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Abstract. We consider a diffuse interface model for phase separation of an isothermal
incompressible binary fluid in a Brinkman porous medium. The coupled system con-
sists of a convective Cahn-Hilliard equation for the phase field φ, i.e., the difference of
the (relative) concentrations of the two phases, coupled with a modified Darcy equation
proposed by H.C. Brinkman in 1947 for the fluid velocity u. This equation incorporates
a diffuse interface surface force proportional to φ∇µ, where µ is the so-called chemi-
cal potential. We analyze the well-posedness of the resulting Cahn-Hilliard-Brinkman
(CHB) system for (φ,u). Then we establish the existence of a global attractor and the
convergence of a given (weak) solution to a single equilibrium via  Lojasiewicz-Simon
inequality. Furthermore, we study the behavior of the solutions as the viscosity goes to
zero, that is, when the CHB system approaches the Cahn-Hilliard-Hele-Shaw (CHHS)
system. We first prove the existence of a weak solution to the CHHS system as limit of
CHB solutions. Then, in dimension two, we estimate the difference of the solutions to
CHB and CHHS systems in terms of the viscosity constant appearing in CHB.
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1. Introduction

The so-called Brinkman equation was proposed by H.C. Brinkman in [6] as a modified
Darcy’s law in order to describe the flow through a porous mass. If we assume that the
incompressible fluid occupies a bounded domain Ω ⊂ R

d, d = 2, 3, for any time t ∈ (0, T ),
T > 0, the Brinkman equation for the (divergence free) fluid velocity u reads

−∇ · [νD(u)] + ηu = −∇p,

in Ω × (0, T ). Here 2D(u) = ∇u + (∇u)tr, ν > 0 is the viscosity, η > 0 the fluid
permeability and p is the fluid pressure.

More recently, a diffuse interface variant of Brinkman equation has been proposed to
model phase separation of incompressible binary fluids in a porous medium (see [22]). Let
us suppose that both the fluids have equal constant density and indicate by φ the difference
of the fluid (relative) concentrations. Denoting by u the (averaged) fluid velocity, the
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resulting model is the following

∂tφ+ ∇ · (φu) = ∇ · (M∇µ),(1.1)

µ = −ε∆φ+
1

ε
f(φ),(1.2)

−∇ · [νD(u)] + ηu = −∇p− γφ∇µ,(1.3)

∇ · u = 0,(1.4)

in Ω× (0, T ). Here M > 0 stands for the mobility, ε > 0 is related to the diffuse interface
thickness, f is the derivative of a double well potential describing phase separation, and
γ > 0 is a surface tension parameter.

This model consists of a convective Cahn-Hilliard equation (1.1)-(1.2) coupled with
the Brinkman equation through the surface tension force γφ∇µ. For this reason (1.1)-
(1.4) has been called Cahn-Hilliard-Brinkman (CHB) system. Such a system belongs to
a class of diffuse interface models which are used to describe the behavior of multi-phase
fluids. We recall, in particular, the Cahn-Hilliard-Navier-Stokes system which has been
investigated in several papers (see, e.g., [2, 3, 4, 7, 12, 13, 14, 20, 24, 31, 32], cf. also [16]
for a recent review on modeling and numerics).

CHB system has recently been analyzed from the numerical viewpoint in [9] (see also
[10]). More precisely, the authors have considered system (1.1)-(1.4) with M , ν and η

possibly depending on φ and endowed with the boundary and initial conditions

u|∂Ω = 0, on ∂Ω × (0, T ),(1.5)

∂nφ = ∂nµ = 0, on ∂Ω × (0, T ),(1.6)

φ(0) = φ0,(1.7)

where φ0 : Ω → R is a given function. Here n stands for the outward normal vector to
∂Ω which is supposed to be smooth enough.

The main goal of this contribution is to establish some theoretical results on (1.1)-(1.7),
in the case when M , ν and η are constant. First of all we analyze the well-posedness of the
problem, proving the global existence and uniqueness of a weak solution and its continuous
dependence on the initial datum. Secondly, we study the longterm behavior of the CHB
system as a dissipative dynamical system by proving the existence of a global attractor.
Then we investigate the long-time dynamics of any given weak solution by showing that
each trajectory does converge to a unique stationary state, with an explicit convergence
rate. Our results includes the case η = 0 (see [23] and references therein).

In the second part of the paper we analyze the behavior of solutions when ν goes to zero.
Observe that when ν = 0 system (1.1)-(1.4) becomes the so-called Cahn-Hilliard-Hele-
Shaw (CHHS) model. This is a particularly challenging problem which finds applications
in tumor growth dynamics (see, e.g., [21] and its references) and has been recently studied
from the theoretical viewpoint in [21, 28, 29] (see also [11, 17, 18] and references therein).

We are able to prove that there is a global weak solution to CHHS system which is the
limit of solutions to CHB system with (1.5)-(1.7) (compare with [11, Thm.2.4]). Notice
that uniqueness of weak solutions is still an open problem. On the contrary, a strong
solution is unique, but, if d = 3, only local existence is known so far unless the initial
datum is a small perturbation of a suitable constant state (see [21]).
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In dimension two, we also provide an estimate of the difference of (strong) solutions to
CHB and CHHS systems with respect to ν.

The plan of this paper goes as follows. In the next section we state the main results
along with some notation and basic tools. Section 3 is devoted to prove certain a priori
estimates. Then, in Section 4, we establish the well-posedness of problem (1.1)-(1.7) and
a global dissipative estimate. In Section 5 we obtain some higher-order estimates which
are helpful to prove the existence of the global attractor as well as to show, in Section 6,
the convergence to the equilibrium of a given weak solution. Finally, in Section 7, we
analyze what happens when ν goes to zero, while in Section 8 we estimate the difference
of (strong) solutions to CHB and CHHS systems.

2. Preliminaries and main results

Here we list our assumptions on f and the potential F (s) :=
∫ s

0
f(y) dy and we introduce

some notation. Then we state our main results. This requires to formulate our problems
rigorously. We also recall a pair of Gronwall-type lemmas.

Assumptions on F and f . We assume that f ∈ C1(R), with f(0) = 0, is such that

(2.1) |f(s)| ≤ c(1 + |s|3),
and

F (s) ≥ −c,(2.2)

for all s ∈ R and some c > 0. In the course of the investigation we shall need further
assumptions such as

(2.3) |f ′(s) − f ′(t)| ≤ c|s− t|(1 + |s| + |t|),
or the stronger condition f ∈ C2(R) such that

(2.4) |f ′′(s)| ≤ c(1 + |s|).
We shall also make use of the following dissipation condition

(2.5) inf
s∈R

f ′(s) > −∞.

A typical example of (regular) double well potential is

(2.6) F (s) = (s2 − 1)2,

which complies with (2.1)-(2.5). More generally, one can take a fourth degree polynomial
with positive leading coefficient.

Functional spaces. Let Ω ⊂ R
d, d = 2, 3, be either a smooth bounded connected

domain or a convex polygonal or polyhedral domain. For any positive integer r, let
Hr(Ω) = W r,2(Ω), the usual Sobolev space, and denote the norm ‖ · ‖W r,2(Ω) by ‖ · ‖r.
Throughout the paper, we set H = L2(Ω),

V = {φ ∈ v ∈ C∞(Ω) : ∂nφ = 0 on ∂Ω}
H1(Ω)

and Hr = Hr(Ω) ∩ V,
endowed with the norm ‖·‖r. Similarly, we denote the norm ‖·‖L2 by ‖·‖. The shorthand
〈·, ·〉 will stand both for the scalar product in H and for the duality product between Hr
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and its dual space H−r. The same symbols will also be used for the scalar product and
norm in spaces of vector-valued elements.
Besides, let V be the space of divergence-free test functions defined by

V = {v ∈ C∞
0 (Ω,R3) : ∇ · v = 0}.

We shall use the following spaces

H = V(H)3

and V = V (H1)3

.

In particular we recall that if v ∈ V then v|∂Ω = 0 and if v ∈ H then v · n = 0 on ∂Ω
(see, e.g., [27, Chapter I]).

Notation. Without loss of generality we will set M = ε = γ = 1. Throughout the paper,
c ≥ 0 will stand for a generic constant and Q(·) for a generic positive increasing function.

2.1. Statement of the main results. Let us introduce the definition of weak solution
to the CHB system with boundary and initial conditions (1.5)-(1.7).

Definition 2.1. Let ν > 0, φ0 ∈ H1 and T > 0 be given. A pair (φ,u) is a (weak)
solution to system (1.1)-(1.4) endowed with (1.5)-(1.7) if

φ ∈ C([0, T ],H1) ∩ L2(0, T ; H3)

satisfies

〈∂tφ(t), w〉 + 〈∇ · (φ(t)u(t)), w〉 + 〈∇µ(t),∇w〉 = 0, ∀w ∈ H1, a.e. t ∈ [0, T ],(2.7)

∂nφ = 0, a.e. on ∂Ω × (0, T ),

φ|t=0 = φ0, a.e. in Ω,

with µ ∈ L2(0, T ; H1) given by (1.2) and

u ∈ L2(0, T ;V )

fulfills

(2.8) ν〈∇u(t),∇v〉 + η〈u(t), v〉 = −〈φ(t)∇µ(t), v〉, ∀v ∈ V , a.e. t ∈ [0, T ].

