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I. INTRODUCTION

V ISUAL features provide a succinct, yet efficient,
representation of the underlying visual content, which

is robust and invariant to many global and local transforma-
tions. They are effectively employed in many tasks, ranging
from image/video retrieval, object recognition, object tracking,
image registration, structure-from-motion, etc. Visual feature
extraction algorithms consist of two main components: the
detector, which identifies salient keypoints within an image;

and the descriptor, which provides a concise representation of
the image patch surrounding each keypoint. Although several
different descriptors have been proposed in recent years, they
all share a similar processing pipeline. That is, a feature vector
is computed following three main processing steps, namely
pre-smoothing, transformation and spatial pooling [3]. For
example, the state-of-the-art SIFT descriptor [4] is obtained
performing Gaussian smoothing, followed by the computation
of local gradients, which are then pooled together to build a
histogram.

Several visual analysis applications, such as object recog-
nition, traffic/habitat/environmental monitoring, surveillance,
etc., might benefit from the technological evolution of net-
works towards the “Internet-of-Things”, where low-power
battery-operated nodes are equipped with sensing capabilities
and are able to carry out computational tasks and collab-
orate over a network. In particular, Visual Wireless Sensor
Networks (VWSNs) are a promising technology for distrib-
uted visual analysis tasks [5], [6]. The traditional approach
to such scenarios, which will be denoted hereinafter as
“Compress-Then-Analyze” (CTA), is based on the following
steps: the signal of interest (i.e., a still image or a video
sequence) is acquired by a sensor node, then it is compressed
(e.g., resorting to JPEG or H.264/AVC coding standards) in
order to be efficiently transmitted over a network. Finally,
visual analysis is performed at a sink node [7]– [10]. Since
the signal is acquired and subsequently compressed, visual
analysis is based on a lossy representation of the visual
content, possibly resulting in impaired performance [11], [12].
Although such paradigm has been efficiently employed in
a number of applications (e.g., video surveillance, smart
cameras, etc.), several analysis tasks might require streaming
high quality visual content. This might be infeasible even
with state-of-the-art VWSN technology [13] due to the limited
network bandwidth. A possible solution consists in driving the
encoding process so as to optimize visual analysis, rather than
perceptual quality, at the receiver side. For example, JPEG
coding can be tuned so as to preserve SIFT features in decoded
images [14].

At the same time, an alternative “Analyze-Then-Compress”
(ATC) approach, in a sense orthogonal to CTA, is gaining
popularity in the research community. The ATC paradigm
relies on the fact that some tasks can be performed resorting to
a succinct representation based on local features, disregarding
the actual pixel-level content. According to ATC, local features
are extracted from a signal directly by the sensing node. Then,
they are compressed to be efficiently dispatched over the
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Fig. 1. Pipelines for the “Analyze-Then-Compress” and
“Compress-Then-Analyze” paradigms.

network. As illustrated in Fig. 1, “Analyze-Then-Compress”
and “Compress-Then-Analyze” represent concurrent para-
digms that can be employed to address the problem of ana-
lyzing content capture from distributed cameras. Compression
of visual features is key to the successful deployoment of the
ATC scheme, since VWSNs typically pose strict constraints
regarding the available bandwidth. Several works tackled this
problem for the case of features extracted from still images,
proposing methods to efficiently encode state-of-the-art visual
features [15]–[18] or to modify the design of local feature
extraction algorithms, so that the representation of the underly-
ing visual content is more suitable for compression [19]–[22].
In this context, an ad-hoc MPEG group on Compact Descrip-
tors for Visual Search (CDVS) is currently working towards
the definition of a standard tailored to this scenario [23].

Several visual analysis tasks (e.g., motion estimation
and tracking, structure-from-motion, 3D reconstruction, event
detection, etc.) require to process sets of visual features
extracted from video sequences. Such tasks require the usage
of a representation in terms of a set of local features for
each frame to be analyzed, therefore resulting in a necessarily
large volume of data. Hence, the design of efficient coding
mechanisms for video sequences of visual features plays a
fundamental role. Although a large body of research deals
with the extraction and compression of visual features obtained
from still images, the execution of similar operations starting
from video sequences has not received a similar attention
so far. Therefore, the main contribution of this work is the
proposal of a novel coding architecture tailored to compress
sets of visual features, including both the location of the
keypoints and the corresponding descriptors, extracted from
video sequences. Inspired by traditional video coding archi-
tectures, we exploit both spatial and temporal redundancy by
means of intra-frame and inter-frame coding schemes. To this
end, we propose a coding mode decision algorithm based
on rate-distortion optimization that adaptively selects either
intra- or inter-frame coding for each feature. This goes beyond
previously proposed visual feature coding schemes, which
exploit redundancy either within the same descriptor [15], [24],
[25] or descriptors extracted from the same image [24], [26],
[27], [28].

Our experiments are based on SIFT [4], which is known
to deliver state-of-the-art performance in several visual analy-
sis tasks. However, the proposed coding architecture is not
bound to a specific kind of local features, since it can be
immediately applied to any kind of real-valued descriptor. To
demonstrate such flexibility, we also provide results for SURF
[29], a popular descriptor partially inspired by SIFT, which

provides slightly worse performance in visual analysis, but at
a lower computational complexity.

The proposed coding architecture achieves high coding
efficiency, which is necessary to enable the ATC paradigm in
those scenarios that require the analysis of video content. As a
further contribution of our work, we thoroughly compared the
ATC approach, based on the proposed visual feature coding
scheme, with the CTA approach, based on traditional video
coding (i.e., H.264/AVC). As illustrated in Fig. 1, a direct
comparison between the two approaches cannot be performed
based on traditional rate-distortion analysis, since different and
incomparable signals are reconstructed at the receiver side.
Conversely, the comparison is based on evaluation metrics
that capture the quality of the analysis task. To this end,
we adopted metrics that are routinely used to quantify the
performance of visual features in the context of, e.g., content-
based retrieval, object recognition and tracking. Experimental
results demonstrate that, thanks to the significant coding gain
achieved by the proposed coding scheme, ATC outperforms
CTA with respect to all evaluation metrics. Of course, CTA
remains a valuable option when one needs to have access to the
full pixel-domain representation of the video sequence at the
decoder, e.g., to store a copy of the sequences for future use
(e.g., in surveillance), or when different kinds of analysis are
necessary, possibly requiring different forms of visual features.
In some cases, though, the bandwidth constraints imposed by
the network are so stringent, that only ATC can operate under
these conditions [30].

