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1 Introduction

This paper concerns the prediction of demand from patients assisted by home care 
(HC) service. HC refers to any type of care given to a patient at his/her own home 
rather than in hospital or other health care facilities. Nurses, physicians, and other 
professional figures bring all the necessary facilities at patients’ homes and therein 
provide care to patients. Hence, the main benefit of HC is the reduction of 
hospitalization rate. This significantly increases the quality of life for the assisted 
patients, as they remain at home, and at the same time it yields relevant cost savings 
for the entire health care system, as hospitalization costs are avoided (Jones et al. 
1999; Hollander and Miller 2002; Comondore et al. 2009). This service is a relevant 
and growing sector in the health care domain of western countries, because of the 
population ageing, the increase in chronic pathologies, the introduction of 
innovative technologies, and the continuous pressure of governments to contain 
health care costs.

Resource planning is crucial for operating in HC organizations. Human and 
material resources have to be properly managed in order to avoid process 
inefficiencies, treatment delays and low quality of service (Matta et al. 2014). 
However, management of HC organizations is quite complex; complexity mainly 
holds because of the large number of assisted patients, the synchronization of 
resources at patients’ home, and the service delivery in a usually large territory. 
Moreover, random events affect the delivery of service and mine the feasibility of 
plans (Lanzarone and Matta 2012; Lanzarone et al. 2012; Matta et al. 2014). 
Patients’ conditions, resource unavailability and the duration of operators’ transfers 
in the territory are the main randomness sources. All of them cause revisions of 
patients’ care pathways, of scheduled visits and, consequently, of HC resource 
plans. Indeed, the most relevant randomness source is related to changes in patients’ 
conditions, which consequently determine a demand for visits different from the 
planned one in terms of number, frequency, and duration (Lanzarone et al. 2010). 
Other frequent unexpected events are changes in patients’ visiting hours, operator 
and material resource unavailabilities, scheduling problems, and random events 
delaying the transportation of human and material resources.

In the majority of HC providers, patients are always followed by nurses and, in 
some cases, by other operators. Hence, nurses manage the care pathway of patients, 
provide the largest number of visits, and deal with emergencies and other variations 
of service demand (Matta et al. 2014). Several HC providers pursue the continuity 
of care, usually for nurses (Borsani et al. 2006; Matta et al. 2014). Continuity of care 
means that a patient is assigned to only one operator for each category, named the 
reference or the principal operator, who follows the entire patient care pathway 
during the sojourn in charge of the HC facility and preferably provides all of the 
visits pertinent to his/her category. This is considered to be an important indicator of 
HC service quality, because information loss among operators is avoided and 
patients receive care from the same operator rather than continuously developing 
new relationships with new persons (Woodward et al. 2004; Anderson et al. 2012). 
However, continuity of care makes resource planning even more difficult, because 
the nurse-to-patient assignments have to be maintained over future variations of



patients’ conditions and operators’ availabilities. For this reason, some other HC

providers do not take the continuity of care into account.

Continuity of care needs affordable estimates of the amount of visits required by

each patient in short-term and middle-term planning horizons to avoid operational

problems. More in general, the ability of estimating patient health progression and

the demand for visits during the care pathway is a fundamental requirement for

developing robust decision support tools for HC resource planning.

This paper focuses on the estimation of patients’ demands, which, as just

mentioned, is fundamental for planning human and material resources. However,

estimates are computed independently from the specific planning issues they will be

used for, based on historical observations of patients’ visits and health conditions.

Indeed, we propose and validate a Bayesian framework for representing and

predicting the demand evolution of HC patients over time. We define a generalized

linear mixed model with autoregression over time. The inference is based on the

posterior density of parameters, obtained through a Markov chain Monte Carlo

simulation scheme.

In general, the Bayesian approach to population modeling is particularly

appealing from a scientific perspective, as it allows prior information (prior to see

the data) to be incorporated. It suggests that any scientific inference is based on two

parts: one depends on the scientist’s subjective opinion and understanding of the

phenomenon before experimentation, and the other depends on the observations

obtained from the experiment itself. In cases in which complexity derives from

multiple sources of evidences, frequentist statistical methods have difficulties; for

instance, when the statistical model is described in terms of many parameters, it can

be quite difficult computing estimates and comparing estimators. On the contrary,

under the Bayesian approach, it is straightforward that both estimation and

comparison are driven by one single probability law, i.e., the posterior distribution

of the parameters. As underlined in Spiegelhalter et al. (2004), Ch. 1, the Bayesian

perspective can be more flexible than traditional statistical methods, more efficient

using all available evidence, and more useful, since it provides predictions of

observable quantities through probabilities. Of course, external evidence (prior

belief) must be introduced with caution and used in a clear, explicit and transparent

manner. Very often the prior information is translated into probabilistic assumptions

that are subjective. However, the subjective interpretation fits very well problems in

health care, where there are so many human and organizational sources of

randomness (see Aven and Eidesen 2007). Another advantage of the Bayesian

approach is its focus on observable quantities; in this context, prediction is quite

straightforward: it is given by the conditional distribution of the quantity of interest,

on background information (including assumptions and suppositions) and on data.

Of course, the accuracy of the model needs to be addressed, for instance comparing

predictions to observed data.

The paper is organized as follows: the literature dealing with the stochastic

modeling of patients’ conditions in health care facilities and, in particular, in HC is

presented in Sect. 2. The general features of an HC provider and the typical

structure of HC patients’ dataset are described in Sect. 3, whereas the Bayesian

model is detailed in Sect. 4. Then, the application of the proposed model to a



relevant real case is presented in Sect. 5: the dataset of such real case is described in 
Sect. 5.1; posterior inference of the model parameters is reported in Sect. 5.2; 
goodness-of-fit, predictions for patients already in charge and for newly admitted 
patients are shown in Sects. 5.3–5.5, respectively. Finally, conclusions and some 
possible suggestions for future work are then given in Sect. 6.