Remark 2.2. It is straightforward to observe that any weak solution satisfies mass con-
servation, namely,

(2.9) 〈φ(t)〉 = 〈φ0〉, ∀t ≥ 0,

where

〈φ(t)〉 :=
1

|Ω|

∫

Ω

φ(x, t) dx.

Remark 2.3. As we shall see in Section 3, the regularity assumed in Definition 2.1 yields

∇ · (φu) ∈ L2(0, T ; H−1),

so that ∂tφ ∈ L2(0, T ; H−1) by comparison. Besides, we have

φ∇µ ∈ L8/5(0, T ;H) ∩ L2(0, T ;V ∗).
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Remark 2.4. As usual the pressure term is dropped in the weak formulation of the Stokes
problem. Indeed, the pressure can be recovered (up to a constant) thanks to a classical
result (see, for instance, [27, Theorem I.1.4]). In particular, since

S = ν∆u− ηu + φ∇µ ∈ L2(0, T ;V ∗),

we know that there exists a (unique up to an additive function of t only) function p ∈
L2(0, T ; H) satisfying ∇p = S.

Global existence and uniqueness of a weak solution is given by

Theorem 2.5. Let ν > 0, η ≥ 0 and f satisfy (2.1)-(2.2). Let φ0 ∈ H1 be given. Then,
for every T > 0, there exists a pair (φ,u) which is a solution to the CHB system according
to Definition 2.1. If (2.3) holds, then the weak solution is unique.

We also have continuous dependence estimates.

Theorem 2.6. Let ν > 0, η > 0. Under the same assumptions of Theorem 2.5, if (φ1,u1)
and (φ2,u2) are two weak solutions to the CHB system such that 〈φ1(0)〉 = 〈φ2(0)〉, then,
for every T > 0, there exists CT > 0 depending on R = max{‖φ1(0)‖1, ‖φ2(0)‖1} such
that the following continuous dependence estimates hold

(2.10) ‖φ1(t) − φ2(t)‖21 ≤ ‖φ1(0) − φ2(0)‖21eCT /
√
ν ,

and

(2.11)

∫ t

0

‖u1(t) − u2(t)‖21 ≤ ‖φ1(0) − φ2(0)‖21
(

1 + CT eCT /
√
ν
)

,

for every t ∈ [0, T ].

Remark 2.7. In the case η = 0 (cf. [23]) the same continuous dependence estimates hold
by replacing

√
ν with ν in (2.10) and (2.11).

The next result shows that any weak solution converges to a single stationary state as
time goes to infinity.

Theorem 2.8. Let ν > 0, η ≥ 0 and let f be real analytic satisfying (2.2)-(2.5). For
every fixed φ0 ∈ H1, the global solution φ originating from φ0 converges to an equilibrium
φ⋆ as t→ ∞, with the following convergence rate

(2.12) ‖φ(t) − φ⋆‖1 ≤
cν

(1 + t)θ/(1−2θ)
, ∀t ≥ t∗,

for some θ = θ(φ⋆) ∈ (0, 1
2
), cν = cν(‖φ0‖1) ≥ 0 and t∗ > 0. Here φ⋆ ∈ H2 is a solution to

the stationary system

−∆z + f(z) = const in Ω, ∂nz = 0 on ∂Ω, 〈z〉 = 〈φ0〉.
Furthermore, the velocity field u vanishes and satisfies

(2.13) ‖u(t)‖1 ≤
cν

(1 + t)θ/4(1−2θ)
, ∀t ≥ t∗.

Here cν → ∞ as ν → 0.
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Let us now introduce the definition of weak solution to the CHHS system endowed with
(1.6)-(1.7) and

(2.14) u · n = 0, on ∂Ω × (0, T ).

Definition 2.9. Let φ0 ∈ H1 and T > 0 be given. A pair (φ,u) is a (weak) solution to
the CHHS system endowed with (1.6)-(1.7) and (2.14) if

φ ∈ C
w

([0, T ],H1) ∩ L2(0, T ; H3)

satisfies

〈∂tφ(t), w〉 + 〈∇ · (φ(t)u(t)), w〉 + 〈∇µ(t),∇w〉 = 0, ∀w ∈ H1, a.e. t ∈ [0, T ],

∂nφ = 0, a.e. on ∂Ω × (0, T ),

φ|t=0 = φ0, a.e. in Ω,

with µ ∈ L2(0, T ; H1) given by (1.2) and

u ∈ L2(0, T ;H)

fulfills

η〈u(t), v〉 = −〈φ(t)∇µ(t), v〉, ∀v ∈ V , a.e. t ∈ [0, T ].

Remark 2.10. It is worth noting that the regularity assumed in Definition 2.9 yields

∇ · (φu) ∈ L8/5(0, T ; H−1) whence ∂tφ ∈ L8/5(0, T ; H−1).

The following theorem says that a weak solution to the CHHS system can be found as
a limit of solutions to CHB system as viscosity vanishes.

Theorem 2.11. Let η > 0 and let f satisfy (2.1)-(2.2). For φ0 ∈ H1 let {νn}n∈N be a
sequence of positive numbers such that νn → 0 as n→ ∞. Let (φn,un) be the sequence of
weak solutions corresponding to the CHB system with ν = νn originating from φ0. Then,
up to a subsequence, (φn,un) converges to a weak solution (φ,u) to the CHHS system
according to Definition 2.9 in the following sense:

φn → φ weakly in L2(0, T ; H3) and strongly in L2(0, T ; H2),

un → u weakly in L2(0, T ;H).

Finally, in dimension two, we state a result about the estimate of the difference between
a solution to the BCH system and a solution to the CHHS system. Indeed, it is known
from [21] that the CHHS system endowed with (1.6)-(1.7) and (2.14) admits a unique
strong solution provided that φ0 ∈ H2, which is also global when d = 2. In this case, we
have the following result

Theorem 2.12. Let d = 2 and η > 0. Let f satisfy (2.2)-(2.3). Take φν
0, φ0 ∈ H2 such

that 〈φν
0〉 = 〈φ0〉 and set

R := sup
ν>0

{‖φν
0‖2, ‖φ0‖2} <∞.

Let (φν ,uν) be the unique weak solution to the CHB system with ν > 0, originating from
φν
0, and (φ,u) the solution to the CHHS system with initial datum φ0. Then, for every
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T > 0, there exists CT > 0 (depending only on R) such that

‖φν(t) − φ(t)‖21 +

∫ t

0

‖uν(y) − u(y)‖2 dy ≤ ‖φν
0 − φ0‖21eCT + CTν

1/2, ∀t ∈ [0, T ].

In particular, if φν
0 = φ0, then

φν → φ in L∞(0, T ; H1) as ν → 0,

for all T > 0.

2.2. Basic inequalities. We will exploit the classical inequalities due to Sobolev, Ga-
gliardo and Nirenberg, Agmon and Poincaré, respectively, which are standard (see, e.g.,
[25, 27]).

We also need a pair of Gronwall-type inequalities. The uniform Gronwall lemma ([26,
Section 1.1.3]), namely,

Lemma 2.13. Let ψ0 be an absolutely continuous nonnegative function and ψ1, ψ2 be two
nonnegative functions satisfying, almost everywhere in R

+, the differential inequality

d

dt
ψ0 ≤ ψ0ψ1 + ψ2.

Assume also that

sup
t≥0

∫ t+r

t

ψı(τ)dτ ≤ mi, i = 0, 1, 2,

for some positive constants mı and r > 0. Then,

ψ0(t+ r) ≤
(m0

r
+m2

)

em1 , ∀t ≥ 0.

The following differential Gronwall lemma whose proof is elementar.

Lemma 2.14. Let ψ : [t⋆,∞) → R be an absolutely continuous function, which fulfills
for almost every t ≥ t⋆ the differential inequality

d

dt
ψ(t) + αψ(t) ≤ (1 + t)−β,

for some α > 0 and β > 0. Then, there exists c > 0 such that, for every sufficiently large
time t

ψ(t) ≤ c(1 + ψ(t⋆))(1 + t)−β.

3. Basic estimates

In this section we let φ0 ∈ H1 and we denote by (φ,u) a weak solution to the CHB
system originating from φ0. Our aim is to prove a number of a priori estimates for (φ,u).

To this aim, in the following we denote by Q(·) a generic increasing and positive function
which is independent of ν. All the energy estimates are formal but they can be performed
rigorously within a Galerkin approximation scheme (see Section 4 for references).
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3.1. Energy estimates.