In our work we do not focus on the problem of matching
sets of visual features extracted from different images/video
sequences. Indeed, matching is known to represent an expen-
sive operation in terms of computational resources. For this
reason, there are several works in the field of content-based
image and video retrieval that propose fast matching schemes
that scale with the size of the database. These schemes are
based on the idea of building a very compact representation
mapping a set of descriptors extracted from an image or a
video frame into a fixed-dimensional feature vector, so that
multidimensional indices can be employed. The most popular
approach is known as Bag-of-Visual-Words (BoVW) [31],
which offers reduced computational complexity for the match-
ing process while trading off some precision in the execution
of the task. Other global, fixed-dimensional, representations
based on local features were recently proposed [32]. However,
having access to the decoded set of local features offers unique
advantages. First, encoding local features does not preclude the
opportunity of using a BoVW approach at the decoder. Indeed,
the received features can be mapped to the corresponding
visual words and used to perform fast matching based on a
fixed-dimensional BoVW representation. At the same time,
the availability of local features at the decoder enables the
possibility of re-ranking the top-matching items obtained by
means of global descriptors (e.g., by enforcing spatial veri-
fication [33]), thus leading to improved precision. This is in
contrast to those approaches that compute and compress global
descriptors based on visual words at the sensor node [34], for
which re-ranking cannot be performed. Second, the underlying
spatial configuration of local features is completely retained,



i.e., the coordinates of the detected keypoints are encoded
together with the corresponding descriptors. This is not the
case when using a BoVW approach, in which the quantization
process used to map a descriptor to the nearest visual word
discards the coordinates of its keypoint. In some applications,
e.g., in object tracking and structure from motion, it is neces-
sary to reconstruct the spatial configuration of keypoints at the
decoder, since the spatial evolution of local features needs to
be tracked by matching them along the temporal dimension.
This is demonstrated in the homography estimation scenario
evaluated in the experiments in Section IV, which explicitly
requires the availability of local features, rather than global
features.

The question addressed by the ATC paradigm bears some
similarity with problems discussed previously in the literature,
e.g., in the context of semantic coding [35] (representing
multimedia information under a compressed form that permits
efficient classification) and model-based coding [36] (comput-
ing face models that can be efficiently encoded and transmit-
ted). More formally, the problem is cast under the theoretical
framework of the information bottleneck method in [37],
in which the source to be encoded is abstracted by means of a
random variable, and an auxiliary representation that achieves
the best trade-off between accuracy and compression is sought.
Differently, in this paper we focus on analysis tasks that can
be performed by means of a representation based on local
features.

The rest of the paper is organized as follows. Section II
introduces the problem of coding visual features extracted
from video sequences. Section III illustrates the details about
the coding schemes for both intra- and inter-frame approaches
and discusses rate-distortion optimization. Section IV is
devoted to a comprehensive experimental study, introducing
the processing pipelines implementing different visual analysis
tasks, defining the evaluation metrics and comparing the
results obtained by both the ATC and CTA paradigms. Finally,
section V draws the conclusions and discusses future work.

II. CODING VIDEO SEQUENCES OF LOCAL FEATURES:
PROBLEM STATEMENT

Let In denote the n-th frame of a video sequence of
size Nx × Ny , which is processed to extract a set of local
features Dn . First, a detector (possibly scale-invariant) is
applied, to identify stable keypoints in the scale-space domain.
The use of a scale-invariant detector [38] (e.g., Laplacian-
of-Gaussian, Difference-of-Gaussians, Harris-Laplace, etc.)
allows the extraction of keypoints associated with image
patches of different physical sizes. The number of detected
keypoints Mn = |Dn| depends on both the image content,
the detector type and the settings of the detector parameters
(e.g., number of scales, detection threshold, etc.). Then, the
patches around the detected keypoints are processed further to
compute the corresponding descriptors. Several descriptors are
rotation-invariant, i.e., they take into account the orientation of
the detected keypoint and compensate for that while building
the descriptor vector. To this end, the main direction of the
keypoint is estimated, typically based on the analysis of

local gradients. An oriented patch surrounding the keypoint
is extracted and subsequently processed to compute a concise
representation. The descriptor is built having the keypoint
orientation as a reference coordinate system, resulting in an
orientation-invariant descriptor.

Although the proposed coding architecture can be used
to encode different kinds of descriptors, in our experiments
we focus on two popular choices, namely SIFT [4] and
SURF [29]. For each detected keypoint, both descriptors
consider a patch centered at the keypoint, rotated by θ , whose
size is proportional to σ . In the case of SIFT, the local patch
is divided into 16 sub-regions, and an orientation histogram
with 8 bins is created based on the gradients computed from
the (smoothed) samples for each region. The descriptor is then
obtained by concatenating these 16 histograms, leading to a
descriptor with 128 elements. The descriptor is finally normal-
ized to unit length to achieve robustness against illumination
changes. In the case of SURF, the local patch is split in a grid
of 4 × 4 sub-regions. For each sub-region a 4-dimensional
feature vector is defined as:

[
∑

gx ,
∑

gy,
∑

|gx |,
∑

|gy|] , (1)

where gx and gy represent the result of convolving the pixel
values of the local patch with two Haar wavelets along orthog-
onal directions, and the sums are computed over a predefined
set of sample points in the respective sub-region. The final
descriptor is obtained by concatenating the feature vectors of
all the sub-regions, obtaining a vector with 64 elements.

Each element dn,i ∈ Dn is a visual feature, which con-
sists of two components: i) a 4-dimensional vector pn,i =
[x, y, σ, θ ]T , indicating the position (x, y), the scale σ of the
detected keypoint, and the orientation angle θ of the image
patch; ii) a P-dimensional vector dn,i , which represents the
descriptor associated to the feature dn,i .

As mentioned in Section I, we introduce a coding architec-
ture which aims at efficiently coding the sequence {Dn}N

n=1 of
sets of descriptors, where N denotes the number of frames.
In particular, a lossy coding technique is proposed, which
enables to reconstruct, at the decoder, an approximation D̃n
of the local features extracted from In . Each reconstructed
descriptor can be written as d̃i,n = {p̃n,i , d̃n,i }. The number
of bits necessary to encode the visual features of frame In is
equal to

Rn =
Mn∑

i=1

(Rc
n,i + Rd

n,i ), (2)

where Rc
n,i is the rate used to represent the location component

pn,i , Rd
n,i is the number of bits used to encode the descriptor

component dn,i and Mn = |Dn| is the number of features
extracted from frame In . Distortion is measured in terms of
the mean square error between the original and the decoded
descriptor, averaged over the descriptors extracted from In:

Dn = 1
Mn P

Mn∑

i=1

‖d̃i,n − di,n‖2
2, (3)

where ‖ · ‖2 denotes the l-2 norm. As for the component p̃n,i ,
we decided to encode the coordinates of the keypoint and its
scale, i.e., p̃n,i = [x̃, ỹ, σ̃ ]T . At the decoder, the information



Fig. 2. Block diagram of the proposed coding architecture for visual features
extracted from video sequences.

regarding the location (x, y) is necessary in several visual
analysis tasks: i) when the matching score between image
pairs relies on a geometric consistency check based on spatial
verification [33], e.g., using RANSAC [39]; ii) when corre-
spondences among local features need to be found over time,
e.g., in the case of object tracking, or across different views,
e.g., in the case of stereo matching. Although most detectors
produce as output coordinates represented in floating point
precision thanks to a sub-pixel interpolation step, we decided
to round the coordinates to quarter-pixel precision, which is
typically sufficient for most analysis tasks. The scale parameter
is also quantized with a step size equal to 0.25. In Section IV
we will show experimentally that this choice does not impair
the repeatability of the detector. The encoded vector p̃n,i does
not contain the orientation of the keypoint θ , as it is typically
not employed to match descriptors. Note that this piece of
information might be necessary when using alternative spatial
verification schemes, e.g., when weak geometry checking [40]
is enforced.