2 Related literature

Several studies that deal with the development of stochastic models for patients’ 
conditions evolution in health care facilities can be found in the literature. Different 
approaches are adopted, both frequentist and Bayesian, spreading from Markov 
models to Bayesian hierarchical models. In the following, we briefly revise this 
literature, pointing out the main features of each proposed model.

Concerning frequentist approaches, Markov models have been used to study the 
hospitalization of geriatric patients (Taylor et al. 1996; McClean et al. 1998) or the 
natural history of hepatitis-C, in order to determine compensatory funds for patients 
who acquired the pathology through blood transfusions (Krahn et al. 2004). Faddy 
and McClean (2005) adopt Markov chain models based on phase-type distributions 
to model changes in geriatric patients’ health conditions and to evaluate the impact 
of covariates. Alagoz et al. (2005) develop an empiric natural-history model to 
predict changes in laboratory values and clinical characteristics of patients with end-

stage liver disease, showing that cubic splines can generate quantitative natural 
histories and are also useful for developing clinically robust microsimulation 
models of other diseases. More recently, Gómez-Batiste et al. (2012) describe 
conceptual innovations in palliative care epidemiology and the methods to identify 
patients in need of palliative care, and Blanco-Encomienda (2013) propose a multi-

state Markov model to estimate the cost of care provisioning to elderly people, in 
order to help governments in efficiently and effectively allocating resources. 
Considering the specific case of HC patients, Lanzarone et al. (2010) propose a 
frequentist patient model, which provides estimates on the major variables of 
interest for an HC provider: how many patients are followed up in the course of time 
and, for each of them, the amount of required visits. The model integrates a care 
pathway model on one hand, and a cost model on the other. After identifying state 
variables and patient classes, the patient’s evolution is described through the 
sequence of values assumed by the state variables, which is modeled as a Markov 
chain. Then, an empirical probability distribution of the cost is associated with each 
possible state, where the cost is intended as the number of visits to the patient in a 
fixed number of days. This group of papers suggests that frequentist approaches are 
widely adopted in the general health care context, but not in the HC environment, 
apart from Lanzarone et al. (2010), to the best of our knowledge. However, these 
models are quite different from application to application, as they need to adapt to 
the specific context and ad-hoc configurations. For instance, model in Lanzarone 
et al. (2010) fits the data well, but it includes empirical distributions and ad-hoc 
configuration.



Of course, the Bayesian approach has been adopted for modeling the stochastic

behavior of patients of several health care facilities, both for medical and

management purposes, as several studies can be found in the medical statistical

literature. For instance, Pauler and Finkelstein (2002) adopt a Cox proportional

hazard model, under the Bayesian perspective, to predict the disease progression in

prostate cancer recurrence. Bergamaschi et al. (2000) analyze the risk of secondary

progression in multiple sclerosis patients by using two different approaches: a Cox

proportional hazards model and a Bayesian latent-variable model. Berzuini and

Allemani (2004) assess the effect of a highly active antiretroviral therapy on the

course of the acquired immune deficiency syndrome by means of a Bayesian model,

in which the sequence of longitudinal cell count observations and the associated

time to the syndrome are jointly modelled at an individual subject’s level as

depending on the treatment. Verotta (2005) compares alternative estimation

methods for the analysis of clinical human immunodeficiency virus data,

underlining that Bayesian models incorporate prior knowledge into the models

themselves, thus avoiding some of the model simplifications introduced when the

data are analyzed using other methods. Guglielmi et al. (2010) propose a Bayesian

hierarchical generalized linear model to analyze the survival probabilities after

acute myocardial infarction in Milan, Italy, by considering both clinical registries

and administrative databases. More recently, Carreras et al. (2012) consider Markov

models to describe the natural history of specific diseases, with particular attention

to the cervical cancer, and propose two Bayesian models for carrying out a

probabilistic sensitivity analysis on the transition probabilities. From a management

point of view, some papers deal with Bayesian techniques in order to predict the

demand for care. For example, Congdon (2001) implements a Bayesian generalized

linear model, with Poisson outcome, which is used to predict patients’ traffic from

home to hospital, in order to facilitate the reconfigurations of emergency hospital

services. Marshall et al. (2002) model patients’ duration of stay to facilitate resource

management of geriatric hospitals by using phase-type distributions conditioned on

a Bayesian belief network. Moreover, Marshall et al. (2005) present an overview of

such modeling technique in comparison with other methods, with particular

attention to their impact and suitability in managing hospital services. All these

papers point out the relevance and the flexibility of the Bayesian modeling

approach, which can fit several clinical and health care problems. However, in spite

of these benefits, the Bayesian approach has not been considered so far when

modelling HC patients data. Owing to this lack, the aim of this paper is to propose a

Bayesian model to predict the demand for visits in future periods. Indeed, we want

to investigate the potentialities of such an approach in the HC context, where

Bayesian statistics has not been applied yet.

On the other hand, papers dealing with robust approaches for managing

resources in health care, which require patients’ demands estimation, underline the

importance of such estimation models. For instance, the patients’ stochastic model

of Lanzarone et al. (2010) was adopted for the implementation of robust nurse-to-

patient assignment approaches for HC, e.g., a stochastic programming model

(Lanzarone et al. 2012), an analytical policy (Lanzarone and Matta 2012) and a



cardinality–constrained model (Carello and Lanzarone 2014). The Bayesian model 
we propose here is intended also to be used for this kind of applications.

