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In this paper we introduce and study a functional calculus for bicomplex linear bounded operators. The study is based on the 
decomposition of bicomplex numbers and of linear operators using the two nonreal idempotents. We show that, due to the 
presence of zero divisors in the bicomplex numbers, the spectrum of a bounded operator is unbounded. We therefore 
introduce a different spectrum (called reduced spectrum) which is bounded and turns out to be the right tool to construct 
the bicomplex holomorphic functional calculus. Finally we provide some properties of the calculus.

1 Introduction

A functional calculus is a theory allowing one to construct from a given function f and a given operator T a linear
operator f (T ) that depends on the function f . This is a branch of the field of functional analysis, connected with
spectral theory of operators.

When f is a function of a real variable x , for example, and T is an operator, in general the expression f (T )
does not make sense. If it does, then we are no longer using f on its original function domain.

If a given function f is of certain special type, there are natural ways of defining f (T ). For instance, if f
is a complex polynomial f (z) = ∑n

j=0 a j z j , one can simply substitute T for z and write f (T ) = ∑n
j=0 a j T j .

This is the polynomial functional calculus. If f is an entire function, with series expansion f (z) = ∑∞
j=0 a j z j ,

we can define f (T ) = ∑∞
j=0 a j T j whenever T is a bounded operator. Since the Mac Laurin series converges

everywhere, the above series will converge as well, in a suitable operator norm. The requirement that the Mac
Laurin series of f converges everywhere can be relaxed, we will not enter into the details here. It is expected that a
necessary condition for f (T ) to make sense is f be defined on the spectrum of T. Other indications also reinforce
the idea that f (T ) can be defined only if f is defined on the spectrum of T . The most familiar functional calculus
is the holomorphic functional calculus and it is based on the Cauchy integral formula from the classical theory
of a complex variable. In the Cauchy’s integral formula we replace the Cauchy kernel by the resolvent operators
(λI − T )−1 and we integrate on a contour �, which is the boundary of a suitably smooth domain U that contains
the spectrum of T , which, in the case of bounded operators, in a compact and nonempty set.

Assuming that the Banach space-valued integral is appropriately defined, this proposed functional calculus
implies the following necessary condition: the functional calculus should be well-defined in the sense that f (T )
is independent of �.

In the definition of the functional calculus, f is assumed to be holomorphic in an open neighborhood of U and
it turns out that the resolvent mapping is holomorphic on the resolvent set. Therefore the integral makes sense.

The holomorphic functional calculus has been extended in several directions using hypercomplex analysis. Two
main areas of investigation are the so-called S-functional calculus, based on slice hyperholomorphic functions,
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which is the a natural extension of the holomorphic functional calculus to quaternionic operators and to n-tuples of
noncommuting operators (see the book [4]), and the monogenic functional calculus based on the classical theory
of monogenic functions (see the book [8]). The theory of several complex variables gives rise to a functional
calculus that is based on the joint spectrum of operators.

The analysis of bicomplex holomorphic functions started in the thirties with the works of Scorza Dragoni and
Spampinato, see [18], [19]. In recent times there has been a resurgence of interest for this topic, see e.g. the
monograph [13], as well as the articles [5], [6], [7], [14], and its applications, see e.g. [2], [3], [9]. Motivated by
these papers, the aim of this article is to investigate the functional calculus in the bicomplex holomorphic setting.
We will show that, unlike what happens in the complex case, bounded operators have an unbounded spectrum, see
Corollary 3.11; this fact makes it necessary for us to identify a different notion of spectrum, what we will call the
reduced spectrum, and we will show how the use of this different notion allows us to define a functional calculus
for which it is possible to obtain the main usual properties of a functional calculus.

The plan of the paper is as follows: In Section 2 we recall some basic facts of bicomplex analysis and the
Cauchy formula for bicomplex holomorphic functions. In Section 3 we study the spectrum of bounded linear
operators and we prove the crucial Theorem 3.10 in which we study the structure of the spectrum of a bounded
operator. We then use this result to suitably modify the definition of spectrum in order to get a bounded spectrum,
called the reduced spectrum, for bounded operators. We conclude the section and the paper with some properties
for this functional calculus.