The main contribution of this paper is the investigation
of an intra- and inter-frame coding scheme, which aims at
exploiting the spatio-temporal redundancy in sets of local
features {Dn}N

n=1 extracted from consecutive video frames.
In Section III we provide the details of the proposed coding
architecture, which leverages some of the coding tools that
are successfully employed in state-of-the-art video coding to
achieve high coding efficiency. Note that the same coding
architecture can be adapted in a straightforward manner to
encode sets of descriptors acquired from multiple cameras
observing the same scene.

III. CODING VIDEO SEQUENCES OF LOCAL

FEATURES: ALGORITHMS

Similarly to video coding, the sequence of descriptors is
organized according to a GOP (Group of Pictures) structure.
In this work, we consider two kinds of frames, namely
I-frames and P-frames and a simple IPPP GOP structure,
with an I-frame every G frames. Descriptors in I-frames are
encoded exploiting an intra-frame coding mode, which is
described in Section III-A. Conversely, descriptors in P-frames
are encoded exploiting an inter-frame coding mode, illustrated
in Section III-B. The principles illustrated in this section can
be generalized to more complex GOP structures, including,
e.g., B-frames and hierarchical B-frames, which are commonly
used in state-of-the-art video coding architectures.

Fig. 3. [Best viewed in color] The inter-frame coding scheme matches sets
of features extracted from consecutive frames. The key idea is that features
corresponding to the same physical entity (green circles) would also obtain
similar description vectors. On the other hand, intra-frame scheme addresses
either local features that are occluded or not visible in one of the two frames
(blue circles) or non-repeatible detections (red circles).

A. Intra-Frame Coding

The intra-frame coding scheme is based on a frame-by-
frame processing, in which the local features extracted from
frame In are encoded independently from those extracted
from other frames. Such approach is in a sense equivalent
to coding local features extracted from still images, which has
being widely investigated in the past literature as discussed in
Section I.

Considering a baseline architecture, each dexel (descriptor
element) of dn,i is encoded by applying scalar quantization
with step size # j and a central deadzone. That is,

d̃n,i, j = sgn(dn,i, j )

⌊ |dn,i, j |
# j

⌋
. (4)

We fix the same quantization step size for all dexels, i.e.,
# j = #, j = 1, . . . , P . Then, the quantization symbols are
compressed by means of entropy coding using Rd,INTRA

n,i bits,
whereas the location component of the keypoint is encoded
using Rc,INTRA

n,i bits, as discussed in Section III-C.
In previous works it was observed that dexels of the same

descriptors are somehow correlated [24], [27], thus leading
to intra-frame coding schemes that exploit the inherent intra-
descriptor redundancy. Hence, we consider an intra-descriptor
coding scheme that applies the Karhunen-Loève Transform
matrix T ∈ RP×P to each descriptor dn,i . The matrix T is
determined based on the descriptors collected from a large set
of training images, as detailed in Section IV. Although the
Karhunen-Loève Transform can also be used to reduce the
number of elements of the descriptor [22], in this work it is
adopted to address the correlation among descriptor elements.
Then, let cn,i = Tdn,i ∈ RP denote the descriptor in the
transform domain, and c̃n,i the result of scalar quantization.
Similarly to the case above, the output symbols of the quan-
tizer are entropy coded.

In the literature, it is also observed that descriptors extracted
from the same image are correlated (e.g., because of the
presence of recurring patterns), suggesting the adoption of
inter-descriptor coding schemes [26], i.e., approaches that
exploit redundancy among local features belonging to the same
set Dn . However, in our previous work [27], we show that
inter-descriptor coding does not bring significant coding gains,
once intra-descriptor redundancy is addressed. Hence, we do



not consider inter-descriptor coding within the same frame in
this work.

B. Inter-Frame Coding

In the case of inter-frame coding, each set of features Dn
is encoded resorting to a reference set of features. In this
work, we consider as reference the set of local features
extracted from the previous frame, i.e., Dn−1, thus mimicking
P-frames in traditional video coding. Such approach can be
straightforwardly extended by adapting the ideas behind state-
of-the-art video coding tools, e.g., introducing the possibility
to use multiple sets of features as a reference, or bi-directional
predictive coding schemes similar to the ones of B-frames.

The key intuition behind inter-frame coding is that the
keypoints detected in neighbouring frames correspond to the
same physical entities, provided that the underlying visual
content does not change abruptly. As such, the image patches
around two matching keypoints are similar, leading to corre-
lated descriptors. This is illustrated in Fig. 3, for the case of
feature pairs 〈dn−1,3, dn,1〉, 〈dn−1,5, dn,4〉, 〈dn−1,2, dn,8〉 and
〈dn−1,4, dn,9〉. Of course, not all the keypoints in Dn have
a matching keypoint in Dn−1. This is due different reasons:
i) objects are covered/uncovered, so that the image region
corresponding to a keypoint in frame In does not appear in
image In−1 (for example, dn,2, dn,7 and dn−1,9 in Fig. 3);
ii) the non-ideal behaviour of the detector, which might not
necessarily detect the same keypoint across different frames
(for example, dn,3, dn,6, dn−1,1, dn−1,7 and dn−1,8 in Fig. 3).

Therefore, we consider a coding architecture that is able to
adaptively switch between inter-frame and intra-frame coding.
Specifically, considering each descriptor dn,i ∈ Dn , i =
1, . . . , Mn , encoding proceeds as follows (see Fig. 2):

• Descriptor matching: Compute the best matching descrip-
tor in the reference frame, i.e.,

d̃n−1,l∗ = arg min
d̃n−1,l∈C

JINTER(dn,i , d̃n−1,l), (5)

where

JINTER(dn,i , d̃n−1,l)=
1√
P

‖dn,i −d̃n−1,l‖2+λRc,INTER
n,i (l),

(6)

and C ⊆ Dn−1 represents the set of all possible matching
candidates. In this work, C is populated with the local
features whose coordinates are in a neighborhood of dn,i ,
within a search window of (±#x,±#y) and whose scale
is in a range of ±#σ . Such initial filtering stage has two
main motivations: i) enforcing stable matches between
keypoints that possibly represent the same physical entity;
ii) reducing the computational complexity by evaluating
only a set of candidates, thus avoiding a complete scan
of the set Dn−1 for each local feature to be matched.
In the cost function in (6), the first term represents the
Root Mean Square Error (RMSE) between two matching
candidate descriptors, whereas the second is a penalty
term Rc,INTER

n,i (l) that takes into account the rate needed
to encode the position of the keypoint associated to
dn,i , relative to d̃n−1,l . Such term takes into account:

i) the number of bits needed to encode the identifier of
the reference keypoint; ii) the bits used to entropy code
the differences p̃n,i −p̃n−1,l , i.e., the equivalent of motion
vectors in traditional video coding, as discussed in detail
in Section III-C. The cost function JINTER is the result of
a Lagrangian relaxation of a rate-distortion optimization
problem. Section III-D aims at investigating the value to
be assigned to the Lagrangian multiplier λ.