3 Care pathway of HC patients

The care pathway of a HC patient usually includes admission, care supply and 
discharge (see Lanzarone et al. 2010; Matta et al. 2014). The admission phase 
consists of the preliminary and the multidimensional assessments. During the first 
visit, an operator, generally a nurse, collects personal data and other information 
about the patient’s clinical, functional and social conditions. Then, a multidisci-

plinary team evaluates the patient’s conditions and tests his/her functional abilities. 
The assessment defines the patient’s needs on which the service will be designed 
and provided. The service supply starts after the multidisciplinary team develops the 
Therapeutic project (ThP), which includes detailed information about type and 
frequency of the required visits, and all other operational activities executed by HC 
operators at patient’s home (Asquer et al. 2007; Matta et al. 2014). During the care 
supply phase, the patient receives the service from the HC operators as prescribed 
by his ThP. The ThP is periodically assessed in order to check its adequacy for the 
patient’s needs, which may change depending on clinical conditions, as well as the 
social environment. The revision period is usually one month: at each periodic 
revision, the ThP can be reconfirmed or modified to address the new patient’s needs. 
However, a revision can be introduced before the end of the month in case of sudden 
variation of patient’s condition. Finally, the patient is discharged when he/she 
recovers, needs a different kind of service (such as hospitalization), or dies.

Providers also assign a category to each patient, usually named Care Profile (CP), 
based on the type and the number of visits required by the ThP, which are the most 
significant factors affecting costs. Indeed, once a ThP is defined, a CP is assigned to 
the patient at the same time. Then, a patient’s CP may change along with the time 
according to his/her ThP modifications. From a modeling point of view, the CP is a 
categorical variable that evolves over time and represents the status of patient’s 
conditions and requirements. The classification of patients via CP is common to 
several HC providers of different countries (Matta et al. 2014); based on the specific 
country or region, the number and typologies of the CPs may vary, but such type of 
classification is always present. Moreover, several registries, collecting social and 
clinical covariates of patients, are usually available.

From a management point of view, the time is divided into discrete slots (e.g., the 
day or the week). At each time slot, each patient in charge receives a certain number 
of visits from the different types of operators.

3.1 Formalization of the care pathway and assumptions

Patient conditions can be described by a set of representative state variables (e.g., 
pathology, age and social conditions), which must be observable and measurable at 
low cost throughout the patient health care history. Consequently, the patient’s care 
pathway can be described as a sequence of multidimensional states. As in



Lanzarone et al. (2010), we assume that CP is the only state variable, since it

actually summarizes all of the other significant variables. For example, the

pathology, which appears to be a significant factor, is not directly taken into account

because included in the choice of ThP and, then, in the value of CP assigned to the

patient.

In our analysis, we consider a sequence of time slots t (with t ¼ 1; . . .; T) in

which several patients i (with i ¼ 1; . . .; n) are assisted. Moreover, the week is

considered as the reference period for the length of all time slots t. In other words,

each time slot is assumed equal to 1 week. This reflects the ‘‘true’’ assignment phase

of the planning process, very often carried out over a weekly basis.

We denote by TLðiÞ and TUðiÞ the time slots when patient i enters and exits the

service, respectively, as schematized in Fig. 1. We assume that each patient enters

and exit only once during his/her care pathway, i.e., we do not consider cases in

which a patient is temporarily discharged and reenters the service after a pause. This

sometimes happens in the HC services, but such cases are usually limited.

The provided service is described in terms of the number of visits provided by

nurses to patient i at time slot t, which is denoted with Ni;t. We focus on nurses

because they are in charge of following HC patients’ care pathways and they

provide the largest number of visits to patients. Hence, they meet short-term demand

variations, manage emergencies, and deal with highly uncertain workloads. Finally,

continuity of care, which strongly requires the estimation of future demands to be

effectively implemented, is usually pursued for nurses. However, we remark that

our model does not take into account continuity of care (see Sect. 4.1); in fact, the

nurse-to-patient assignments are made after the predictions are computed.

Moreover, we do not take into account the duration of visits in the model. In

fact, for planning purposes, several HC providers assume that all visits have the

same duration, including the travel times to reach and leave the patient’s home

(Matta et al. 2014). Hence, the number of visits is a valid indicator of the workload

amount required by patients.

Fig. 1 Examples of entry–exit
service times for some patients.
Patient 2 enters the service at
t = 10 and exit at t = 70,
patient 6 enters at the initial slot
t = 0, and patient 5 exits at the
last slot t = 25. The absence of
a point at the beginning or the
ending of the path means that
the patient is also in service out
of the considered slots. Patient 4
is already in service before
t = 0 and patient 3 remains in
service after t = 252



Finally, the knowledge of the specific nurse who provides each visit is not

included in the analysis. This is an issue to take into account when the estimation

model will be applied in order to derive the planning. However, with this choice, the

care pathway of a patient is independent from the specific nurse who provides each

visit. This is an admissible assumption, as all nurses have been equally and

adequately skilled to provide the assigned visits.

Each patient i is thus characterized by the sequence of Ni;t and CPi;t for each

t 2 fTLðiÞ; . . .; TUðiÞg. In case of time slots longer than one day, as in our case, the

CP may change during t according to the ThP modifications. In this case, we assume

CPi;t as the CP assumed for the largest part of the time slot. This is an admissible

approximation because time slots are taken equal to only 1 week (i.e., CPi;t is the

CP assumed for at least four days over seven).

Summing up, data observed for each patient i at each slot t 2 fTLðiÞ; . . .; TUðiÞg are:

1. Number of visits Ni;t received by patient i from nurses during time slot t—count

data;

2. Care Profile CPi;t assumed by patient t at time slot t—categorical variable

assuming Ncp integer values s (with s ¼ 1; . . .;Ncp).

Moreover, in our framework, we take into account two social and clinical

registry covariates, whereas others are neglected:

1. agei: age of patient i at t ¼ TLðiÞ, expressed in terms of a normalized age as

follows:

agei ¼
agepatienti � agemean

agemax � agemin

where agepatienti is the age in years of patient i at t ¼ TLðiÞ, while agemean,

agemin and agemax are the mean, the minimum and the maximum ages of

patients in the dataset, respectively.

