2 obtained with N = 1000.

Table 4 shows that when N = 200, the three methods all still
identify the previous four variables as most important but no
longer produce the same ranking order. Only the input saliency
method is able to correctly identify the first three most influencing
input variables, Tinlet, G, and a1, but misses the fourth which is indi-
cated to be the l = 42, Hc, (D3 is ranked 11th); the other two meth-
ods switch the position of D3 and a1 in the 3rd and 4th positions.
2� 3� 4�

G (0.032) a1 (0.015) D3 (0.012)
G (0.142) a1 (0.118) D3 (0.075)
G (0.097) a1 (0.061) D3 (0.025)
G a1 D3

G a1 D3



Table 4
Input variables ranking obtained with N = 200 TH code runs.

1� 2� 3� 4�

Saliency, ql (Eq. (22)) Tinlet (0.666) G (0.104) a1 (0.079) Hc (0.040)
Hellinger distance, HLl (Eq. (29)) Tinlet (0.285) G (0.108) D3 (0.100) a1 (0.064)
Kullback–Leibler, KLSl (Eq. (32)) Tinlet (0.764) G (0.058) D3 (0.047) a1 (0.018)
Ensemble Rmv Tinlet G D3 a1

Ensemble Rsum Tinlet G a1 D3
The ensemble of methods overcomes the problem: both ensemble
aggregated by majority voting and sum of rankings identify all four
most important variables and the latter provides the correct rank-
ing: Tinlet, G, a1, D3.

The rankings produced on the basis of N = 100 TH code simula-
tions are shown in Table 5. It is seen that the ensembles remain
able to identify the three most important inputs, Tinlet, G and D3

with both aggregation strategies, whereas there is no longer agree-
ment on the fourth ranking position. This results from the fact that
the Kullback–Leibler divergence again switches the positions of D3

and a1, the Hellinger distance mistakes the 4th ranked input and
the input saliency mistakes the 3rd and 4th ranked inputs. In par-
ticular, the input saliency method starts misjudging the impor-
tance of the input variables when N approaches 200 code runs
(in Table 4, Hc is considered as 4th important input, whereas it is
not if compared with the ranking order of Table 2). This is due to
the fact that the input saliency method is based on the EM algo-
rithm that is sensible to the initialization of the indexes q(1) (see
Eq. (22)) when N is reduced (Figueiredo et al., 2002). On the other
hand, even with small N, it is important to keep the input saliency
method in the ensemble because, with respect to the other two
methods it is the only one that correctly assigns the right ranking
order to the first three most important input variables Tinlet, G, and
a1 with N = 200 (see Table 4 in comparison to the ranking order of
Table 2).

Finally, for further comparison, the variance decomposition-
based method with N = 15,600 correctly identifies only Tinlet, and
G as the two most important input variables, and with N = 910 it
is not able to recognize anyone of the first four most important
input variables (see Table 6) (Di Maio et al., 2014b) (for further
details on the variance decomposition method, see Appendix B).

As for some concluding remarks drawn from the case study
analyzed, it appears that: (i) all three SA methods used are
computationally more efficient than variance-based decomposi-
tion analysis (N = 910 for variance-based decomposition analysis
Table 5
Input variables ranking obtained with N = 100 TH code runs.

1� 2� 3� 4�

Saliency, ql Tinlet (0.539) G (0.172) Z1 (0.100) Z2 (0.088)
Hellinger distance, HLl Tinlet (0.289) G (0.138) D3 (0.135) H1 (0.102)
Kullback–Leibler, KLSl Tinlet (0.415) G (0.079) D3 (0.077) a1 (0.043)
Ensemble Rmv Tinlet G D3 –
Ensemble Rsum Tinlet G H1 D3

Table 6
Variance decomposition ranking for the lumped PCCS-TH code (Di Maio et al., 2014a).