Lemma 3.1. For any given R > 0 the following inequality holds

(3.1) ‖φ(t)‖21 +

∫ ∞

0

(

‖∇µ(y)‖2 + η‖u(y)‖2
)

dy + ν

∫ ∞

0

‖∇u(y)‖2dy ≤ Q(R),

for every initial datum φ0 with ‖φ0‖1 ≤ R. Besides, for every T > 0, we have

(3.2)

∫ T

0

(

‖µ(y)‖21 + ‖φ(y)‖23
)

dy ≤ QT (R),

for some increasing positive function QT depending on T .

Proof. Taking w = µ in (2.7) and v = u in (2.8), and summing up the resulting equalities,
we have

(3.3)
d

dt

(1

2
‖∇φ‖2 + 〈F (φ), 1〉

)

+ ‖∇µ‖2 + ν‖∇u‖2 + η‖u‖2 = 0.

In light of (2.1), this provides

‖φ(t)‖1 ≤ ‖φ0‖1 + 2〈F (φ0), 1〉 ≤ Q(R), ∀t ≥ 0.

A subsequent integration in time of (3.3) completes the proof of (3.1).
Now, multiplying (1.2) in H by the constant function 1, we get

〈µ, 1〉 = 〈f(φ), 1〉,
which, by (2.1), gives

〈µ〉 ≤ c(1 +

∫

Ω

|φ|3) ≤ c(1 + ‖φ‖31) ≤ Q(R).

Thanks to (3.1) we obtain, for every T > 0,
∫ T

0

‖µ(y)‖21 dy ≤ QT (R),

hence µ ∈ L2(0, T ; H1). Let us now multiply (1.2) by −∆2φ in H. This yields

〈∇µ,∇∆φ〉 = −‖∇∆φ‖2 + 〈f ′(φ)∇φ,∇∆φ〉.
On the other hand, recalling (2.1) and (3.1), we have

〈f ′(φ)∇φ,∇∆φ〉 ≤ ‖f ′(φ)‖L3‖∇φ‖L6‖∇∆φ‖
≤ Q(R)‖∇φ‖1/2‖∇∆φ‖1/2‖∇∆φ‖

≤ Q(R) +
1

4
‖∇∆φ‖2,

which entails
1

2
‖∇∆φ‖2 ≤ ‖∇µ‖2 + Q(R).

Owing to (3.1), we find

(3.4)

∫ T

0

‖φ(y)‖23 dy ≤ QT (R),

so that φ ∈ L2(0, T ; H3), completing the proof of (3.2).
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Remark 3.2. Since φ ∈ L∞(R+; H1) ∩ L2(0, T ; H3), we easily get by interpolation
∫ T

0

‖φ‖p2 dt ≤
∫ T

0

‖φ‖p/21 ‖φ‖p/23 dt ≤ c

∫ T

0

‖φ‖p/23 dt <∞ if p ≤ 4.

Thus

(3.5)

∫ T

0

‖φ(y)‖42 dy ≤ QT (R),

that is, φ ∈ L4(0, T ; H2).

3.2. Further Estimates.

The term ∇ · (φu). For w ∈ H1, using the Agmon inequality and interpolation, we
compute

〈∇ · (φu), w〉 = 〈φu,∇w〉 ≤ ‖∇w‖‖u‖‖φ‖L∞

≤ ‖∇w‖‖u‖‖φ‖3/41 ‖φ‖1/43 ≤ Q(R)‖∇w‖‖u‖‖φ‖1/43 .

This implies
∣

∣

∣

∫ T

0

〈∇ · (φu), w〉 dt
∣

∣

∣
≤ Q(R)

∫ T

0

‖∇w‖‖u‖‖φ‖1/43 dt

≤ Q(R)
(

∫ T

0

‖∇w‖8/3dt
)3/8(

∫ T

0

‖u‖2 dt
)1/2(

∫ T

0

‖φ‖23 dt
)1/8

.

As a consequence, invoking the fact that u ∈ L2(0, T ;H) and φ ∈ L2(0, T ; H3), we get

∣

∣

∣

∫ T

0

〈∇ · (φu), w〉 dt
∣

∣

∣
≤ QT (R)

(

∫ T

0

‖∇w‖8/3dt
)3/8

,

which gives

∇ · (φu) ∈ L8/5(0, T ; H−1).

We stress that this control is independent of ν. Exploiting the ν-dependent estimate
u ∈ L2(0, T ;V ) we can improve the previous estimate. Indeed, we have

〈∇ · (φu), w〉 = 〈φu,∇w〉 ≤ ‖∇w‖‖u‖L3‖φ‖L6 ≤ Q(R)‖∇w‖‖u‖1/2‖u‖1/21 ,

providing
∣

∣

∣

∫ T

0

〈∇ · (φu), w〉 dt
∣

∣

∣
≤ Q(R)

∫ T

0

‖∇w‖‖u‖1/2‖u‖1/21 dt

≤ Q(R)
(

∫ T

0

‖∇w‖2 dt
)1/2(

∫ T

0

‖u‖‖u‖1 dt
)1/2

≤ CT

ν1/4

(

∫ T

0

‖∇w‖2 dt
)1/2

.

Therefore, if ν > 0, then

∇ · (φu) ∈ L2(0, T ; H−1).

The term φ∇µ. Let v ∈ H . Thanks to Agmon’s inequality, we infer
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〈φ∇µ, v〉 ≤ ‖v‖‖∇µ‖‖φ‖L∞ ≤ ‖v‖‖∇µ‖‖φ‖1/21 ‖φ‖1/22 ≤ Q(R)‖v‖‖∇µ‖‖φ‖1/22 .

On account of (3.5), we can estimate as follows
∣

∣

∣

∫ T

0

〈φ∇µ, v〉 dt
∣

∣

∣
≤ Q(R)

∫ T

0

‖v‖‖∇µ‖‖φ‖1/22 dt

≤ Q(R)
(

∫ T

0

‖v‖8/3 dt
)3/8(

∫ T

0

‖∇µ‖2 dt
)1/2(

∫ T

0

‖φ‖42 dt
)1/8

≤ QT (R)
(

∫ T

0

‖v‖8/3 dt
)3/8

,

which yields, independently of ν,

φ∇µ ∈ L8/5(0, T ;H).

4. Well-posedness for ν > 0

Aim of this section is proving Theorem 2.5. As a matter of fact, due the appearance of
regularizing term −ν∆u in the Brinkman equation, the (global) existence can be easily
obtained by using a standard Galerkin procedure based on the formal energy estimates
in the previous section. We refer the reader to [21, 29] for some details on the procedure;
see also Section 7 where the argument needed to pass to the limit in the suitable Galerkin
scheme is detailed in a weaker setting.

Instead, the continuous dependence estimates (2.10) and (2.11) (hence uniqueness) are
more delicate and we prove it in some details, showing the crucial role played by ν > 0.

4.1. Continuous Dependence and Uniqueness. Let ν > 0 and η > 0 be fixed, and
consider (φ1,u1) and (φ2,u2) two weak solutions to the CHB system such that 〈φ1(0)〉 =
〈φ2(0)〉. Their difference φ̄ = φ1 − φ2, ū = ū1 − ū2 solves a.e. t ∈ [0, T ]

〈∂tφ̄(t), w〉 + 〈∇ · (φ1(t)ū(t)), w〉 + 〈∇ · (φ̄(t)u2(t)), w〉(4.1)

+ 〈∇µ̄(t),∇w〉 = 0, ∀w ∈ H1,

ν〈∇ū(t),∇v〉 + η〈ū(t), v〉(4.2)

= −〈φ1(t)∇µ̄(t), v〉 − 〈φ̄(t)∇µ2(t), v〉, ∀v ∈ V ,

where
µ̄ = −∆φ̄+ [f(φ1) − f(φ2)]

and 〈φ̄〉 = 0.

Taking w = −∆φ̄ in (4.1), we get

d

dt

1

2
‖∇φ̄‖2 + 〈φ1ū,∇∆φ̄〉 + 〈φ̄u2,∇∆φ̄〉 − 〈∇µ̄,∇∆φ̄〉 = 0,

with
〈∇µ̄,∇∆φ̄〉 = −‖∇∆φ̄‖2 + 〈∇[f(φ1) − f(φ2)],∇∆φ̄〉.