2. sexi: gender of patient i, expressed in terms of a binary variable equal to 0 if

male, or 1 if female.

These covariates do not depend on t. We use the notation xi ¼ ðagei; sexiÞ, and 
x ¼ ðx1; . . .; xnÞ.

4 Bayesian model for HC patient’s demand

In this section, we present the Bayesian model describing the patients’ demand 
evolution over time in full details (Sect. 4.1). Moreover, based on this model, we 
also provide the posterior predictive probabilities of the demand for visits in future 
time slots (Sect. 4.2).

4.1 The model

A Bayesian model is traditionally described by means of the likelihood function and 
the prior distribution. By likelihood function we mean the conditional distribution of



the response variable, which is Ni;t in our case, given all the parameters and

covariates. Two main aspects have to be taken into account, keeping in mind the

specific problem and dataset we consider: modeling the distribution of Ni;t as a

function of the covariates on the one hand, and of the number of visits at the

previous week Ni;t�1 on the other hand. The former dependence is modeled by using

a generalized linear model; in particular, one of the most straightforward choices for

count data is the Poisson regression. The latter dependence is taken into account

here by an autoregressive model of lag 1 (i.e., a Markov model) where, in the

logarithmic scale, the mean value of Ni;t depends on the mean value of Ni;t�1.

Accordingly, we model the number of visits Ni;t for patient i at time slot t as a

Poisson random variable with expected value ki;t. Then, the evolution of ki;t over the

discrete time slots is determined according to a Markov Chain (with continuous

values), as mentioned above. Note that CPi;t is not a random variable in this model,

but it is considered as a fixed covariate.

Let Ni ¼ ðNi;TLðiÞ;Ni;TLðiÞþ1; . . .;Ni;TUðiÞ�1;Ni;TUðiÞÞ the demand vector of patient i,

and assume that N1; . . .;Nn are conditionally independent. We propose the

following generalized linear model for any i ¼ 1; . . .; n:

Ni;tjki;t� Pois ðki;tÞ TLðiÞ� t� TUðiÞ
logðki;TLðiÞÞ �N ðc1agei þ c2sexi þ c3½CPi;TLðiÞ�; r2

0Þ
logðki;tÞjki;t�1�Nða½CPi;t� logðki;t�1Þ þ b½CPi;t�; r2Þ TLðiÞ\t� TUðiÞ;

ð1Þ

where Pois ðki;tÞ denotes the Poisson distribution with mean value ki;t, and

Nðl; r2Þ is the Gaussian distribution with mean l and variance r2. The first line in

(1) is the generalized linear model, whereas the last one sets up the autoregression of

lag 1. In this formulation, ki;t is a latent variable that represents the hidden health

status of patient i at time slot t, and is responsible for the demand for visits (i.e., the

bigger is parameter ki;t, the worse are patient’s conditions, and the higher is the

expected number of visits). Parameters as :¼ a½CPi;t ¼ s�, bs :¼ b½CPi;t ¼ s� and

c3;s :¼ c3½CPi;t ¼ s� describe the random–effects as a function of the value of CPi;t.

Moreover, as represents the first order auto–regressive coefficient as a function of

CPi;t.

Summing up, (1) is a generalized linear mixed model with two fixed-effects

parameters (c1 and c2) and three random-effects parameters (c3;s, as and bs). The

random-effects parameters take into account the similarity of health state conditions

(i.e., the CP) on patients’ demand for visits Ni;t: two different patients with the same

CP display the same contribution in terms of c3;s, as and bs. On the other hand, the

fixed-effects parameters do not depend on any grouping factor. For a comprehensive

review of Bayesian modeling, see Gelman et al. (2013). Generalized linear mixed

models are an extension of generalized linear models that include both fixed and

random-effects (see Fahrmeir and Tutz 1994; Zeger and Karim 1991). The overall

model proposed in this paper is a generalization of the one proposed in Giardina

et al. (2011) for longitudinal binary data.

All parameters are included in vector h ¼ ða1; . . .; aNcp
; b1; . . .; bNcp

; c1; c2;

c3;1; . . .; c3;Ncp
; r; ra; rb; rc3

Þ. According to the Bayesian approach, the knowledge



about model parameters is summarized by a probability distribution, called the prior

density, i.e. the second ingredients of a Bayesian model. The prior belief is then

updated through the data, computing the conditional distribution of the parameters

given the data, i.e. the posterior distribution, by means of Bayes’ theorem. In this

paper, we adopt a noninformative approach to elicit the prior (see, for instance,

Jackman 2009, Sect. 2.1). In particular, a marginal prior centered at 0 with large

variance is chosen for the fixed effects parameters c1 and c2, i.e., the Gaussian

distribution with 0 mean and 1000 variance. As for as the standard deviation

parameters are concerned, a standard noninformative choice (Gelman 2006) is to

assume a uniform prior over a large interval ð0; rmaxÞ and then to perform a

robustness analysis, decreasing rmax as long as the same posterior inference is

obtained. Summing up, all parameters are assumed conditionally independent and:

c1; c2 �
iid Nð0; 1000Þ

asjr2
a �

iid Nð0; r2
aÞ; s ¼ 1; . . .;Ncp with ra�Uð0; 5Þ

bsjr2
b �

iid Nð0; r2
bÞ; s ¼ 1; . . .;Ncp with rb�Uð0; 2Þ

c3;sjr2
c3
�iid Nð0; r2

c3
Þ; s ¼ 1; . . .;Ncp with rc3

�Uð0; 15Þ
r�Uð0; 5Þ:

Differently from the others, r2
0 is assumed as a fixed constant value (equal to 3) to

avoid identifiability issues.