• Intra-descriptor transform: Compute the output of the
intra-descriptor transform

cINTRAn,i = TINTRAdn,i , (7)

cINTERn,i = TINTER(dn,i − d̃n−1,l∗), (8)

where TINTRA and TINTER are two different
Karhunen-Loève Transform matrices that are trained as
detailed in Section IV based on, respectively, descriptors
and prediction residuals. Note that cn,i , dn,i ∈ RP ,
that is, the KLT transform is applied in order to
decorrelate descriptor elements, thus increasing the
coding efficiency, rather than reducing the dimensioality.
When no transform is used, TINTRA = TINTER = I.

• Coding mode decision: For each local feature, the
coding mode that leads to the highest coding efficiency
is selected. For the sake of clarity, we initially describe
how the coding mode is selected when no transform
is used. In this case, two coding modes are available:
inter-frame coding and intra-frame coding. Therefore,
for each feature, we compare the cost of inter-frame
coding, i.e.,

JINTER(dn,i , d̃n−1,l∗) = 1√
P

‖dn,i −d̃n,i‖2+. . .

+λ(Rc,INTER
n,i (l∗)+Rd,INTER

n,i (l∗)),
(9)

with that of intra-frame coding, i.e.,

JINTRA(dn,i ) = 1√
P

‖dn,i −d̃n,i‖2

+λ(Rc,INTRA
n,i + Rd,INTRA

n,i ), (10)

where Rc,·
n,i and Rd,·

n,i indicate, respectively, the number of
bits to encode the location component and the descriptor
component of dn,i , as detailed in Section III-C1, while
l∗ represents the index of the reference feature iden-
tified by the Descriptor Matching phase. To compute
Rd,INTER

n,i (l∗), the prediction residuals cINTERn,i are quan-
tized and entropy coded, counting the number of bits
of the corresponding bit-stream. Similarly, Rd,INTRA

n,i is

obtained by quantizing and entropy coding cINTRAn,i .
A mode decision is made comparing
JINTER(dn,i , d̃n−1,l∗) and JINTRA(dn,i ). Specifically,
if JINTER(dn,i , d̃n−1,l∗) < JINTRA(dn,i ), then we select
inter-frame coding. Otherwise, the descriptor is encoded
in intra-frame mode.

1Since TINTRA and TINTER are orthonormal transforms, ‖dn,i‖2 =
‖cINTRAn,i ‖2 and ‖dn,i − d̃n−1,l∗‖2 = ‖cINTERn,i ‖2.



Note that the two cost functions, corresponding to inter-
frame coding used during descriptor matching (6) and
coding mode decision (9), are slightly different. In par-
ticular, (9) takes into account also the number of bits
needed to encode the descriptor prediction residuals
Rd,INTER

n,i , which is not included in (6). In accordance
with a best practice in conventional video coding, this
is done to reduce the computational complexity of eval-
uating (6), which is repeated for all possible match-
ing candidates, since computing Rd,INTER

n,i requires to
quantize the prediction residuals corresponding to each
matching candidate, and compute the size of the bitstream
generated after entropy coding the quantization symbols.
Although this can be done by computing the codeword
lengths based on the probabilities of the symbols (i.e.,
without explicitly generating the codewords), it would
nevertheless add complexity to the encoder. Furthermore,
our experiments showed that the coding gain attained
taking into account Rd,INTER

n,i in addition to Rc,INTER
n,i

in the cost function (6) was negligible, namely lower
than 0.3% on average. In addition, in (6) the predic-
tion residuals are computed based on the reconstructed
descriptor d̃n−1,l∗ .
When the intra-descriptor transform is enabled, the cod-
ing mode decision selects the best out of four differ-
ent coding modes: i) inter-frame coding, no transform;
ii) inter-frame coding, with transform; iii) intra-frame
coding, no transform; iv) intra-frame coding, with trans-
form. Case i) and ii) use the same cost function as in (9),
with the difference that the term Rd,INTER

n,i (l∗) accounts
for the rate needed to encode the prediction residu-
als, or the transformed prediction residuals, respectively.
Case iii) and iv) use the same cost function as in (10),
with the difference that the term Rd,INTRA

n,i accounts for
the rate needed to encode the descriptor in its original
domain, or the transformed descriptor, respectively.

• Quantization: Scalar quantization with step size # j is
applied to the P elements of cn,i . In the case of cINTRAn,i ,
we use the deadzone quantizer in (4). In the case of
cINTERn,i , we adopt a scalar uniform quantizer without
deadzone:

c̃n,i, j = # j · round(cn,i, j /# j ) (11)

Our experiments revealed that the adoption of a dead-
zone does not bring any coding gain in the case of
quantizing the prediction residuals cINTERn,i , due to the fact
that the statistics differ from those of the original dexels.
We fix the same quantization step size for all dexels, i.e.,
# j = #, j = 1, . . . , P .

• Entropy coding: Entropy coding proceeds as detailed in
Section III-C.

C. Entropy Coding

Entropy coding takes care of exploiting the statistical redun-
dancy for both the location and the descriptor component of
dn,i . As for the descriptor component, the output symbols of
the quantizer c̃n,i are entropy coded using arithmetic coding,
resulting in Rd

n,i bits. Depending on the coding mode, either

c̃INTRAn,i or c̃INTERn,i is encoded. The probabilities of the sym-
bols used by the entropy coder are learned from descriptors
extracted from a training set of frames.

• Intra-frame coding: The statistics are collected by quan-
tizing a large set of descriptors at different quantization
step sizes. Then, for a given value of #, and for each of
the P dexels, we estimate the probability of the symbols
counting the number of occurrences in the training set of
each of the possible reconstruction levels of the quantizer.
Different statistics are computed depending on whether
the transform TINTRA is used.

• Inter-frame coding: The probabilities of the symbols
used for entropy coding are learned from a training
set of video frames. To this end, we considered only
descriptors for which a good match was found, i.e.,
‖dn,i − dn−1,l∗‖2 < ‖dn,i‖2. For each possible value of
the quantization step size #, we computed the quantized
prediction residuals c̃n,i , possibly after an intra-descriptor
transform TINTER, and obtained the statistics as in the
case of intra-frame coding.