Thus we obtain

(4.3)
d

dt

1

2
‖∇φ̄‖2 + ‖∇∆φ̄‖2 = −〈φ1ū,∇∆φ̄〉 − 〈φ̄u2,∇∆φ̄〉 + 〈∇[f(φ1) − f(φ2)],∇∆φ̄〉.
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Taking v = ū in (4.2) yields

ν‖∇ū‖2 + η‖ū‖2 = −〈φ1∇µ̄, ū〉 − 〈φ̄∇µ2, ū〉.
Note that, by definition of µ̄, we have

−〈φ1∇µ̄, ū〉 = 〈φ1∇∆φ̄, ū〉 − 〈φ1∇[f(φ1) − f(φ2)], ū〉,
so that the terms ±〈φ1ū,∇∆φ̄〉 get canceled when adding with (4.3). Therefore we end
up with

d

dt

1

2
‖∇φ̄‖2 + ‖∇∆φ̄‖2 + ν‖∇ū‖2 + η‖ū‖2

= −〈φ̄u2,∇∆φ̄〉 − 〈φ̄∇µ2, ū〉 − 〈φ1∇[f(φ1) − f(φ2)], ū〉 + 〈∇[f(φ1) − f(φ2)],∇∆φ̄〉.
We now estimate the right hand side in light of the energy estimates in Section 3. This,
in particular, gives

sup
t≥0

(‖φ1(t)‖1 + ‖φ2(t)‖1) ≤ Q(R),

with R = max{‖φ1(0)‖1, ‖φ2(0)‖1}. First of all, we have

−〈φ̄u2,∇∆φ̄〉 ≤ ‖φ̄‖1‖u2‖1/2‖u2‖1/21 ‖∇∆φ̄‖ ≤ 1

4
‖∇∆φ̄‖2 +

h(t)

ν1/2
‖φ̄‖21,

where h(t) := cν1/2‖u2(t)‖‖u2(t)‖1 and c > 0 is independent of ν.

Next, observe that the following estimate holds

−〈φ̄∇µ2, ū〉 ≤ ‖φ̄‖1‖ū‖L3‖∇µ2‖ ≤ ν

2
‖∇ū‖2 +

η

4
‖ū‖2 +

k(t)

η1/2ν1/2
‖φ̄‖21,(4.4)

where k(t) := c‖∇µ2(t)‖2 for some c > 0, independent of ν.

In order to deal with the term

〈∇[f(φ1) − f(φ2)],∇∆φ̄〉 ≤ ‖∇[f(φ1) − f(φ2)]‖‖∇∆φ̄‖

≤ 1

4
‖∇∆φ̄‖2 + C‖∇[f(φ1) − f(φ2)]‖2,

we observe that

‖∇[f(φ1) − f(φ2)]‖2 ≤ ‖[f ′(φ1) − f ′(φ2)]∇φ1‖2 + ‖f ′(φ2)∇φ̄‖2.
We estimate the latter term on the right hand side in light of (2.1), (3.1) and interpolation,
that is,

‖f ′(φ2)∇φ̄‖2 ≤ c

∫

Ω

(1 + |φ2|4)|∇φ̄|2 ≤ c(1 + ‖φ2‖4L∞)‖φ̄‖21 ≤ Q(R)(1 + ‖φ2‖22)‖φ̄‖21,

and arguing analogously for the former, we get

‖[f ′(φ1) − f ′(φ2)]∇φ1‖2 ≤ c

∫

Ω

|(1 + |φ1| + |φ2|)φ̄∇φ1|2 ≤ Q(R)‖φ̄‖21‖φ1‖22.

This proves

(4.5) ‖∇[f(φ1) − f(φ2)]‖2 ≤ ℓ(t)‖φ̄‖21,
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where ℓ(t) := Q(R)(1 + ‖φ1(t)‖22 + ‖φ2(t)‖22). In order to control the remaining term, we
exploit (4.5) in the following way

〈φ1∇[f(φ1) − f(φ2)], ū〉 ≤ ‖φ1‖L6‖∇[f(φ1) − f(φ2)]‖‖ū‖L3(4.6)

≤ Q(R)‖ū‖1/2‖∇ū‖1/2‖∇[f(φ1) − f(φ2)]‖

≤ ν

2
‖∇ū‖2 +

η

2
‖ū‖2 +

ℓ(t)

ν1/2η1/2
‖φ̄‖21.

Collecting the above estimates we get

(4.7)
d

dt
‖φ̄‖21 +

ν

2
‖∇ū‖2 +

η

2
‖ū‖2 ≤ g(t)

ν1/2η1/2
‖φ̄‖21,

where g(t) := h(t) + k(t) + ℓ(t), on account of (3.1) and (3.2), satisfies
∫ T

0

g(y) dy ≤ QT (R).

Hence an application of the standard Gronwall lemma gives

‖φ1(t) − φ2(t)‖21 ≤ ‖φ1(0) − φ2(0)‖21eν
−1/2η−1/2

∫ t
0
g(y) dy,

which proves (2.10). An integration of (4.7) yields the further bound (2.11). Finally,
letting φ1(0) = φ2(0) in (2.10) and (2.11) we obtain φ1(t) = φ2(t) and u1(t) = u2(t) for
almost every t, i.e., uniqueness.

We observe that, when η = 0 (see Remark 2.7), the only changes needed in the proof
of the continuous dependence estimate are in (4.4) and in (4.6), which now become

−〈φ̄∇µ2, ū, ū〉 ≤
ν

4
‖∇ū‖2 +

k(t)

ν
‖φ̄‖21

−〈φ1∇[f(φ1) − f(φ2)], ū〉 ≤
ν

2
‖∇ū‖2 +

ℓ(t)

ν
‖φ̄‖21.

4.2. The semigroup Sν(t). Let I ∈ R and consider the subspace of H1

VI = {φ ∈ H1 : 〈φ〉 = I}.
An immediate consequence of the results of Section 4.1 is that, for any fixed ν > 0, system
(1.1)-(1.6) generates a semigroup

Sν(t) : VI → VI

defined by the rule Sν(t)φ0 = φ(t), where (φ,u) is the unique global (weak) solution to
system (1.1)-(1.6). Furthermore, owing to the continuous dependence estimate (2.10),
the semigroup is strongly continuous, namely, Sν(t) ∈ C(VI , VI). Notice that the energy
estimates of Section 3 yield in particular the boundedness of each trajectory

(4.8) ‖Sν(t)φ0‖1 = ‖φ(t)‖1 ≤ c, ∀t ≥ 0,

where, from now on, c ≥ 0 denotes a generic constant that may depend on ‖φ0‖1 but is
independent of the particular φ0.

Besides, if the nonlinearity f satisfies further dissipativity assumptions stronger than
(2.2), it is possible to prove that the dynamical system (VI , Sν(t)) is dissipative for any
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fixed I ∈ R (and ν > 0). This means that there exists a bounded absorbing set B ⊂ VI
with the following property: for every R > 0 there exists tR > 0 such that

Sν(t)φ0 ∈ B, ∀t ≥ tR,

for every φ0 ∈ VI with ‖φ0‖1 ≤ R. This is witnessed by the following result.

Proposition 4.1. Let the assumptions of Theorem 2.5 hold and let us assume that for
some c0 ≥ 0, ci > 0, i = 1, 2 and q > 2 there hold

f(s)s ≥ c1F (s) − c0 and F (s) ≥ c2|s|q − c0,

for all s ∈ R. Then,

(4.9) ‖Sν(t)φ0‖1 ≤ Q(‖φ0‖1)e−kt/2 +RI , ∀t ≥ 0,

for some k > 0, where RI > 0 depends on I = 〈φ0〉 but is independent of φ0.

The proof is standard and it is therefore omitted.

5. Higher order estimates

Here we proceed formally relying on the Galerkin approximation scheme introduced in
the previous section. For the sake of simplicity, from now on we set η = 1 (see Remark
6.5, however).

Proposition 5.1. Let the assumptions of Theorem 2.5 hold and suppose, in addition,
f ∈ C2(R) satisfying (2.4). Then the following estimate holds

(5.1) ‖φ(t)‖2 +

∫ t+1

t

‖φ(y)‖24 dy ≤ c

(

1 +
1

ν

)

, ∀t ≥ 1.

Proof. Taking v = u in equation (2.8) we get

(5.2) ν‖∇u‖2 + ‖u‖2 = 〈µ∇φ,u〉.
By (2.1) and (4.8) we have

‖µ‖ ≤ ‖∆φ‖ + ‖f(φ)‖ ≤ c(1 + ‖∆φ‖).

Thus, for ν > 0, we can estimate the latter term as follows

〈µ∇φ,u〉 ≤ ‖µ‖‖∇φ‖L6‖u‖L3 ≤ c(1 + ‖∆φ‖)‖∆φ‖‖u‖1/2‖∇u‖1/2

≤ 1

2
‖u‖2 +

ν

2
‖∇u‖2 +

c

ν1/2
(1 + ‖∆φ‖2)‖∆φ‖2.

From this we deduce

(5.3) ν‖∇u‖2 + ‖u‖2 ≤ c

ν1/2
(1 + ‖∆φ‖2)‖∆φ‖2.

Let us now take w = ∆2φ in equation (2.7). This yields

1

2

d

dt
‖∆φ‖2 + ‖∆2φ‖2 = 〈∆f(φ),∆2φ〉 + 〈u∇φ,∆2φ〉.

On the other hand, we have

〈∆f(φ),∆2φ〉 ≤ 1

4
‖∆2φ‖2 + c‖∆f(u)‖2,
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where ‖∆f(φ)‖2 can be controlled in the following way. Observe that

∆f(φ) = ∇(f ′(φ)∇φ) = f ′′(φ)|∇φ|2 + f ′(φ)∆φ.