As mentioned before, the statistical analysis is performed by means of the

posterior distribution pðhjN; xÞ of parameter vector h. Denoting by k ¼ ðkitÞ all the

latent variables representing the health status of all patients, it follows that:

LðN; kjx; hÞ ¼
Yn

i¼1

YTUðiÞ

t¼TLðiÞ
LðNi;tjki;t; xiÞLðki;tjki;t�1; xiÞLðki;TLðiÞÞ:

Hence, based on Bayes’ Theorem, the posterior density is:

p h; kjN; xð Þ / p hÞLðN; kjxð Þ

/ pðhÞ
Yn

i¼1

YTUðiÞ

t¼TLðiÞ
LðNi;tjki;t; xiÞL ki;tjki;t�1; xi

� �
L ki;TLðiÞ
� �

:
ð2Þ

Observe that pðh; kjN; xÞ is not available in a closed analytical form. Therefore, a 
Markov Chain Monte Carlo (MCMC) algorithm is used to get samples from it. 
MCMC algorithms are simulation schemes aiming at approximating a target dis-

tribution, in which a Markov chain with invariant distribution equal to the target one 
is built. Under suitable conditions of the chain, the ergodicity theorem yields the 
convergence of the algorithm (see Robert and Casella 2004).

In this paper, a Gibbs sampler scheme is adopted to perform the MCMC 
sampling from the posterior distribution. Open source software is used: the Gibbs 
scheme is implemented by JAGS 3.4.0 (Plummer 2003), running the code from an R 
interface (www.r-project.org) by means of the rjags package.

http://www.r-project.org


4.2 Prediction of patients’ demands

A distinctive feature of the Bayesian approach is the feasibility of the statistical

analysis from a predictive point of view. In this study, our goal is to predict the

demand for visits at future time slots, given covariates and data.

As discussed in Sect. 1, this is highly important for HC decision makers, who are

interested in improving the service efficiency. In fact, the predictions of patients’

demands allow HC managers to make robust decisions (e.g., the number operators

needed in next weeks and the optimal operator-to-patient assignments under

continuity of care) that are supported by the prediction of the demand for visits from

patients in charge. For instance, since HC managers have the whole predictive

distributions of each patient’s demand at their disposal, it is easy to compute

through them the predictive distributions of each nurse’s workload. Then, in

addition to the expected value, it is easy to get the (predictive) probability that, in a

future week, a nurse’s workload exceed any fixed threshold (e.g., the weekly

working time without overtime).

Assume we are at time slot t; then, the posterior predictive probability of Ni;tþ1 at

the next time slot t þ 1 is given by:

L Ni;tþ1

�
¼ kjx;N1; . . .;NnÞ

¼
Z
L Ni;tþ1 ¼ kjki;tþ1

� �
L dki;tþ1jki;t

� �
p dkitjN1; . . .;Nnð Þ; k ¼ 0; 1; . . .

ð3Þ

where Ni;tþ1 and ki;tþ1 are the number of nurse visits and the patient’s health status

at time slot t þ 1, respectively. Once again, evaluation of (3) is given through the

same MCMC strategy, adding a new step when ki;tþ1 must be drawn.

Analogously, we are able to compute the posterior predictive distribution for a

newly admitted patient; in this case, no information is available from previous time

slots. Let us denote by i� the new patient with covariate vector x� and CP trajectory

CP�; then the predictive distribution of i� is computed integrating the conditional

joint distribution of Ni� ¼ ðNi�;TLði�Þ ; . . .;Ni�;TUði�Þ Þ and ki� ¼ ðki�;TLði�Þ ; . . .; ki�;TUði�Þ Þ as

in (1) with x� and CP�, with respect to the posterior distribution of h. From a

computational point of view, in our MCMC scheme, we simulate trajectories of i�

according to (1), where parameter vector h assumes values from the posterior

simulated sample.

5 Application to a real HC provider

We apply the proposed methodology to a relevant real case. We consider the data of

one of the largest Italian public HC providers. This operates in the north of Italy,

covering a region of about 800 km2, with about 1,000 patients assisted at the same

time. This provider has been chosen because its data have been already analyzed in

other works and a comparison among approaches is thus facilitated (Lanzarone et al.

2010). Moreover, human resource organization and patient classification adopted by

this provider respect the general features common to several HC providers, which have



been detailed in Sect. 3. In particular, the three phases of the care pathway (i.e.,

admission, care supply and discharge) are present, a ThP is assigned to each patient,

and the revision of the ThP (periodic or secondary to sudden patient’s variations) is

implemented. Besides, the assignment of a CP is also implemented, based on the

normative of the regional health care system. For these reasons, the HC provider we

consider is representative of a general class of providers, and general conclusions

extensible to other HC facilities can be derived from this real case analysis.

Patients of this HC provider are grouped into two categories (palliative and non-

palliative) and each category includes a certain number of CPs, as reported in

Table 1, with a total of 14 CPs (Lanzarone et al. 2010). CPs related to palliative care

refer to a homogeneous class of terminal patients whose pathology is in a terminal

state. On the contrary, for non-palliative care, each CP includes a wide range of

patients in terms of age, pathology and social context, even if patients characterized

by similar levels of demand are generally classified by the same CP.

5.1 Description of the dataset

We started the analysis considering the same dataset as in Lanzarone et al. (2010).

This includes 7,677 patients assisted over a period of 252 weeks, from January 2004

to March 2008. Due to the high similarity among some CPs in terms of health

behavior, pathology and number of weekly visits, we regrouped them as shown in

Table 1, thus obtaining nine CPs (i.e., Ncp ¼ 9 in the analysis). According to the

assumptions, only patients without any interruption of service (e.g., hospitalization

periods with an interruption of the HC assistance) are analyzed. Moreover, the

provider is divided into three divisions and the analysis refers to the largest one.