To encode the location component of dn,i , we proceed as
follows.

• Intra-frame coding: The coordinates of each key-
point (at quarter-pel accuracy) are encoded using
Rc,INTRA

n = Mn · (log2 4Nx + log2 4Ny + S) bits, where S
is the number of bits use to encode the scale parameter.
Higher coding efficiency is achievable implementing ad-
hoc lossless coding schemes to compress the coordinates
of the keypoints [41], [42].

• Inter-frame coding: In this case the location component
of the keypoint is encoded with respect to the one of the
matching keypoint dn−1,l∗ , which requires Rc,INTER

n,i (l∗)
bits. The motivation behind this choice is that encod-
ing the displacement p̃n,i − p̃n,l∗ requires fewer bits
than encoding p̃n,i directly, due to the temporal redun-
dancy between matching features belonging to contiguous
frames. To this end, it is necessary to encode: i) the
identifier of the matching keypoint in the reference frame;
ii) the position and the scale of the keypoint with respect
to the matching keypoint.
We devised a predictive strategy for encoding the refer-
ence keypoint identifiers. Let Mn→n−1 denote a map-
ping between each inter-frame encoded feature belong-
ing to the set of visual features D̃n extracted from
the frame In and the corresponding reference feature
belonging to the set D̃n−1, as illustrated in Fig. 4(a).
Based on this, we reorder the visual features in D̃n
by ascending keypoint reference identifier, such that the
resulting mapping vector M′

n→n−1 contains monoton-
ically increasing identifiers, as depicted in Fig. 4(b) .
Then, we compute the vector On→n−1, which contains
the offsets between each pair of contiguous identi-
fiers, by performing a simple cell-by-cell subtraction.
We observe that the probabilities of observing different
offset values are not uniformly distributed. Conversely,
values with smaller modulus are much more likely
to occur.



Fig. 4. The set D̃n of visual features belonging to the current frame
(a) is reordered by ascending keypoint reference identifiers M′

n→n−1
obtaining D̃′

n ; (b) The identifier offset vector On→n−1 is computed by
subtracting to each element of M′

n→n−1 the previous one. Note that some
features belonging to the reference frame (e.g. feature 2) might possibly be
unused.

Therefore, we learn such statistics and store them in
a look-up table, so that they can be used to drive the
arithmetic coder. Note that the reordering of the features
that leads from Mn→n−1 to M′

n→n−1 need not to be
communicated explicitly to the decoder, since it is implic-
itly obtained by the ordering in which the features are
encoded and written to the bitstream.
Once the identifier of the reference matching keypoint is
determined, we need to encode the position and the scale
of the keypoint, relative to its matching keypoint. That is,
we encode p̃n,i −p̃n−1,l∗ , which is similar to the notion of
motion vector in the case of video coding. Given a large
set of features extracted from training video sequences,
we learn the statistics of p̃n,i − p̃n−1,l∗ , so that they can
be used by the arithmetic coder. For further details, refer
to the technical report [2].

D. Rate-Distortion Optimization

The coding mode decision described in Section III-B
follows the rate-distortion optimization (RDO) approach
commonly employed in state-of-the-art video coding. Rate-
distortion optimization aims at minimizing distortion, subject
to a constraint on the available bit budget. Such constrained
optimization problem can be solved resorting to Lagrangian
relaxation, in which an unconstrained problem is formulated,
whose objective function is obtained combining the distortion
introduced by lossy coding with the rate needed to encode the
visual features. Such a trade-off is controlled by means of the
Lagrange multiplier λ in (9) and (10).

To find the optimal value of λ we proceeded adapting the
approach presented in [14] and [43] to the case of visual
features. First, we sampled a set of possible values, i.e.,
λ ∈ {0, 0.1, 0.2, 0.3, . . . 10}. For each value of λ, we processed

Fig. 5. Empirical relation between the target quantization step size # and
the optimal Lagrangian parameter λ, depicted along with the function λ(#) =
1.8 × 10−4#2 + 0.1

all descriptors in a set of video sequences. Each visual feature
was encoded using each of the four coding modes described
in Section III-B, by varying the quantization step size # ∈
{200, 180, 160, ..., 2}. For each visual feature, we collected
the set of values attained by the four cost functions, for each
of the tested quantization step sizes #. Then, we searched for
the coding mode and the value of # that minimized such cost
functions. With this, we obtained an empirical distribution of
the quantization step size #, which indicates the fraction of
times a given value of # led to the minimum value of the cost
function, when using a specific value of λ.

Finally, for all the video sequences, we selected the modes
of such empirical distributions so as to obtain a relationship
between the quantization step size # and the Lagrange mul-
tiplier λ, as illustrated in Fig. 5. Then, we fit a model λ(#)
by means of least squares considering the curves obtained for
all video sequences, in order to obtain a relationship which is
content-independent.

Note that, unlike in traditional video coding, in this case
the distributions are relatively flat. Therefore the estimated
location of the mode of the distribution cannot always be
determined exactly, as demonstrated by the noisy values of
λ reported in Fig. 5.

IV. EXPERIMENTAL STUDY

We experimentally validated the coding efficiency of the
proposed video coding architecture for visual features accord-
ing to two evaluation methods. In the first case, we used
conventional rate-distortion curves, whereby distortion is
expressed in terms of the signal-to-noise ratio (SNR) between
the original and reconstructed features in the dexel domain.
Second, and more interestingly, we compared the two par-
adigms, namely “Analyze-Then-Compress” and “Compress-
Then-Analyze” in terms of rate-efficiency curves, whereby
efficiency expresses a quantitative metrics related to the per-
formance of fulfilling a visual analysis task. To this end, two
main tasks were investigated:

• Content Based Video Retrieval (CBVR). Given an input
query in the form of some kind of visual content, the
goal is to retrieve the most relevant frames in a database
of video sequences according to a similarity criterion.



Visual features play a fundamental role in Content Based
Video Retrieval as they are key for the summarization
and indexing of large databases of video sequences.

• Homography estimation. Several computer vision tasks,
including camera calibration, 3D reconstruction, scene
understanding, structure-from-motion, object tracking,
etc., may require the estimation of a homography describ-
ing the geometric deformation between two frames of
the same video sequence. Visual features have been
successfully employed for this kind of task.

Due to the page limit constraint, we included a selection
of the experimental results in this manuscript. Additional
results are available as supplementary material in the extended
technical report [2].

A. Data Sets

The proposed coding architecture requires an initial training
phase to determine the intra-descriptor transform, the statistics
of the symbols to be entropy coded, and the relationship
between λ and the selected quantization step size #. The
training set is composed by three video sequences at CIF
resolution (352 × 288) and 30 fps, namely Paris, News and
Mother, each with 300 frames.