2 Preliminary results in bicomplex analysis

In this section we summarize the main properties of bicomplex numbers and of holomorphic functions of bicomplex
numbers, and we refer the reader to [5], [10], [11], [12], [13], [14] for further details.

Let i1 and i2 be two commuting imaginary units (i.e. i21 = i22 = −1, and i1i2 = i2i1). By Ci1 and Ci2 we denote,
respectively, the field of complex numbers of the form x + i1 y and of the form x + i2 y, x, y ∈ R. The set of
bicomplex numbers BC is then defined as

BC = {Z = x0 + i1x1 + i2x2 + i1i2x3, with x0, x1, x2, x3 ∈ R}
= {Z = z + i2w, with z, w ∈ Ci1}.

An element Z ∈ BC will be called a bicomplex number. The set BC turns out to be a ring with respect to
the sum defined by Z1 + Z2 = (z1 + i2w1) + (z2 + i2w2) = (z1 + z2) + i2(w1 + w2) and the product Z1 Z2 =
(z1 + i2w1)(z2 + i2w2) = (z1z2 − w1w2) + i2(w1z2 + z1w2) and thus it turns out to be a module over itself. The
rings Ci1 , Ci2 are subrings of BC, which are in fact fields, and thus BC can be seen as vector space over Ci1 and
over Ci2 .

Let U ⊆ BC be an open set. A function F : U ⊆ BC → BC can be written as

F = f0 + i1 f1 + i2 f2 + i1i2 f3,

where fi : U ⊆ BC → R, or as F = u + i2v, where u = f0 + i1 f1 and v = f2 + i1 f3.
The algebra BC is not a division algebra, since one can see that if

e1 = 1 + i1i2
2

and e2 = 1 − i1i2
2

,

then e1 · e2 = 0. The following two results are immediate and well known, see e.g. [13].

Proposition 2.1 The bicomplex numbers e1, e2 are linearly independent, mutually annihilating, idempotent,
and satisfy e1 + e2 = 1.

Proposition 2.2 Every Z = z + i2w ∈ BC, where z, w ∈ Ci1 , can be written in a unique way as:

Z = (z − i1w)e1 + (z + i1w)e2 (2.1)

and therefore the multiplications by e1 and e2 define two projection operators P1 and P2 from BC to Ci1 , both
seen as Ci1 -vector spaces.



Formula (2.1) is called the idempotent representation of a bicomplex number. Note that its uniqueness is a
consequence of the fact we have required the coefficients of e1 and e2 to be taken in Ci1 . A similar representation
could have been obtained by taking such coefficients in Ci2 .

Remark 2.3 The sets:

A1 := {
z − i1w

∣∣ z, w ∈ Ci1

}
, A2 := {

z + i1w
∣∣ z, w ∈ Ci1

}
,

are such that

BC = e1 A1 + e2 A2.

Moreover, for any open set U ⊆ BC this decomposition induces two open sets U1 ⊆ A1 and U2 ⊆ A2 such that

U = e1U1 + e2U2.

Remark 2.4 Note that A1 and A2 are copies of the same complex plane Ci1 but since the variable in A1 differs
from the variable in A2, it is convenient to keep the different notation.

Since bicomplex numbers are defined by using two different imaginary units, there are three natural notions of
conjugation.

Definition 2.5 Let Z = x0 + i1x1 + i2x2 + i1i2x3 = z + i2w ∈ BC. We define the following three conjugates
in BC:

Z∗ = z − i2w,

Z̃ = z + i2w,

Z † = z − i2w.

Any bicomplex number Z = z + i2w such that Z · Z † = z2 + w2 �= 0 is invertible since the non-zero complex
number z2 + w2 ∈ Ci1 has a natural complex inverse. In particular, the bicomplex number

Z−1 = Z †

z2 + w2

satisfies Z · Z−1 = Z−1 · Z = 1 and therefore it is the inverse of Z . Any bicomplex number for which Z · Z † �= 0
will be said to be nonsingular (or invertible). Let us set

J� := e�BC, � = 1, 2.

Then it is easy to verify that J�, � = 1, 2, is an ideal in BC and also that a product of two nonzero elements Z ,
W is zero if and only if Z ∈ J1 and W ∈ J2.