N (code runs) 1� 2� 3� 4�

15,600 Tinlet G f5 H4

910 d f1 Tst H
takes �270 h on an Intel Core2Duo P7550, whereas N = 200 takes
�55 h), (ii) the ensembles proposed are effective with small num-
bers N (e.g. N = 200), compensating the errors of the individual
methods, (iii) the Rsum aggregation strategy as provided the best
results, especially with N = 200, as shown in Table 4. For the case
study here analyzed, our suggestion is, thus, to resort to the
ensemble of SA methods and assembling the different ranking
orders by the Rsum aggregation strategy.

5. Conclusions

In this paper, we have presented a novel framework for per-
forming the sensitivity analysis of passive safety systems TH codes,
at reduced computational cost. The framework consists in estimat-
ing a Gaussian FMM to retrieve the analytical pdf of the model out-
put with as few simulations as possible and to induce a clustering
of the output variable space; then, two ensemble strategies have
been applied to aggregate three sensitivity methods, namely input
saliency, Hellinger distance and Kullback–Leibler divergence.

We have tested the framework to a long-running TH code that
simulates the behaviour of a Passive Containment Cooling System
(PCCS) of an Advanced Pressurized reactor AP1000 during a Loss Of
Coolant Accident (LOCA).

The results obtained show the capability of the framework in
discerning between influent and negligible input variables at a rea-
sonable computational cost, especially when relying on the Rsum

aggregation strategy.
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Appendix A.

Table 7
Appendix B.

For simplicity of illustration, and without loss of generality, let
us consider a model m whose output value y depends only on the
values x1 and x2 of two uncertain input parameters X1 and X2, viz:

y ¼ mðx1; x2Þ ða1Þ

No hypotheses are made on the structure of the model.
We consider a set of s realizations of the two input parameters

drawn from the assigned pdfs q(x1), q(x2), respectively:

�xj ¼ xj
1; x

j
2

h i
j ¼ 1;2; . . . s ða2Þ

The model is evaluated for each of the s independently generated
vectors �xj, j = 1, 2, . . ., s, to obtain a corresponding set of output
values:



yj ¼ m xj
1; x

j
2

� �
j ¼ 1;2; . . . s ða3Þ

Such set represents an independent random sample of size s of the
distribution of the output y. Therefore, the dependence of the value
of the output variable (Y) on the value of one of the two input vari-
ables, e.g. X1, can be approximated by the expected value of Y with
respect to the other variable X2, conditioned on X1 being equal to a
given value x1:

Y�ðx1Þ ¼ EX2 ðY x1j Þ ¼
Z

mðx1; x2ÞqX2 X1j ðx2 x1j Þdx2 ða4Þ

where qX2 jX1
ðx2jx1Þ is the conditional probability density of X2 given

X1. Note that, since X1 is fixed at x1, y⁄ depends only on the variable
X2.
Table 7
List of input variables and their distributions.

Input variable Description Units Type of

1 G Steam mass flow rate kg/s Normal
4 Tsteam Steam temperature �C Normal
5 tw1 Containment wall thickness m Normal
6 tw2 Containment wall thickness m Normal
7 tw3 Containment wall thickness m Normal
8 tw4 Containment wall thickness m Normal
9 tw5 Containment wall thickness m Normal
10 D1 Diameter of uphead m Normal
11 H1 Height of uphead m Normal
12 D2 Diameter of containment m Normal
13 H2 Height level of operative plant layer m Normal
14 H3 Height level of the blade m Normal
15 H4 Height level of the containment bottom m Normal
16 H5 Containment height m Normal
17 D3 Containment diameter m Normal
18 V Containment volume m3 Normal
19 A1 Area in air baffle m2 Normal
20 A2 Area in air baffle downcomer m2 Normal
21 Z1 Height of the downcomer air baffle m Normal
22 Z2 Height of the riser air baffle m Normal
23 A3 Area in air baffle riser m2 Normal
24 A4 Area in air baffle riser m2 Normal
25 A5 Area in air baffle riser m2 Normal
26 A6 Area in air baffle downcomer intake m2 Normal
27 A7 Area at the blade turn m2 Normal
28 A8 Area at diffusers level m2 Normal
29 A9 Area at the inlet of the chimney m2 Normal
30 A10 Area at the exhaust of the chimney m2 Normal
42 Hc Height of chimney m Normal
43 q1 Central containment layer density kg/m3 Normal
44 a1 Central containment layer conductivity W/(m K) Normal
45 Cp1 Central containment layer heat capacity J/(kg K) Normal
46 q2 Covering layer density kg/m3 Normal
47 a2 Covering layer conductivity W/(m K) Normal
48 Cp2 Covering layer heat capacity J/(kg K) Normal