Two different test sets were used. The rate-distortion analy-
sis and the rate-efficiency analysis related to the CBVR
scenario were based on eight video sequences at CIF resolution
(352 × 288) and 30 fps, namely Hall, Mobile, Foreman,
Football, Coastguard, Bus, Bridge and Container. Each test
video sequence consists of 300 frames. For the homography
estimation scenario, a publicly available dataset for visual
tracking was employed [44]. Each video sequence consists
in a planar texture subject to a given motion path. A total of
six different rectangular textures (Bricks, Building, Mission,
Paris, Sunset, Wood) and several motion paths (unconstrained,
panning, rotation, perspective distortion, zoom, motion blur,
static lighting, dynamic lighting) are combined. For each frame
of each sequence, the homography that warps such frame to
the reference one is provided as ground truth. In details, the
ground truth homography represents the transformation that
projects the coordinates of the four corners of the texture in
the current frame to their own coordinates in the canonical
frame. In our experiments we employed the six sequences
corresponding to unconstrained motion due to their generality.
Each video sequence has a resolution of 640 × 480 pixel
at 15 fps and a length of 500 frames (33.3 seconds). We
temporally down-sampled the sequences to 3 fps, in order to
increase the differences between consecutive frames, so as to
make the homography estimation task sufficiently arduous.

B. Methods

In the “Analyze-Then-Compress”paradigm, the input video
sequences were analyzed to produce a compressed representa-
tion in the form of a set of visual features for each frame. Two
algorithms, namely SIFT [4] and SURF [29] were considered
for visual feature extraction. In particular, we adopted the
VLFEAT [45] and OpenSURF [46] implementations for SIFT
and SURF, respectively.

A training phase was necessary to learn the intra-descriptor
transforms and the statistics used by the entropy coder. In the
case of intra-frame coding, the transform TINTRA was esti-
mated using the KLT, considering all the descriptors extracted
from the training set after subtracting the average of each
element. The statistics of the quantization symbols were deter-
mined as described in Section III-C. In the case of inter-frame
coding, we estimated the transform TINTER using the KLT, the
statistics of the differences between the keypoint locations and
feature identifiers, and the statistics of the prediction residuals,
as detailed in Section III-C. Such statistics were stored in look-
up tables both at the encoder and at the decoder.

Each video sequence in the test set was processed as follow.
For each frame In , a set of visual features Dn was computed.
Then, fixing a value # for the quantization step size and
resorting to the information learned in the training phase, the
features were encoded and decoded following the procedure
described in Section III. Then, the sets of reconstructed visual
features D̃n,# were given as input to the specific visual
analysis task.

Within the ATC paradigm, we distinguish between several
different coding schemes:

• INTRA: all visual features were encoded resorting to an
intra-frame coding scheme. No intra-descriptor transform
was used.

• INTRA - KLT: all visual features were encoded resorting
to an intra-frame coding scheme. The intra-descriptor
transform was applied to all descriptors.

• INTER: all visual features were encoded resorting to an
inter-frame coding scheme. No intra-descriptor transform
was used.

• INTER - KLT: all visual features were encoded resorting
to an inter-frame coding scheme. The intra-descriptor
transform was applied to all prediction residuals.

• INTRA-INTER: for each visual feature, a 2-way coding
mode decision module selects the best coding mode
between INTRA and INTER. No intra-descriptor trans-
form was used.

• INTRA-INTER - KLT : for each visual feature,
a 4-way coding mode decision module selects the best
coding mode between INTRA, INTER, INTRA - KLT,
INTER - KLT.

Note that for INTER (INTER - KLT), all the features are
coded resorting to inter-frame coding, except for the ones for
which it is not possible to find a reference keypoint within the
spatial search window. Such features are coded resorting to
intra-frame coding mode. Nonetheless, tests show that more
than 98% of the features are encoded resorting to INTER
(INTER - KLT) coding mode.

For the CBVR and homography estimation scenarios,
we also report the results obtained according to a tradi-
tional “Compress-Then-Analyze” paradigm. The input video
sequences were compressed with the H.264/AVC coding stan-
dard, using the x264 video coding library. The library enables
to specify a quality factor Q which is mapped to a target
bitrate. We used Q ∈ {5, 10, . . . , 45} in our experiments. Then,
either SIFT or SURF visual features were extracted from each



frame Ĩn of the compressed test sequence, providing sets of
visual features D̃n,Q . Such sets of visual features were given
as input to the specific visual analysis task.

C. Parameter Settings

In both SIFT and SURF, a threshold determines the number
of detected keypoints, which is content-dependent. We set the
thresholds so as to obtain the average number of features
reported in Table I and II. The other parameters were left equal
to their default values. Each element of the SIFT descriptor is
represented by an 8-bit integer, whereas the SURF algorithm
provides descriptors in the form of vectors of 32-bit floating
point variables. To make the two descriptors comparable, we
quantized each 32-bit SURF dexel to an 8-bit signed integer.

The parameters x, y, σ , representing the location and the
scale of each keypoint, were rounded to the nearest quarter of
unit, as mentioned in Section III.

For the tests to be as fair as possible, the video coding
scheme and the visual feature coding scheme should oper-
ate under comparable conditions. In particular, the following
settings were employed with the x264 library, by adopting
coding tools that are supported by the H.264/AVC baseline
profile, which is tailored for wireless communications:

• number of reference frames: 1 (—ref 1)
• B-frames disabled (—bframes 0)
• subpixel motion estimation complexity: quarter of pixel

(—subme 4)
• Trellis quantization disabled (—trellis 0).
• Context-Adaptive Binary Arithmetic Coding (CABAC)

disabled (—no-cabac).
The Constant Rate Factor parameter (–crf <integer>)
was employed to control the output bitrate. It is important to
emphasize that the H.264/AVC standard is the result of many
years of optimization, while coding of visual features has only
been recently explored. Therefore, some of the coding tools
successfully adopted in H.264/AVC (e.g., B-frame, multiple
reference frames, etc.), might also be integrated into our
coding architecture. This is left to future investigation.