A simple computation shows that, in terms of the idempotent representation, the inverse of a bicomplex number
Z = z + i2w /∈ J1 ∪ J2 is given by:

Z−1 = e1 (z − i1w)−1 + e2 (z + i1w)−1.

Let us define the Euclidean norm on BC as

|x0 + i1x1 + i2x2 + i1i2x3| := (
x2

0 + x2
1 + x2

2 + x2
3

)1/2
;

it is immediate to see that such a norm does not respect the multiplicative structure of BC, since, if Z , W ∈ BC,
we have (see [13], p. 7):

|Z W | ≤
√

2|Z | |W |;
however, if Z ∈ Ci1 then |Z W | = |Z | |W |. The issue of the various notions of norm in BC has been widely
discussed in [1], Section 1.3.



In order to study the notion of bicomplex holomorphicity we introduce some very natural differential operators:

∂

∂ Z∗ := ∂

∂x0
+ i1

∂

∂x1
+ i2

∂

∂x2
+ i1i2

∂

∂x3
= ∂

∂ z̄
+ i2

∂

∂w̄
,

∂

∂ Z̃
:= ∂

∂x0
+ i1

∂

∂x1
− i2

∂

∂x2
− i1i2

∂

∂x3
= ∂

∂ z̄
− i2

∂

∂w̄
,

∂

∂ Z † := ∂

∂x0
− i1

∂

∂x1
+ i2

∂

∂x2
− i1i2

∂

∂x3
= ∂

∂z
+ i2

∂

∂w
,

∂

∂ Z
:= ∂

∂x0
− i1

∂

∂x1
− i2

∂

∂x2
+ i1i2

∂

∂x3
= ∂

∂z
− i2

∂

∂w
. (2.2)

Let U ⊆ BC be an open set, and let F : U ⊆ BC → BC be a bicomplex function, written as F = u + i2v, where
u, v : U ⊆ BC → Ci1 . We define bicomplex holomorphicity in the same way one defines classical holomorphicity
in one complex variable:

Definition 2.6 (See [12], [13].) A function is said to be bicomplex holomorphic in an open set U ⊆ BC if it
admits a bicomplex derivative at each point, i.e. if the limit

F ′(Z0) := lim
Z→Z0

Z−Z0 inv

(Z − Z0)−1 (F(Z) − F(Z0))

exists and is finite for any Z0 in U such that Z − Z0 is invertible. The limit will be called the derivative of F and
denoted by F ′(Z0).

A thorough discussion of derivability and differentiability for bicomplex functions can be found in [12].
We know that holomorphic functions in one complex variable are solutions of the Cauchy-Riemann system.

Something similar occurs in this case.

Theorem 2.7 (See [13].) Let U be an open set and F : U ⊆ BC → BC such that F = u + i2v ∈ C1(U). Then
F is bicomplex holomorphic if and only if:

(1) u and v are complex holomorphic in z and w,
(2) ∂u

∂z = ∂v
∂w

and ∂v
∂z = − ∂u

∂w
on U.

Moreover, F ′ = 1
2

∂ F
∂ Z = ∂u

∂z + i2 ∂v
∂z = ∂v

∂w
− i2 ∂u

∂w
.

The next result is the foundation for the theory of bicomplex holomorphic functions, and for the understanding
of their behavior:

Theorem 2.8 Let U ⊆ BC be an open set and let F : U ⊆ BC → BC be such that F = u + i2v ∈ C1(U).
Then F is bicomplex holomorphic if and only it satisfies the system

∂F

∂Z∗ = ∂F

∂Z † = ∂F

∂Z̃
= 0. (2.3)

We recall Theorems 15.3 and 15.5 of [13], but see also [6]:

Theorem 2.9 Let U ⊆ BC be a domain, and let U�, � = 1, 2, be as in Remark 2.3. If F1 and F2 are complex
holomorphic functions on U1 and U2, respectively, then the function:

F(Z) := F(z + i2w) = e1 F1(z − i1w) + e2 F2(z + i1w),

defined on U, is bicomplex holomorphic.

This description is in fact a characterization of bicomplex holomorphic functions.