Summing up, we have 3,095 patients with an overall number of 87,555

observations between TLðiÞ and TUðiÞ and an average number of weekly visits (i.e.,

Table 1 Classification of CPs into palliative and non-palliative care, with a further division for non-

palliative ones into extemporary and integrated home care: CPs according to the HC provider (Lanzarone

et al. 2010) and regrouped for our analysis

Types of care CPs given by the

provider

CPs regrouped

for this work

Extemporary care—non-palliative care

with very low frequency of visits

1 1

15 9

Integrated home care—non-palliative

care with medium-high intensity

10 8

9 7

2, 12 2

3, 13 3

4, 14 4

5 5

Palliative care offered to terminal patients,

generally affected by oncological diseases

6, 7, 8 6

The list of CPs within each category is reported in an ascending order of complexity and expected

demand for visits



the ratio between 92,945, the overall number of observed weekly visits, and 87,555

observations) equal to 1.06. The number of active patients in the dataset and the

weekly total number of observed visits along the 252 weeks are plotted in Fig. 2.

The dataset includes 1,306 males (42.2 %) and 1,789 females (57.8 %). The age

ranges from a minimum of 1 year to a maximum of 101 years, while the empirical

mean and standard deviation are 78.8 and 14.0 years, respectively. The box plot of

age by gender is given in Fig. 3. Finally, the total number of observations between

TLðiÞ and TUðiÞ and the average number of visits, grouped by CP, age and gender,

are reported in Tables 2 and 3, respectively.
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Table 2 Number of observations and average number of visits grouped by CPi;t

CPi;t ¼ 1 CPi;t ¼ 2 CPi;t ¼ 3 CPi;t ¼ 4 CPi;t ¼ 5

Total no. of obs 39,768 4,055 4,402 4,319 6,550

Average no. of visits 0.40 1.54 1.71 1.68 2.99

CPi;t ¼ 6 CPi;t ¼ 7 CPi;t ¼ 8 CPi;t ¼ 9

Total no. of obs 7,430 16,704 1,910 2,417

Average no. of visits 2.22 0.99 0.38 1.13

Table 3 Number of observations and average number of visits grouped by age and gender

Age Male Female

No. of obs Average no. of visits No. of obs Average no. of visits

� 50 1,732 1.29 825 1.38

50; 60ð � 1,737 1.09 2,439 0.89

60; 70ð � 4,782 1.22 5,245 1.55

70; 80ð � 12,417 1.10 18,350 1.02

80; 90ð � 11,540 0.87 20,739 0.94

� 90 1,794 0.66 5,955 1.43

5.2 Posterior distributions of model parameters

The MCMC has been run with 255,000 iterations, a burn-in of 5,000, and a thinning 
of 50 iterations. Thus, the final sample size consists of 5,000 samples. Standard 
convergence diagnostics, as Geweke and the two Heidelberger-Welch diagnostics 
(Plummer et al. 2006) have been checked, together with traceplots, autocorrelations 
and MC error/posterior standard deviation ratios for all the parameters, indicating 
that convergence has been achieved. Moreover, several independent chains gave the 
same posterior means for all parameters. Fig. 4 displays traceplots of all parameters

as and c3;s (s ¼ 1; . . .; 9); analysis of such plots confirms good mixing and 
convergence of the chain, since samples are not auto-correlated and there is no clear 
trend.

Detailed results for each model parameter in h are reported in terms of their 
posterior 95 % credibility interval (CI). Figure 5 displays CIs and posterior medians

of parameters as, bs and c3;sðs ¼ 1; . . .; 9;) that depend on the CP, whereas posterior

quantiles of the other parameters not depending on the CP (i.e., c1, c2 and r2) are 
reported in Table 4.

Results show that the random-effects parameters are significantly different with 
respect to the CP. This means that the numbers of visits Ni;t strongly depend on 
patients’ classification. This agrees with the clinical evidence because, for the HC 
provider we are considering, the division among CPs is done on purpose to take into
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Fig. 4 Traceplots of parameters as (a) and c3;s (b) with s ¼ 1; . . .; 9



account the differences of patients’ demands. Moreover, also Lanzarone et al.

(2010) found the CP to be significant for the number of visits (i.e., a cost distribution 
in terms of the number of weekly visits was assigned to each CP). As far as the 
evolution in time is concerned, CP ¼ 1, CP ¼ 2 and CP ¼ 6 look like rather 
different from all others. This is coherent with the features of such profiles and the 
dataset itself, since CP ¼ 1 represents low-intensity patients, CP ¼ 6 palliative 
patients who form a well separated class, and CP ¼ 2 denotes patients with a low 
demand (even if not the lowest). For instance, from Fig. 5a, posterior CIs of a1 and 
a2 are similar, but different from all the others, while, on the other hand, if we 
consider CIs of parameters bs in Fig. 5b, b1, b2 and b6 are rather different among 
themselves, but also differ from all other bs. If we look at the CIs of c3s in Fig. 5c, 
which determine the average initial number of visits, it is clear that c3;6 assumes the 
largest values; this points out that, when palliative patients (i.e., with CP ¼ 6) enter 
the study, they need much more visits than other patients, a conclusion that matches

observed data. Moreover, observe that c3;8 has a much larger posterior variance 
since very few patients were assigned to CP ¼ 8. We remark that the majority of 
patients in the dataset were assigned to CP ¼ 1 and CP ¼ 7 (see Table 2) for many 
time slots t of the observed period. This is the reason why CIs of parameters for 
these groups are generally smaller than the others.

As far as time-invariant covariates are considered, the posterior distribution of c1 
is mostly constrained on positive values, whereas the credibility interval of c2 is 
quite symmetric around the null value, even if the posterior probability that c2\0 is  
larger than 0.5 (0.658). This means that the initial demand for visits strongly 
increases with age, and that patient’s gender does not significantly affect this 
demand.