Input variable Description Unit Type of

2 Tinlet External air temperature �C Seasonal
3 Pinlet External air pressure MPa Seasonal

Input variable Description Unit Type of

31 f1 Air baffle friction factor – Uniform
32 f2 Air baffle friction factor – Uniform
33 f3 Air baffle friction factor – Uniform
34 f4 Air baffle friction factor – Uniform
35 f5 Air baffle friction factor – Uniform
36 f6 Air baffle friction factor – Uniform
37 f7 Air baffle friction factor – Uniform
38 f8 Air baffle friction factor – Uniform
39 f9 Air baffle friction factor – Uniform
40 f10 Air baffle friction factor – Uniform
41 f11 Air baffle friction factor – Uniform
49 Twater Pool cooling water temperature �C Uniform
50 uair Air baffle intake air speed m/s Uniform
51 Mvapor Initial in-containment vapor mass kg Uniform
To evaluate how the uncertainty in the input propagates to the
output of the model, the variance of the distribution of the output
variable Y is decomposed as follows:

Var½Y � ¼ VarX1 EX2 ðYjX1Þ

 �

þ EX1 VarX2 ðYjX1Þ

 �

ða5Þ

where X1 has been indicated explicitly as subscript of the variance
and expectation operators to highlight that these are applied with
respect to such variable. The sensitivity relevance of X1 can be asso-
ciated to its contribution to the output variance, i.e. the term
VarX1 ½EX2 ðYjX1Þ� in (a5). Quantitatively, it is then customary to take
the following measure as an index of the importance of the variable
X1 with respect to its contribution to the uncertainty in the output
Y:

g2
1 ¼

VarX1 EX2 ðY jX1Þ

 �
Var½Y� ða6Þ
distribution Mean value, l Standard deviation, r l-4r l + 4r

182 5 162 202
163 8.15 130.4 195.6
0.052 0.00026 0.051 0.053
0.043 0.000215 0.04214 0.04386
0.043 0.000215 0.04214 0.04386
0.015 0.000075 0.0147 0.0153
0.015 0.000075 0.0147 0.0153
43 0.215 42.14 43.86
13.51 0.06755 13.24 13.78
43 0.215 42.14 43.86
0 0.05 �0.2 0.2
17.25 0.08625 16.905 17.595
�11 0.055 �11.22 �10.78
46.58 0.2329 45.65 47.51
43 0.215 42.14 43.86
75000 750 72000 78000
42.28 0.4228 40.5888 43.9712
131.1 1.311 125.856 136.344
32.51 0.16255 31.86 33.16
32.51 0.16255 31.86 33.16
125.8 1.258 120.768 130.832
34 0.34 32.64 35.36
156.97 1.5697 150.6912 163.2488
113 1.13 108.48 117.52
68.49 0.6849 65.7504 71.2296
463.1 4.631 444.576 481.624
41.53 0.4153 39.8688 43.1912
74.82 0.7482 71.8272 77.8128
8.27 0.04135 8.1046 8.4354
7750.476 38.75238 7595.47 7905.49
51.9 5.19 31.14 72.66
447.9876 2.239938 439.03 456.95
3324.15 16.62075 3257.66 3390.63
0.52246 0.052246 0.31 0.73
544.284 2.72142 533.39 555.16

distribution Lower value Upper value

2 39
0.0984 0.1011

distribution Mean value, l Lower value Upper value

1.15 1.035 1.265
3.74 3.366 4.114
1.6 1.44 1.76
0.5 0.45 0.55
1.13 1.017 1.243
0.5 0.45 0.55
3.9 3.51 4.29
1 0.9 1.1
3.68 3.312 4.048
2.76 2.484 3.036
1.27 1.143 1.397
25 1 32
2 0.5 4
36,600 33,600 39,600
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