Then, using (2.4), by the Agmon inequality we get

‖f ′′(φ)|∇φ|2‖ ≤ c(1 + ‖φ‖L∞)‖∇φ‖2L4 ≤ c(1 + ‖∆φ‖1/2)‖∆φ‖3/2,
‖f ′(φ)∆φ‖ ≤ c(1 + ‖φ‖2L∞)‖∆φ‖ ≤ c(1 + ‖∆φ‖)‖∆φ‖.

Therefore, we obtain

(5.4) ‖∆f(φ)‖2 ≤ c(1 + ‖∆φ‖2)‖∆φ‖3.

In order to deal with the remaining term, exploiting (5.3) we find

〈u∇φ,∆2φ〉 ≤ c‖u‖L3‖∇φ‖L6‖∆2φ‖ ≤ ‖u‖1/2‖∇u‖1/2‖∆φ‖‖∆2φ‖

≤ c

ν1/2
(1 + ‖∆φ‖)‖∆φ‖2‖∆2φ‖ ≤ 1

4
‖∆2φ‖2 +

c

ν
(1 + ‖∆φ‖2)‖∆φ‖4.

We thus end up with the differential inequality

1

2

d

dt
‖∆φ‖2 +

1

2
‖∆2φ‖2 ≤ c(1 + ‖∆φ‖2)‖∆φ‖3 +

c

ν
(1 + ‖∆φ‖2)‖∆φ‖4.

Recalling that φ ∈ L4(0, T ; H2) (see (3.5)), Lemma 2.13 yields the claimed result. �

Remark 5.2. Estimate (5.1) entails that the weak solution φ is indeed a strong one for
t ≥ 1 (see (1.1)). In addition, if Ω is of class C1,1, then the regularity of µ∇φ implies
that the weak solution u to (2.8) belongs to L2

loc((1,∞; (H2(Ω))3) and the pressure p (see
Remark 2.4), unique up to an additive function of t only, belongs to L2

loc((1,∞);H1(Ω))
(see, e.g., [5, Theorem IV.5.8]). Thus equation (1.3) is also satisfied almost everywhere if
t ≥ 1.

We conclude this section by proving the existence of the global attractor, namely,

Theorem 5.3. Let f satisfy all the assumptions in Proposition 4.1 and Proposition 5.1.
Then the dynamical system (VI , Sν(t)) possesses a (unique) global attractor A which is
bounded in H2.

Proof. On account of the assumptions on f , thanks to Proposition 4.1 and Proposition
5.1, we infer the existence of a compact absorbing set (bounded in H2) for the semigroup
Sν(t). Hence, by standard results (see, e.g., [26]) the proof follows. �

Remark 5.4. We recall that the global attractor A is the smallest (for the inclusion)
compact set of the phase space which is invariant by the flow (i.e., Sν(t)A = A, ∀t ≥ 0)
and attracts all bounded sets of initial data as time goes to infinity, namely,

∀B ⊂ VI bounded, dist(Sν(t)B,A) → 0 as t→ ∞,

where dist denotes the Hausdorff semi-distance between sets in H1.



15

6. Convergence to equilibria

In what follows we let ν > 0 be fixed omitting in the notation the dependence on ν.
Aim of this section is discussing Theorem 2.8, showing in particular that, for every fixed
φ0 ∈ H1, the global solution φ(·) = S(·)φ0 originating from φ0 converges to an equilibrium
φ⋆ as t→ ∞, with a certain convergence rate.

To this aim, we first recall that the ω-limit set of φ0 is defined as

ω(φ0) = {φ⋆ ∈ H1 : φ(tn) → φ⋆ in H1, for some {tn}n∈N, tn → ∞},
and that the set of stationary points associated with φ0 is

S(φ0) = {z ∈ H2 : −∆z + f(z) = const, 〈z〉 = 〈φ0〉}.
Recall that by (5.1) in the form

(6.1) ‖φ(t)‖2 ≤ c, t ≥ 1,

where along the section c > 0 denotes a generic constant, possibly depending on ‖φ0‖1
(and increasing as ν → 0). Hence, due to to the compact embedding H2 →֒ H1, the
ω-limit set of φ0 ∈ H1 is a nonempty compact subset of H1.

With this notation, the main step in the proof of Theorem 2.8 consists in showing that
each ω-limit set consists in one single stationary state, as stated in the following

Proposition 6.1. There exists φ⋆ ∈ S(φ0) such that ω(φ0) = {φ⋆}.
Notice that, since ω(φ0) 6= ∅, there exists φ⋆ ∈ H1 and tn → ∞ such that

(6.2) ‖φ(tn) − φ⋆‖1 → 0, as n→ ∞,

Besides, owing to due to (3.3), it is easy to realize that the functional

E(z) =
1

2
‖∇z‖2 + 〈F (z), 1〉

with z ∈ H1 is a Lyapunov functional for S(t). Thus, by standard results on gradient
systems (see, e.g., [8, Chapter 9]), we learn that ω(φ0) ⊂ S(φ0) proving in particular that
φ⋆ ∈ S(φ0). As a consequence, the proof of Proposition 6.1 will follow by showing that
the whole trajectory φ(·) converges to φ⋆, namely

(6.3) lim
t→∞

‖φ(t) − φ⋆‖1 = 0.

The proof of this fact can be obtained by a well-known contradiction argument due
to [15] (see also [31] and references therein), known as  Lojasiewicz-Simon approach. We
omit it, since it can be obtained by reasoning as in [28, Section 3.3] with minor changes.
Let us only mention that the key tool in our situation is the following version of the
 Lojasiewicz-Simon inequality (see [1, Proposition 6.3]).

Theorem 6.2. Let (φ,u) be a solution of system (1.1)-(1.4) with initial datum φ0 ∈ H1

and let z ∈ ω(φ0) ⊂ S(φ0). If f is real analytic and satisfies (2.5), then there exist
θ = θ(z) > 0, θ ∈ (0, 1

2
) and ς = ς(z) > 0 such that

(6.4) |E(φ) − E(z)|1−θ ≤ ‖P(∆φ− f(φ))‖H−1,

whenever φ fulfills ‖φ− z‖1 < ς. Here P : H → H is defined by P(u) = u− 〈u〉.



16

The next step consists in obtaining the rate of convergence of the trajectory to the
equilibrium. This is witnessed by the following:

Proposition 6.3. Let θ = θ(φ⋆) ∈ (0, 1
2
) as provided by Theorem 6.2. Then,

(6.5) ‖φ(t) − φ⋆‖1 ≤
c

(1 + t)θ/(1−2θ)
,

for some c = c(φ0) ≥ 0 and every t ≥ t⋆, for some t⋆ > 0.

Proof. Reasoning as in [28, Section 3.4] (cf. also [31, 5.2]), it is easy to prove that (6.5)
holds for the weaker norm ‖φ(t) − φ⋆‖H−1, namely

(6.6) ‖φ(t) − φ⋆‖H−1 +

∫ ∞

t

‖∇µ(y)‖ dy ≤ c

(1 + t)θ/(1−2θ)
, t ≥ t⋆.

In order to complete the proof, we set

Φ(t) = φ(t) − φ⋆,

and observe that, for t ≥ t⋆ and almost everywhere in Ω (cf. Remark 5.2), there holds

(6.7) ∂tΦ + u · ∇(Φ + φ⋆) = ∆
(

− ∆Φ + [f(φ) − f(φ⋆)]
)

.

Recalling (5.2), we have

ν‖∇u‖2 + ‖u‖2 = 〈φ∇µ,u〉 ≤ ‖∇µ‖‖u‖‖φ‖L∞

≤ ‖∇µ‖‖u‖‖φ‖1/21 ‖φ‖1/22 ≤ 1

2
‖u‖2 + c‖∇µ‖2.

Besides, since φ⋆ ∈ S(φ0), then µ⋆ := −∆φ⋆ + f(φ⋆) is constant, and we can estimate

‖∇µ‖ = ‖∇(µ− µ⋆)‖ ≤ ‖∇∆Φ‖ + ‖∇(f(φ) − f(φ⋆))‖ ≤ ‖∇∆Φ‖ + c‖∇Φ‖
≤ ‖∇∆Φ‖ + c‖Φ‖1/2H−1‖∇∆Φ‖1/2 ≤ c‖∇∆Φ‖ + ‖Φ‖H−1 .

In particular, we obtain

(6.8) ν‖∇u‖2 +
1

2
‖u‖2 ≤ c‖∇µ‖2 ≤ c‖∇∆Φ‖2 + c‖Φ‖2H−1.

Taking the product of (6.7) with −∆Φ in H we have

1

2

d

dt
‖∇Φ‖2 + ‖∇∆Φ‖2 = −〈∆[f(φ) − f(φ⋆)],∆Φ〉 + 〈u · ∇(Φ + φ⋆),∆Φ〉.

Observe that

〈∆[f(φ) − f(φ⋆)],−∆Φ〉 ≤ ‖∇[f(φ) − f(φ⋆)]‖‖∇∆Φ‖ ≤ c‖∇Φ‖2 +
1

4
‖∇∆Φ‖2.