D. Evaluation Metrics

We evaluated the proposed coding architecture according to
different testing pipelines and related metrics:

• Rate-Distortion Analysis. Considering a test sequence, for
each frame In the set of features Dn was computed. Then,
for each possible value # of the quantization step size,
the reconstructed sets of features D̃n,# were obtained
following the ATC paradigm as explained in Section IV-B.
Finally, the tradeoff between the rate needed to encode
the visual features and the distortion introduced by the
quantization was investigated. The rate includes the num-
ber of bits needed to encode both the locations of the
keypoints and the descriptors (expressed in bits/feature).
The distortion is measured in terms of the signal-to-noise
ratio (SNR), which is defined as

SN R = 10 log10

∑N
n=1

∑Mn
i=1 ‖dn,i‖2

2∑N
n=1

∑Mn
i=1 ‖dn,i − d̃n,i‖2

2

(12)

• Content Based Video Retrieval. In the ATC case, the
sets of visual features Dn were encoded and decoded
to D̃n,# as described above. Instead, in the CTA case,
the sets of features D̃n,Q were obtained as described in
Section IV-B. The efficiency of ATC and CTA was evalu-
ated in terms of repeatability and matching score. These
metrics are used to assess the influence of lossy coding
on, respectively, the accuracy of the detector and of the
descriptor.
The accuracy of the detector was evaluated according to
the repeatability score between the set of original features
Dn and the set of reconstructed ones D̃n (i.e., either D̃n,#

or D̃n,Q ). Such a metric measures the average number
of corresponding regions detected in the two sets [47].
Specifically, for each visual feature d , it is possible to
define a spatial region Rd whose area is proportional to
the scale of the detected keypoint. Moreover, it is possible
to define the overlap error between two regions Rda and
Rdb as

Ea,b = 1 − Rda ∩ Rdb

Rda ∪ Rdb

(13)

Two regions are deemed to correspond if their overlap
error is lower than ε = 0.5. The repeatability for a given
pair of sets of visual features is computed as the ratio
between the number of region-to-region correspondences
and the smallest between the number of features in the
two sets, i.e., min{|Dn|, |D̃n|} in our case. To evaluate
the performance we computed the repeatability score
between the set of original features Dn and the set of
reconstructed features, i.e., D̃n,# or D̃n,Q , in the ATC or
CTA case. The final repeatability value was obtained by
averaging the scores of all the frames belonging to the
test video sequence.
The accuracy of the descriptor was measured in terms
of matching score [47]. The correspondences estimated
during the computation of the repeatability provide a
ground truth for the computation of such a metrics.
For each correspondence between a pair of keypoints,
a match is deemed correct if the two features are also the
nearest neighbours (in terms of Euclidean distance) in the
descriptor space. The rationale is that two descriptors
corresponding to matching patches should be close to
each other in the descriptor space, and possibly far from
descriptors associated to other patches. If this were not the
case, incorrect correspondences between patches would
be determined, thus undermining the retrieval process.
The matching score is defined as the ratio between the
number of correct matches and the smallest between the
number of detected features in the two sets. Once again,
the final value is obtained by averaging the matching
scores of all frames.

• Homography Estimation. In the case of ATC, the sets
of features Dn were extracted starting from the test
sequences. Such sets were filtered, removing the key-
points that did not belong to the planar texture identified
by the available ground truth. For each value of the
quantization step size #, the sets D̃n,# were obtained



Fig. 6. Rate-distortion curves obtained with the ATC coding architecture for the Foreman sequence. (a) SIFT, (b) SURF.

following the ATC paradigm. For each pair of con-
secutive frames In and Im , a homography H̃nm,ATC,#

was estimated based on D̃n,# and D̃m,#. To this
end, the matches between the two sets of features
were identified and given as input to the RANSAC
algorithm [39].
As for CTA, the test sequences were encoded with each
one of the quality factors Q = {5, 10, . . . , 45}. For each
frame In of the encoded sequence the sets of features
D̃n,Q were extracted. Similarly to the ATC case, the
sets of visual features were filtered and for each pair of
consecutive frames In and Im , a homography H̃nm,CTA,Q
was estimated resorting to D̃n,Q and D̃m,Q .
The performance of ATC and CTA was evaluated in terms
of rate-efficiency curves. For the task at hand, efficiency
was measured computing the homography estimation
precision. Specifically, let H̃nm denote the homography
estimated according to the procedure presented above,
following either the ATC or the CTA approach. The coor-
dinates of the four corners of the texture c1,n , c2,n , c3,n,
c4,n in frame In are provided as ground truth. Applying
the homography H̃nm to such points, it was possible to
obtain the estimated coordinates c̃1,m , c̃2,m , c̃3,m , c̃4,m in
frame Im and compare them with the real coordinates
of the corners c1,m , c2,m , c3,m , c4,m , also available as
ground truth. The backprojection error for the frame
m is defined as Ebp(m) = 1

4
∑4

p=1 |c̃p,m − cp,m |. An
estimated homography was deemed correct if the relative
backprojection error was lower than εbp = 3 pixels.
Finally, the homography estimation precision is defined
as the ratio between the number of correctly estimated
homographies and the total number of frames.

E. Results

• Rate-distortion analysis. The rate-distortion curves
obtained for the Foreman video sequence are reported
in Fig. 6, for both SIFT (a) and SURF (b) (for sup-
plementary results, refer to the technical report [2]).
A comparison between the INTRA and INTER coding
strategies reveals that the inter-frame coding scheme leads
to significant coding gains with respect to intra-frame
coding at all bitrates, regardless of the encoded content.

Fig. 7. Bit budget allocation between keypoint coordinates and descriptor
elements, averaged over the test sequences.

Larger gains are observed for SIFT than for SURF.
Indeed, it is possible to note that, in the case of intra-
frame coding, SURF requires a lower amount of bits than
SIFT to achieve the same distortion. This is due to the
intrinsic nature of the SIFT and SURF descriptors, con-
sisting of 128 and 64 dexels, respectively. However, in the
case in inter-frame coding, the 128-elements prediction
residuals obtained using SIFT can be more efficiently
compressed, thus outperforming the results achieved by
inter-frame coding SURF. For example, considering the
Foreman test sequence, 1.13 bits (2.11 bits) are needed
to encode each dexel of SIFT (SURF), in order to attain
a distortion equal to 20dB SNR. This can be attributed to
the higher repeatability of the detector used by SIFT. Due
to this, the patches around the corresponding keypoints
in the current and reference frames are more similar in
SIFT than in SURF, thus leading to descriptors that are
more temporally correlated.
In this context, we also investigated the allocation of the
bit budget between keypoint coordinates and descriptor
elements. Fig. 7 shows such allocation with respect to
the SIFT algorithm and for different values of #, which
correspond to a subset of the points used to generate
the operational rate-distortion curves. In the case of
inter-frame coding, the cost of encoding the keypoint
coordinates includes the bits to represent the reference
keypoint identifiers, as well as the displacement between
keypoints. We observe that inter-frame coding reduces the
number of bits necessary to represent both the keypoint
coordinates and the descriptor elements.



TABLE I

MINIMUM BITRATE TO ACHIEVE PERFORMANCE SATURATION - CONTENT-BASED VIDEO RETRIEVAL

Fig. 8. Proportion of SIFT keypoints encoded with any of the four possible
coding modes for Foreman test sequence.