In conclusion, the posterior density of model parameters show a good fit of the 
autoregression generalized linear mixed model to the dataset and allow the model to 
catch clinical evidence.

5.3 Bayesian goodness-of-fit

In this section, we focus our attention on patients who are in charge at a certain time 
slot t and we want to predict the number of nurse visits at the following slot t þ 1. 
As mentioned above, in our Bayesian formulation the prediction of nurse visits 
fNi;tþ1 8i; tg is straightforwardly obtained by means of posterior predictive 
distributions; see (3).

For goodness-of-fit purposes, we divided the dataset into a training set and a 
testing set according to a cross-validation approach. Patients who are in charge of 
the provider at week t are in the testing set, whereas all the others are in the training 
set. We computed the posterior density of model parameters again, considering only 
the training set. Then, we computed the predictive distributions (3) for patients in 
the testing set by means of the posterior density of parameter h obtained under the 
training set. Finally, we checked the predictions with the corresponding observed 
data of the testing set. Indeed, the number of visits in the following week is



evaluated in advance by the model and compared with the real observation once it is

available.

This validation procedure was applied at some of the 252 weeks of the dataset.

For each one of them, we computed the posterior predictive distribution of the

number of nurse visits for all the patients in charge at that week. Then, the accuracy

of the predictions in a week is evaluated in terms of the Mean Absolute Error

(MAE), which is defined as:
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Fig. 5 Posterior 95 % credible intervals and medians of as, bs and c3;s, with s ¼ 1; . . .; 9

Table 4 Posterior quantiles of the fixed-effects parameters

2.5 % 50 % 97.5 %

c1 1.401 1.905 2.404

c2 -0.165 -0.030 0.107

r 0.121 0.125 0.130



MAEtþ1 ¼
1

mt

Xmt

i¼1

ni;tþ1 � N̂i;tþ1

�� ��;

Table 5 MAEtþ1 at the four analyzed weeks

t þ 1 100 150 176 235

MAEtþ1 0.455 0.530 0.499 0.473
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Fig. 6 Sample histograms of the errors for predictions at t þ 1 ¼ 100 (a), t þ 1 ¼ 150 (b), t þ 1 ¼ 176
(c), and t þ 1 ¼ 235 (d)

where mt is the number of patients in charge at week t (i.e., the testing set), ni;tþ1 

their observed numbers of nurse visits at week t þ 1, and N̂i;tþ1 the corresponding 
Bayesian predictions of nurse visits at week t þ 1 given information at t. Here, N̂i;tþ1 
is taken as the mean of the predictive distribution. If a patient exits between time t 
and time t þ 1, the observed number ni;tþ1 is equal to 0. The lowest is MAEtþ1, the 
highest is the accuracy of our prediction at time t þ 1.

We computed the MAE at four different weeks, considering patients at t ¼ 99, 
t ¼ 149, t ¼ 175 and t ¼ 234. The number of patients in charge at those weeks are 
m99 ¼ 309, m149 ¼ 305, m175 ¼ 359 and m234 ¼ 403, respectively. The MAEs are



displayed in Table 5. The largest value is equal to 0.530 at week t þ 1 ¼ 150, thus

showing good fit of the model in predicting future nurses’ visits.

To assess the accuracy of the predictions and to check the presence of

asymmetric errors, Fig. 6 displays the sample histograms of the errors for all

patients i ¼ 1; . . .;mt, where the error is defined as ni;tþ1 � N̂i;tþ1. The figure shows

that accurate predictions are provided by the model, since small errors are observed

in all 4 weeks. At each week, the error is null for the majority of patients (i.e., 59,

52, 51 and 52 % at t þ 1 equal to 100, 150, 176 and 235, respectively) and between

-1 and 1 for a large percentage of them (i.e., 91, 92, 93 and 94 % at t þ 1 equal to

100, 150, 176 and 235, respectively). However, Fig. 6 points out a general

underestimation, since positive errors are more frequent than negative ones.

In addition, we also analyzed the relative error for each patient i, defined as

ðni;tþ1 � N̂i;tþ1Þ=ni;tþ1. Figure 7 displays the sample histograms of the relative

errors, which show limited relative errors even if worse than the errors in Fig. 6.

The Mean Absolute Errors were also computed separately for each CP:
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Table 6 MAEs
tþ1 at the four analyzed weeks, and average values among these weeks

CP ¼ s MAEs
100 MAEs

150 MAEs
176 MAEs

235 Average

1 0.471 0.538 0.487 0.452 0.487

2 0.184 0.324 0.440 0.405 0.338

3 0.604 0.577 0.362 0.648 0.548

4 0.282 0.798 0.500 0.504 0.521

5 0.737 0.615 0.717 0.746 0.704

6 0.781 0.762 0.813 0.489 0.711

7 0.350 0.402 0.398 0.289 0.350

8 0.478 0.337 0.432 0.000 0.312

9 0.219 0.432 0.351 0.457 0.365
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MAEs
tþ1 ¼

1

ms
t

Xms
t

i¼1

jni;tþ1 � N̂i;tþ1j;

where ms
t is the number of patients with CP ¼ s at week t. Table 6 shows that the

largest MAEs
tþ1 values are obtained for CP ¼ 5 and CP ¼ 6, which correspond to

the profiles that require the highest number of visits. On the other hand, profiles with

lower nominal demand yield smaller errors. This CP stratification contributes to

maintain limited the relative errors.

In addition, we took into account the posterior predictive p values, according to

Gelman et al. (2013). Posterior predictive p values is a tool for carrying out model

evaluations and comparisons, which has become fairly popular in Bayesian

goodness-of-fit, partly in consequence of its easy implementation by MCMC

methods. In the words of Gelman et al, Nnew
i;tþ1 at week t þ 1 denotes the i-th

‘‘replicated data that could have been observed, or, to think predictively, as the data

we would see tomorrow if the experiment that produced ni;tþ1 today were replicated

with the same model and the same value of the parameter that produced the

observed data’’ see (Gelman et al. 2013, Sect. 6.3). In particular, we computed

p valuei;tþ1 ¼ min PðNnew
i;tþ1 [ ni;tþ1jdataÞ;PðNnew

i;tþ1� ni;tþ1jdataÞ
n o

;

in terms of the predictive distribution of Nnew
i;tþ1.