The latter term can be estimated in light of (6.8) as

〈u · ∇(Φ + φ⋆),−∆Φ〉 ≤ ‖∇φ‖L6‖u‖‖∆Φ‖L3 ≤ c‖u‖‖∆Φ‖1/2‖∇∆Φ‖1/2

≤ c(‖∇∆Φ‖ + ‖Φ‖H−1)‖∇∆Φ‖7/8‖Φ‖1/8H−1 ≤
1

4
‖∇∆Φ‖2 + c‖Φ‖2H−1.

We thus obtain, on account of (6.6), the inequality

1

2

d

dt
‖∇Φ‖2 +

1

2
‖∇∆Φ‖2 ≤ c‖Φ‖2H−1 ≤ c

(1 + t)2θ/(1−2θ)
.
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Recalling that ‖∇Φ(t⋆)‖ ≤ c, an application of Lemma 2.14 yields (6.5).

Convergence of the velocity field u. In order to complete the proof of Theorem 2.8
we are left to show that ‖u(t)‖1 decays to 0 as t→ ∞. This requires a different argument
than in [28], so we detail the proof. First we need a further regularization of φ, namely,

Lemma 6.4. The following inequality holds

‖∇µ(t)‖ + ‖∇∆φ(t)‖ ≤ c, ∀t ≥ 2.

Proof. Taking w = ∆2µ in (2.7) we have

〈φt,∆
2µ〉 = 〈u∇φ+ ∆µ,∆2µ〉 = −〈∇(u∇φ),∇∆µ〉 − ‖∇∆µ‖2.

Exploiting the definition of µ, which gives µt = −∆φt + f ′(φ)φt, we obtain

〈φt,∆
2µ〉 = 〈−∆φt,−∆µ〉 = 〈µt,−∆µ〉 − 〈f ′(φ)φt,−∆µ〉

=
1

2

d

dt
‖∇µ‖2 − 〈f ′(φ)∆µ,−∆µ〉 + 〈f ′(φ)(u∇φ),−∆µ〉.

Hence we deduce that

1

2

d

dt
‖∇µ‖2 + ‖∇∆µ‖2 = −〈f ′(φ)∆µ,∆µ〉 + 〈f ′(φ)(u∇φ),∆µ〉 − 〈∇(u∇φ),∇∆µ〉.

Let us estimate the terms on the right hand side. Observe that, in light of (6.1), we have

‖f ′(φ)‖L∞ ≤ c.

Thus we get

−〈f ′(φ)∆µ,∆µ〉 ≤ ‖f ′(φ)‖L∞‖∆µ‖2 ≤ c‖∆µ‖2

≤ c‖∇∆µ‖‖∇µ‖ ≤ 1

4
‖∇∆µ‖2 + c‖∇µ‖2,

and

〈f ′(φ)(u∇φ),∆µ〉 ≤ ‖f ′(φ)‖L∞‖∆µ‖‖u‖L4‖∇φ‖L4

≤ ‖f ′(φ)‖L∞‖∇µ‖1/2‖∇∆µ‖1/2‖u‖1/4‖∇u‖3/4‖∇φ‖1/4‖∇2φ‖3/4

≤ 1

4
‖∇∆µ‖2 + c‖∇µ‖2 + c‖∇u‖2.

Furthermore, by the Agmon inequality, we get

〈∇(u∇φ),∇∆µ〉 ≤ ‖∇∆µ‖(‖∇u‖‖∇φ‖L∞ + ‖u‖L6‖∇2φ‖L3)

≤ c‖∇∆µ‖‖∇u‖‖∇∆φ‖1/2 ≤ 1

4
‖∇∆µ‖2 + c‖∇u‖2‖∇∆φ‖.

Note that ∇µ = −∇∆φ + f ′(φ)∇φ. Then we infer

(6.9) ‖∇∆φ‖ ≤ ‖∇µ‖ + ‖f ′(φ)‖L∞‖∇φ‖ ≤ (‖∇µ‖ + c),

so that

〈∇(u∇φ),∇∆µ〉 ≤ 1

4
‖∇∆µ‖2 + c‖∇u‖2 + c‖∇u‖2‖∇µ‖2.
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We thus end up with the differential inequality

1

2

d

dt
‖∇µ‖2 +

1

4
‖∇∆µ‖2 ≤ c(1 + ‖∇u‖2 + ‖∇µ‖2 + ‖∇u‖2‖∇µ‖2).

Recalling that
∫∞
0

(‖∇u(y)‖2 + ‖∇µ‖2) dy < c (see (3.1)), Lemma 2.13 yields

‖∇µ(t+ 1)‖2 ≤ c, t ≥ 1.

Finally, by (6.9) we also have

‖∇∆φ(t+ 1)‖2 ≤ c, t ≥ 1,

as claimed.

We are now ready to prove the convergence of u to zero. To this aim, let us observe
that, since µ⋆ is constant, then the equation for the velocity field u

⋆ associated with φ⋆

reduces to
{

−ν∆u
⋆ + u

⋆ = −∇p⋆
∇ · u⋆ = 0.

Therefore, upon multiplication by u
⋆ and integration over Ω, we deduce

ν‖∇u
⋆‖2 + ‖u⋆‖2 = 0.

This implies u
⋆ ≡ 0, and the following equation for the pressure p⋆ holds

∇p⋆ = µ⋆∇φ⋆ −∇(φ⋆µ⋆).

Subtracting this last equation from (2.8) we deduce

−ν∆u + u = −∇(p− p⋆) + (µ− µ⋆)∇(Φ + φ⋆) + µ⋆∇Φ + ∇(φ⋆µ⋆).

Testing this relation by u, we obtain

ν‖∇u‖2 + ‖u‖2 = 〈(µ− µ⋆)∇(Φ + φ⋆),u〉 + 〈µ⋆∇Φ,u〉
≤ ‖µ− µ⋆‖L3‖∇(Φ + φ⋆)‖L6‖u‖ + |µ⋆|‖∇Φ‖‖u‖
≤ ‖µ− µ⋆‖1/2‖∇(µ− µ⋆)‖1/2‖φ‖2‖u‖ + c‖∇Φ‖‖u‖

≤ 1

2
‖u‖2 + c‖∆Φ‖2 + c‖µ− µ⋆‖‖∇µ‖.

Since ‖µ− µ⋆‖ ≤ ‖∆Φ‖ + ‖f(φ) − f(φ⋆)‖ ≤ c‖∆Φ‖, we have the estimate

ν‖∇u‖2 +
1

2
‖u‖2 ≤ c‖∆Φ‖(‖∆Φ‖ + ‖∇µ‖),

and, by exploiting the boundedness of ∇µ and ∆Φ, this yields

‖u‖21 ≤ cν‖∆Φ‖,
for every t ≥ 2. Finally, by interpolation and invoking the boundedness of ‖∇∆φ‖, we
have

‖u‖21 ≤ cν‖∇Φ‖1/2‖∇∆Φ‖1/2 ≤ cν‖∇Φ‖1/2 = cν‖∇(φ− φ⋆)‖1/2.
Therefore, Proposition 6.3 entails (2.13).

Remark 6.5. All the results and the estimates performed in this section and in Section
5 can be carried out in the case η = 0 with minor changes.
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7. The limit ν → 0

Before studying the convergence of solutions to CHB system as ν → 0, we recall the
following compactness result (see, e.g., [19]).

Theorem 7.1. Let X0 ⊂⊂ X ⊂ X1 be three reflexive Banach spaces. Let 1 < a, b < ∞
and define

W a,b(0, T ;X0, X1) = {z ∈ La(0, T ;X0) : ∂tz ∈ Lb(0, T ;X1)}.
Then W a,b(0, T ;X0, X1) is reflexive and

W a,b(0, T ;X0, X1) →֒ La(0, T ;X)

with compact embedding.

7.1. Proof of Theorem 2.11. Let φ0 ∈ H1 and let {νn}n∈N be a sequence of positive
numbers such that νn → 0 as n→ ∞. Consider the sequence (φνn,uνn) of weak solutions
corresponding to the CHB system with ν = νn. From the previous sections we know that
the following bounds on {φνn}n∈N , {uνn}n∈N and {µνn}n∈N are independent of n:

‖φνn‖L∞(0,T ;H1) + ‖φνn‖L2(0,T ;H3) ≤ c,

‖µνn‖L2(0,T ;H1) ≤ c,

‖∇ · (φνnuνn)‖L8/5(0,T ;H−1) + ‖∂tφνn‖L8/5(0,T ;H−1) ≤ c,

‖uνn‖L2(0,T ;H) ≤ c,

‖φνn∇µνn‖L8/5(0,T ;H) ≤ c.

Thus we deduce that there exists a relabeled sequence {νn}n∈N such that

φνn → φ weakly in L2(0, T ; H3),

µνn → z weakly in L2(0, T ; H1),

uνn → u weakly in L2(0, T ;H).