Further coding gains can be achieved by adaptively
selecting either intra-frame or inter-frame coding on a
feature-by-feature basis, according to the RDO-based
mode decision detailed in Section III-B, as shown by the
INTRA− INTER curve in Fig. 6.
The adoption of the KLT to decorrelate the descriptor
elements leads to substantial gains for SURF, while
it provides worse coding efficiency for SIFT, apart at
very low bitrates. A similar observation is reported by
Chandrasekhar et. al. [24]. The KarhunenLove theorem
guarantees optimal energy compaction in the case of a
Gaussian source. Indeed, Feng et. al. [48] showed that
KLT is not optimal when other distributions are con-
sidered. In this case, the distribution of SIFT descriptor
elements is bi-modal, and cannot be well approximated
by means of a Gaussian [1], [24]. Similar considerations
can be made when using the KLT on the prediction
residuals, in the case of inter-frame coding. Coding gains
are achieved for SURF, and for SIFT at low bitrates.
In order to achieve the highest coding efficiency it is
necessary to optimally switch among different coding
modes, on a feature-by-feature basis. Indeed, a cod-
ing scheme that performs a 4-way mode decision (see
INTRA−INTER, K LT curves) achieves the best results
at all bitrates. Note that, in this case, the KLT transform is
applied only when deemed useful in rate-distortion sense.
In particular, Fig. 8 shows the fraction of SIFT features
that are encoded resorting to each possible coding mode.

Fig. 9. Rate-repeatability curves for the Content Based Video Retrieval test,
Foreman sequence, SIFT.

It is possible to note that the KLT seems to be an
advantageous option especially at low bitrates, and it is
mostly applied to inter-frame coded descriptors.

• Content-Based Video Retrieval. Fig. 9 shows that the
repeatability values in the case of ATC are not influenced
by the quarter of unit approximation of the keypoint loca-
tion elements, thus resulting in 100% repeatability at all
working points. Conversely, in the CTA case, lossy coding
introduces distortion in the pixel domain, thus affecting
the output of the detector. In particular, only a subset of
the keypoints extracted from the original uncompressed
sequence are obtained from the decoded video sequence.
For example, at 200 kbps, only 70% (80%) of the original
SIFT (SURF) keypoints are detected. Similar results were
obtained for all other tested video sequences.
Fig. 10 shows that the ATC scheme outperforms CTA
in terms of matching score, saturating to 100% at high
rates. The results are presented for the Foreman sequence,
although similar outcomes were obtained for all other
test sequences (for supplementary results, refer to the
technical report [2]). The use of inter-frame coding of
visual features enables to reduce the bitrate with respect
to intra-frame coding, while attaining the same perfor-
mance in terms of matching score. In particular, the SIFT
features resulted to be particularly robust to lossy coding.
Indeed, as illustrated in Fig. 10, the Content-Based Video



Fig. 10. Rate-matching score curves for the Content Based Video Retrieval test, Foreman sequence. (a) SIFT; (b) SURF.

Fig. 11. Rate-accuracy curves for the Homography Estimation test, Building sequence. (a) SIFT, (b) SURF.

Retrieval task does not significantly suffer a loss of
performance, even when considering the working point
corresponding to the highest possible value of the quan-
tization step (i.e., when SIFT dexels are represented as
binary values). For Foreman, the loss is up to 15%,
whereas it is as little as 5% for Hall and Mobile. In this
respect, a different behaviour was observed for SURF.
In fact, at very low bitrates, the matching score drops
significantly, also in the ATC case.
It is interesting to consider the operating point corre-
sponding to the minimum bitrate at which saturation of
matching score is achieved. For both SIFT and SURF,
this corresponds to the case of visual features encoded
at approximately 15dB. Table I summarizes the results
obtained for all test video sequences, considering the six
different coding schemes considered in the rate-distortion
analysis.
Finally, in the case of CTA, we observe that the curves
representing repeatability and matching score are very
similar to each other for all tested sequences. Indeed,
only a subset of the keypoints extracted from an original
uncompressed video sequence were obtained from the
analysis of the corresponding reconstructed sequence
at the decoder. However, for the detected keypoints,
the descriptors were correctly matched, despite being
extracted from the decoded sequences. Hence, it is

possible to conclude that video coding impairs the per-
formance of the detector more than that of the descriptor.

• Homography Estimation. The results obtained with both
the ATC and CTA cases are reported in Fig. 11 (for
supplementary results, refer to the technical report [2]). In
all cases, ATC outperforms CTA by a large margin. In the
ATC case, the gain achieved when adopting inter-frame
coding instead of intra-frame coding is narrower than in
the CBVR scenario. This is due to the fact that sequences
were down-sampled to 3 fps, and temporal redundancy is
weaker.
In the case of SIFT, performance rapidly saturates when
using ATC. Indeed, we are able to reconstruct (with the
same precision obtained using uncompressed SIFT fea-
tures extracted from uncompressed sequences) 3 homo-
graphies per second, with an available bitrate equal to
50 kbps. The working points corresponding to perfor-
mance saturation correspond to a distortion in the SNR
range 12-17dB.
On the other hand, in the case of SURF, ATC still
outperforms CTA but the gap between the two approaches
is smaller than in the case of SIFT. Similarly to the results
of the CBVR test, SURF is more sensitive than SIFT
when descriptors are quantized. Moreover, saturation is
slower and it is reached on average at 67 kbps, which cor-
responds to a target distortion in the SNR range 18-25dB.



TABLE II

MINIMUM BITRATE TO ACHIEVE PERFORMANCE SATURATION - HOMOGRAPHY ESTIMATION TEST

As a summary, Table II reports the minimum bitrate to
achieve performance saturation for both SIFT and SURF,
with respect to all the test video sequences. Finally,
considering the “Analyze-Then-Compress” approach,
note that SIFT outperforms SURF with respect to all
the test video sequences. Conversely, considering the
“Compress-Then-Analyze” approach, SIFT generally
outperforms SURF (for building, sunset, mission test
sequences), whereas SURF is the best option for the
Paris test sequence. On the remaining sequences the two
visual features achieve comparable results.

V. CONCLUSION

In this paper we considered the problem of encoding
sets of visual features extracted from video sequences.
This is an extremely promising direction that enables the
“Analyze-Then-Compress” paradigm in application scenarios
involving video content including, e.g., content-based video
retrieval, object tracking, etc. The proposed coding architecture
is general, and it can be used to compress any kind of real-
valued feature. In our experiments, we showed that large cod-
ing gains can be achieved with both SIFT and SURF. In those
cases in which the content need not to be reconstructed in the
pixel domain, our results demonstrate that the ATC paradigm
outperforms CTA.

At the same time, extracting visual features is a computa-
tionally intensive task. This issue might be particularly critical
when dealing with video content. To address computational
concerns, the design of binary descriptors (e.g. BRISK [49],
FREAK [50], D-BRIEF [51], etc., and their optimization [52])
is receiving a great deal of attention in the research community.
In the case of still images, it was recently shown by the authors
that a ATC paradigm based on an optimized version of BRISK
outperforms a CTA paradigm based on SIFT [30]. This will
stimulate future investigations, which will address the problem
of coding binary descriptors extracted from video sequences.
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