A value close to 0 denotes that the model is inadequate for fitting this

observation. To simplify, observations with posterior predictive p values less than

0.05 (say) are classified as unusual or outlier. Figure 8 displays posterior predictive

p values for all patients at four different weeks. The percentage of outlying patients

are 6, 9, 7, 8 %, obtained at week t ¼ 100; 150; 176 and 235, once again showing a

good fit of our model to the data.
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Fig. 10 Posterior predictive probabilities of the number of nurse visits at t ¼ 1, t ¼ 5, t ¼ 100, t ¼ 176, 
t ¼ 235 and t ¼ 252 for a new patient entered at t ¼ 1

5.4 Prediction at future weeks for a patient already in charge

It is very important for the decision maker in HC to predict the number of visits 
required by a patient already in charge over future time periods (not only the next 
one). In the long term resource planning, this information will help in dimensioning 
the workforce or assigning operators to patients, in order to avoid future operator 
surcharges. So, the HC management can make a decision (e.g. the number of 
operators needed in next weeks, or the nurse-to-patient assignment) by means of the 
predicted number of visits in future weeks.

To show how we can use our model to this aim, we computed posterior predictive 
distributions for some patients when time is t þ 1; t þ 2; t þ 3; t þ 4, by iterating 
(3). In this calculation, we must fix the CP evolution in the future periods, since care 
profile is considered as a fixed covariate in our model. In the absence of further 
information, the most suitable choice is to assume that the CP remains fixed and



equal to the current one at time t. This assumption is legitimate since the revision

period of CP is usually one month (=4 weeks).

As an example, in Fig. 9 we plotted the number of future nurse visits to four

patients. Patients A and B correspond to CP ¼ 1, while patients C and D to CP ¼ 6.

5.5 Prediction for a newly admitted patient

We follow the approach described at the end of Sect. 4.2 for simulating the posterior

predictive distribution of a hypothetical female patient i�. She is 75 years old (close

to the sample average age of patients in the dataset), who is admitted in the service

at t ¼ 1 and maintains CP equal to 1 at each week. We simulated the whole

trajectory of this patient, i.e. Ni�;t for each t ¼ 1; . . .; 252. In Fig. 10 we display the

posterior predictive probabilities of Ni�;t at different time slots t. Observe that, since

CP ¼ 1, all these distributions are concentrated around zero, i.e., this patient is not

burdensome in terms of nurse visits. This prediction provides an immediate

evaluation of the increased nurse workload after the assignment of a new patient and

an updated overview of the workloads.

6 Conclusions

Home care providers need suitable skills and tools in order to predict the demand

evolution of the patients in charge for supporting the delivery of care. In this paper, we

have first explored the application of a Bayesian model to the HC context, in order to

predict the demand for visits from patients in charge. The Bayesian approach is now

widely recognized as a proper framework for analyzing patients demand in health care

(Aven and Eidesen 2007; Spiegelhalter et al. 2004). In addition, we have applied the

model to a dataset from one of the largest public Italian HC providers. The data consist

of nurse visits of 3,095 patients who were in service over 252 weeks.

This paper is a first attempt to propose a Bayesian model to predict the nurse

visits’ demand. Here the main aim is to explore the extent to which Bayesian

statistical analysis can and should be incorporated into HC research, for the purpose

of assisting rational health care decision-making. The approach fits well in the HC

context, and the results from the application to a relevant real case validate the

model. Hence, the relevance of the model in the practice is guaranteed.

A distinctive feature of the Bayesian approach is the feasibility of performing the

statistical analysis from a predictive point of view. This means that, on one hand, we

can predict the number of nurse visits at future weeks for patients already in charge; on

the other hand, we can predict the whole trajectory of a new patient entering the

service. Both predictions could help the long-term resource planning, e.g., the

assignment of an operator to a patient under continuity of care, in order to avoid future

operator surcharges. In particular, we have computed Bayesian estimates of all the

parameters, as well as posterior predictive probabilities, through a MCMC algorithm.

Comparing our approach with the frequentist model in Lanzarone et al. (2010),

we can observe that the main advantage of our Bayesian model is its simpler



mathematical formulation. In fact, Lanzarone et al. (2010) provide a care pathway

model and a cost function joined together, while the Bayesian model presented here

is simply specified by assigning the conditional distribution of a set of random

variables according to two levels of hierarchy (the likelihood and the prior). In this

way, our model is easier to apply, and allows a higher degree of flexibility. On the

other hand, the approach in Lanzarone et al. (2010) adopts a Markov chain evolution

model to estimate the future evolution of CP, whereas in this paper the CP is

considered as a fixed covariate and its evolution along with time is not taken into

account. Both models involve the classification of the patients according to CPs; in

addition, the Bayesian model includes two additional covariates which were

neglected in Lanzarone et al. (2010), i.e., patient’s age and gender. Finally, note

that, in this paper, we have assumed that each patient enters and exit only once

during his/her care pathway, whereas a state pause was adopted in Lanzarone et al.

(2010) to consider such event. In terms of results, both models show good validation

outcomes even if the results are not directly comparable.

To conclude, we believe that the Bayesian approach is an effective and promising

tool for dealing with the randomness in the HC setting, and that there are potential

areas of development for such an approach in HC. For instance, our future work will

deal with a Bayesian joint modeling and prediction of the number of visits and the

care pathway evolution. In this way, there will be no need to assume the CP as fixed.
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