By the boundedness of ∂tφν in L8/5(0, T ; H−1) and by the uniqueness of Lp and distribu-
tional limits, we also have

∂tφνn → ∂tφ weakly in L8/5(0, T ; H−1).

Applying Theorem 7.1 to φνn with X1 = H−1 and X0 = H3, up to a further subsequence,
which will be relabeled νn, one has

φνn → φ strongly in L2(0, T ; Hs),

for all 0 ≤ s < 3 and
φνn → φ a.e. in Ω × (0, T ).

Moreover, from the regularity of the potential f , it follows that z = −∆φ + f(φ) = µ.

We can now consider the nonlinear terms appearing in (2.7) and (2.8). Let h be a positive
real number. First of all, we show convergence of φνn∇µνn to φ∇µ in the following (weak)
sense

∫ t+h

t

〈φνn∇µνn − φ∇µ, v〉 dt→ 0, ∀v ∈ V .
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The integrand can be rewritten as

〈(φνn − φ)∇µνn, v〉 + 〈φ[∇µνn −∇µ], v〉.
The first term in this expression is bounded by

〈(φνn − φ)∇µνn, v〉 ≤ ‖φνn − φ‖L3‖∇µνn‖‖v‖L6,

so that
∣

∣

∣

∫ t+h

t

〈(φνn − φ)∇µνn, v〉 dt
∣

∣

∣
≤ ‖φνn − φ‖L2(0,T ;L3)‖µνn‖L2(0,T ;H1)‖v‖V → 0.

Recalling that φ ∈ L2(0, T ;L∞(Ω)) the weak convergence of µνn in L2(0, T ; H1) implies

〈φ[∇µνn −∇µ], v〉 → 0.

Similarly we can deal with the convergence in ∇ · (φνnuνn). Indeed, we have
∫ t+h

t

〈φνnuνn − φu,∇v〉 dt→ 0, ∀v ∈ H1.

This can be easily seen by rewriting the integrand as

〈(φνn − φ)uνn,∇v〉 + 〈φ[uνn − u],∇v〉.
Indeed, the second term vanishes as n→ ∞ in light of the convergence

uνn → u weakly in L2(0, T ;H)

and recalling the bound φ ∈ L2(0, T ; H2) ⊂ L2(0, T ;L∞(Ω)), which yields φ∇v ∈ L2(0, T ; (H)3).
Concerning the former, we observe
∣

∣

∣

∫ t+h

t

〈[φνn − φ]uνn,∇v〉 dt
∣

∣

∣
≤

∫ t+h

t

‖∇v‖‖uνn‖‖φνn − φ‖L∞dt

≤ ‖∇v‖
(

∫ t+h

t

‖uνn‖2 dt
)1/2(

∫ t+h

t

‖φνn − φ‖2L∞ dt
)1/2

.

An application of Theorem 7.1 yields the compactness of {φνn} in L2(0, T ;L∞(Ω)), proving
the required convergence.

Finally, let us consider the term involving the time derivative of φ. In particular, recalling
that v is constant in time, we have

∫ t+h

t

∂tφ v dt = (φ(t+ h) − φ(t))v.

Thanks to the boundedness of ∂tφ in L8/5(0, T ; H−1), the Lebesgue Theorem also gives

φ(t+ h) − φ(t)

h
→ ∂tφ(t) a.e. t ∈ [0, T ].

A repeated application of the Lebesgue Theorem implies that the couple (φ,u) satis-
fies (2.7)-(2.8) for almost every time t ∈ [0, T ]. Moreover, observing that φ in L∞(0, T ; H1)
and φ ∈ C([0, T ]; H−1), it follows that φ is also weakly continuous taking values in H1.

Finally we show that

lim
t→0

〈φ(t), v〉 = 〈φ0, v〉, for all v ∈ H−1.
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Let ψ : [0, T ] → R be a C∞ function such that ψ(0) = 1 and ψ(T ) = 0 and let v ∈ H1 be
arbitrary. Multiplying (2.7) with ν > 0 by ψv and integrating over Ω × [0, T ] we obtain

−
∫ T

0

〈φνn, ψv〉 dt+

∫ T

0

〈φνnuνn, ψ∇v〉dt+

∫ T

0

〈∇µνn, ψ∇v〉dt = 〈φ0, v〉.

As before, we can pass to the limit as νn → 0, so obtaining

−
∫ T

0

〈φ, ψv〉 dt+

∫ T

0

〈φu, ψ∇v〉dt+

∫ T

0

〈∇µ, ψ∇v〉dt = 〈φ0, v〉.

Proceeding analogously in the case ν = 0, we deduce

−
∫ T

0

〈φ, ψv〉 dt+

∫ T

0

〈φu, ψ∇v〉dt+

∫ T

0

〈∇µ, ψ∇v〉dt = 〈φ(0), v〉.

Finally, a comparison between these last two equalities and the arbitrary choice of v ∈ H1

gives φ(0) = φ0.

8. The CHB system in dimension N = 2

In this section, we analyze the closeness between the solution to the CHB system and
the solution to the CHHS system which are originated from regular initial data in H2.

Before proving our main result, i.e., Theorem 2.12, we derive some regularity estimates
for the solutions of the CHB system in 2D which are uniform with respect to ν ≥ 0.
Hence, from now on, let φ0 ∈ H2 and denote by c ≥ 0 a generic constant which may
depend on ‖φ0‖2 but is independent of ν.

8.1. Higher-order bounds independent of ν. We shall exploit in a crucial way the
following well-known inequalities which hold in dimension two:

‖f‖2L4 ≤ c(‖f‖‖∇f‖ + ‖f‖2),(8.1)

‖f‖2L4 ≤ c‖f‖‖∇f‖, if 〈f〉 = 0,(8.2)

‖f‖2L∞ ≤ c‖f‖‖f‖H2.(8.3)

Proposition 8.1. Let ν ≥ 0 be fixed and let φ(t) = Sν(t)φ0. Then, the following estimate
holds

(8.4) ‖φ(t)‖2 +

∫ t+1

t

‖φ(y)‖24 dy ≤ c, ∀t ≥ 0.

Furthermore, we have

(8.5) sup
t≥0

∫ t+1

t

(‖µ(y)‖22) dy ≤ c.

Proof. On account of (5.2) we find

ν‖∇u‖2 + ‖u‖2 = 〈µ∇φ,u〉 ≤ 1

2
‖u‖2 +

1

2
‖µ∇φ‖2,

which yields

‖u‖2 ≤ ‖µ∇φ‖2.
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Besides, by (8.1) and (8.2) we get

‖µ∇φ‖2 ≤ ‖µ‖2L4‖∇φ‖2L4 ≤ c(‖µ‖‖∇µ‖ + ‖µ‖2)‖∇φ‖‖∆φ‖.
Since standard computations in light of (2.1) and (4.8) yield

‖µ‖ ≤ ‖∆φ‖ + ‖f(φ)‖ ≤ c(1 + ‖∆φ‖),

‖∇µ‖ ≤ ‖∇∆φ‖ + ‖∇f(φ)‖ ≤ c(1 + ‖∇∆φ‖),

we end up with

(8.6) ‖u‖2 ≤ c(1 + ‖∆φ‖2)‖∇∆φ‖.
By taking w = ∆2φ in (2.7) we obtain

1

2

d

dt
‖∆φ‖2 + ‖∆2φ‖2 = 〈∆f(φ),∆2φ〉 + 〈u · ∇φ,∆2φ〉.

We estimate the first term on the right hand side as follows

〈∆f(φ),∆2φ〉 ≤ 1

4
‖∆2φ‖2 + c‖∆f(φ)‖2 ≤ 1

4
‖∆2φ‖2 + c(1 + ‖∆φ‖2)‖∆φ‖2,

where we exploit the 2D analog of (5.4) to control ‖∆f(φ)‖. Then we handle the remaining
term as

〈u · ∇φ,∆2φ〉 ≤ c‖u · ∇φ‖‖∆2φ‖ ≤ 1

4
‖∆2φ‖ + c‖u · ∇φ‖2.

Owing to (8.6) and the Agmon inequality (8.3), we infer

‖u · ∇φ‖2 ≤ ‖u‖2‖∇φ‖2L∞ ≤ ‖u‖2‖∇φ‖‖∇∆φ‖ ≤ c(1 + ‖∆φ‖2)‖∇∆φ‖2

≤ c‖∆φ‖2‖∇∆φ‖2 + c‖∆φ‖‖∆2φ‖ ≤ c(1 + ‖∇∆φ‖2)‖∆φ‖2 +
1

4
‖∆2φ‖2.

Thus we obtain the differential inequality

(8.7)
1

2

d

dt
‖∆φ‖2 +

1

2
‖∆2φ‖2 ≤ g(t)‖∆φ‖2,

where, in light of (3.4), g(t) := c(1 + ‖∆φ(t)‖2 + ‖∇∆φ(t)‖2) satisfies

sup
t≥0

∫ t+1

t

g(y) dy ≤ c.

We can thus apply Lemma 2.13, so obtaining

‖∆φ(t)‖2 ≤ c, ∀t ≥ 1.

In order to prove the required estimate for t ∈ [0, 1] it is sufficient to apply the usual
Gronwall lemma on [0, t] to the inequality

d

dt
‖∆φ‖2 ≤ 2g(t)‖∆φ‖2.

Indeed this yields
‖∆φ(t)‖2 ≤ ‖∆φ(0)‖2e2G(t),

where

G(t) =

∫ t

0

g(y) dy ≤
∫ 1

0

g(y) dy ≤ c, ∀t ∈ [0, 1].
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Hence we have

‖∆φ(t)‖2 ≤ c, ∀t ∈ [0, 1].

On account of this bound, a final integration of (8.7) on [t, t + 1] concludes the proof
of (8.4). In order to show the validity of (8.5), note that, by estimating again ‖∆f(φ)‖
as in (5.4), we get

‖µ‖22 ≤ c(‖µ‖2 + ‖∆µ‖2)
≤ c(‖f(φ)‖2 + ‖∆φ‖2 + ‖∆f(φ)‖2 + ‖∆2φ‖2)
≤ c(1 + ‖∆φ‖2 + ‖∆φ‖4 + ‖∆2φ‖2),

which, in light of (8.4), implies the integrability of µ.

Remark 8.2. The following estimate also holds uniformly in ν ≥ 0. Exploiting the
Agmon inequality and the uniform H2-estimate for φ, we have

‖µ∇φ‖21 ≤ ‖µ∇φ‖2 + ‖∇µ∇φ‖2 + ‖µ∇2φ‖2

≤ ‖µ‖2L∞‖∇φ‖2 + ‖∇µ‖2L4‖∇φ‖2L4 + c‖µ‖2L∞‖∆φ‖2

≤ c(1 + ‖µ‖22).
In particular we deduce µ∇φ ∈ L2(t, t+ 1; H1) uniformly for t ≥ 0 and ν ≥ 0.

8.2. Proof of Theorem 2.12.

Proof. Let φν
0, φ0 ∈ H2 such that 〈φν

0〉 = 〈φ0〉. Then denote by c a generic positive constant
depending on R, where R := supν>0{‖φν

0‖2, ‖φ0‖2} <∞. Let (φν ,uν) be the weak solution
to the CHB system with ν > 0 originating from φν

0, and (φ,u) the solution to the CHHS
system with initial datum φ0. Note that the difference φ̄ = φν − φ, ū = uν −u is a weak
solution to

∂tφ̄+ ∇ · (φνū) + ∇ · (φ̄u) − ∆µ̄ = 0,(8.8)

ū = ∇p̄− φν∇µ̄− φ̄∇µ+ ν∆uν ,(8.9)

∇ · ū = 0,(8.10)

where

µ̄ = −∆φ̄ + [f(φν) − f(φ)],

and 〈φ̄〉 = 0.

Taking −∆φ̄ as test function in the weak formulation of (8.8), we obtain

d

dt

1

2
‖∇φ̄‖2 + 〈φνū,∇∆φ̄〉 + 〈φ̄u,∇∆φ̄〉 + 〈∇µ̄,∇∆φ̄〉 = 0.

On the other hand, we have

〈∇µ̄,∇∆φ̄〉 = −‖∇∆φ̄‖2 + 〈∇[f(φν) − f(φ)],∇∆φ̄〉,
so that

(8.11)
d

dt

1

2
‖∇φ̄‖2 + ‖∇∆φ̄‖2 = −〈φνū,∇∆φ̄〉 − 〈φ̄u,∇∆φ̄〉 + 〈∇[f(φν) − f(φ)],∇∆φ̄〉.
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Let us now take ū in the weak formulation of (8.9). Adding −ν〈∇u,∇ū〉 to both sides
of the resulting identity, we get

(8.12) ν‖∇ū‖2 + ‖ū‖2 = −〈φν∇µ̄, ū〉 − 〈φ̄∇µ, ū〉 − ν〈∇u,∇ū〉.
Note that, by definition of µ̄, there holds

−〈φν∇µ̄, ū〉 = 〈φν∇∆φ̄, ū〉 − 〈φν∇[f(φν) − f(φ)], ū〉.
Hence, adding (8.11) with (8.12) we end up with

d

dt

1

2
‖∇φ̄‖2 + ‖∇∆φ̄‖2 + ν‖∇ū‖2 + ‖ū‖2 = −ν〈∇u,∇ū〉

− 〈φ̄u,∇∆φ̄〉 − 〈φ̄∇µ, ū〉 − 〈φν∇[f(φν) − f(φ)], ū〉 + 〈∇[f(φν) − f(φ)],∇∆φ̄〉.
We now estimate the terms on the right hand side. First of all, we have

−〈φ̄u,∇∆φ̄〉 ≤ c‖φ̄‖1‖u‖1‖∇∆φ̄‖ ≤ 1

4
‖∇∆φ̄‖2 + c‖u‖21‖φ̄‖21.

Besides, the following inequality holds

−〈φ̄∇µ, ū〉 ≤ ‖φ̄‖1‖ū‖‖∇µ‖L3 ≤ 1

2
‖ū‖2 + c‖∆µ‖2‖φ̄‖21.

We are left to deal with the term

〈∇[f(φν) − f(φ)],∇∆φ̄〉 ≤ ‖∇[f(φν) − f(φ)]‖‖∇∆φ̄‖

≤ 1

4
‖∇∆φ̄‖2 + c‖∇[f(φν) − f(φ)]‖2,

where

‖∇[f(φν) − f(φ)]‖2 ≤ ‖[f ′(φν) − f ′(φ)]∇φν‖2 + ‖f ′(φ)∇φ̄‖2.
By exploiting the uniform H2-estimates both for φν and φ obtained in (8.4) and condition
(2.3), we have

‖f ′(φ)∇φ̄‖2 =

∫

Ω

|f ′(φ)∇φ̄|2 ≤ ‖f ′(φ)‖2L∞‖∇φ̄‖2 ≤ c(1 + ‖φ‖4L∞)‖∇φ̄‖2 ≤ c‖φ̄‖21,

and, analogously,

‖[f ′(φν) − f ′(φ)]∇φν‖2 ≤ c

∫

Ω

|(1 + |φν| + |φ|)φ̄∇φν |2 ≤ c‖φ̄‖2L4‖∇φν‖2L4 ≤ c‖φ̄‖21.

Thus we have the control

‖∇[f(φν) − f(φ)]‖2 ≤ c‖φ̄‖21.
Using again (8.4), the remaining term involving f can be treated in the following way:

−〈φν∇[f(φν) − f(φ)], ū〉 ≤ ‖φν‖L∞‖∇[f(φν) − f(φ)]‖‖ū‖

≤ 1

4
‖ū‖2 + c‖∇[f(φν) − f(φ)]‖2 ≤ 1

4
‖ū‖2 + c‖φ̄‖21.

In addition, we have

ν|〈∇u,∇ū〉| ≤ ν‖∇u‖2 + ν|〈∇u,∇uν〉| ≤ ν‖∇u‖2 + ν1/2(ν‖∇uν‖2 + ‖∇u‖2).
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Thanks to [21, Lemma 2.1], Remark 8.2 implies u ∈ L2(t, t+1;V ) for all t ≥ 0. Moreover,
recalling (3.1), it holds

k(·) := ν‖∇u‖2 + (1 + ν1/2)‖∇u‖2 ∈ L1(0, T ),

for every T > 0, uniformly with respect to ν ≥ 0.

Collecting all the above inequalities, we end up with

d

dt
‖φ̄‖21 +

1

4
‖ū‖2 ≤ h(t)‖φ̄‖21 + ν1/2k(t),

where h(t) = c(1+‖∆µ(t)‖2+‖u(t)‖21). Thanks again to [21, Lemma 2.1] and Remark 8.2,
h ∈ L1(0, T ) uniformly with respect to ν ≥ 0. Therefore, an application of the Gronwall
lemma provides, for all t ∈ [0, T ],

‖φν(t) − φ(t)‖21 ≤ ‖φν
0 − φ0‖21e

∫ t
0
h(y) dy + ν1/2

∫ t

0

k(y) dy,

which, in particular, entails that

‖φν(t) − φ(t)‖21 ≤ ‖φν
0 − φ0‖21eCT + ν1/2 CT ,

having set CT = max{
∫ T

0
h(y) dy,

∫ T

0
k(y) dy} <∞. Integrating the differential inequality

on [0, t], t ≤ T , up to enlarging CT we also obtain
∫ t

0

‖uν − u‖2 ≤ ‖φν
0 − φ0‖21eCT + ν1/2 CT .

Remark 8.3. Since we are dealing with solutions which are uniformly bounded in H2, the
convergence of φν to φ in H2−δ, for every δ > 0, easily follows. On the contrary, proving the
convergence in H2 seems to be out of reach, due to the fact that the semigroup associated
to the solutions of the CHHS equation on H2 is not strongly continuous but just closed,
with a continuous dependence estimate with respect to the H1-norms, see [21, (6.13)].
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