Theorem 2.10 Let U ⊆ BC be a domain and let F be a bicomplex holomorphic function defined on U. Then
there exist two complex holomorphic functions F1 and F2 defined on U1 and U2, as in Remark 2.3, such that

F(Z) = F(z + i2w) = e1 F1(z − i1w) + e2 F2(z + i1w),

for all Z in U.



In order to state the Cauchy’s integral formula, we need some more notation: let a = a1 + i2a2 ∈ BC and let
r1, r2 be positive numbers. We define the bi-disk D(a, r1, r2) with center a and radii r1, r2 as the set

D(a, r1, r2) = {z1 + i2z2 ∈ BC : |(z1 − i1z2) − (a1 − i1a2)| < r1, |(z1 + i1z2) − (a1 + i1a2)| < r2}.
Let C1 be the circle in A1 with center at a1 − i1a2 and radius r1, and C2 be the circle in A2 with center at a1 + i1a2

and radius r2. Then C = C1 × C2 lies in the boundary of D(a, r1, r2).

Theorem 2.11 (Cauchy’s integral formula) Let U ⊂ BC be a domain and let f : U ⊂ BC → BC be a
bicomplex holomorphic function. Assume that a = a1 + i2a2 ∈ U and that the closure of the bi-disk D(a, r1, r2),
for suitable r1, r2, is contained in U. Let C be as above and w1 + i2w2 ∈ D(a, r1, r2) then

f (w1 + i2w2) = 1

2π i1

∫
C

f (z1 + i2z2)d(z1 + i2z2)
(z1 + i2z2) − (w1 + i2w2)

. (2.4)

This theorem is in [13], Theorem 40.1 and its proof shows that the following, more general, result holds
(compare also with Example 40.4 in [13]):

Theorem 2.12 Let U ⊂ BC be a domain and let f : U ⊂ BC → BC be a bicomplex holomorphic function.
Let w1 + i2w2 ∈ U and let γ1 ⊂ A1 and γ2 ⊂ A2 be simple, positively oriented, closed curves which are union
of continuously differentiable Jordan curves and such that γ1 surrounds w1 − i1w2 and γ2 surrounds w1 + i1w2.
Assume that � = γ1 × γ2 ⊂ U. Then:

f (w1 + i2w2) = 1

2π i1

∫
�

f (z1 + i2z2)d(z1 + i2z2)
(z1 + i2z2) − (w1 + i2w2)

. (2.5)

Remark 2.13 The integral in (2.5) can be computed as follows:

f (w1 + i2w2) = 1

2π i1

∫
γ1

f (z1 − i1z2)d(z1 − i1z2)
(z1 − i1z2) − (w1 − i1w2)

e1 + 1

2π i1

∫
γ2

f (z1 + i1z2)d(z1 + i1z2)
(z1 + i1z2) − (w1 + i1w2)

e2.

3 Bounded linear operators and the BC-functional calculus

In this paper, even when we do not specify it explicitly, we always limit ourselves to the case of bounded linear
operators.

Let V be a module over BC and let T : V → V be a map such that

T (v + u) = T (v) + T (u), ∀v, u ∈ V,

T (av) = aT (v), ∀ v ∈ V, ∀ a ∈ BC.

Then we say that T is a BC-linear operator on V . The set End(V ) of linear operators on V forms a BC-module
by defining

(T + S)(v) = T (v) + S(v), T, S ∈ End(V ),

(aT )(v) = a(T (v)), T ∈ End(V ), a ∈ BC.

We can define the multiplication of operators and, in particular, the powers T n . We set T 0 = I where I denotes
the identity operator.

Let us set V1 := e1V and V2 := e2V . Any element v ∈ V can be written as

v = (e1 + e2)v = v1 + v2 = e1v1 + e2v2,

where v� = e�v. It is immediate that V = V1 ⊕ V2 as BC-module but also as Ci1 -linear space or Ci2 -linear space.

Definition 3.1 We can define the operators T1, T2 as (see [3])

T�(v) := e�T (v), T� : V → V�, � = 1, 2.



In particular, we will use the two operators

I�(v) := e� I (v), � = 1, 2.

Proposition 3.2 The following properties holds.

(1) The operators T1 and T2 are BC-linear.
(2) We have the decomposition

T = e1T1 + e2T2. (3.1)

(3) The action of T on V can be decomposed as follows

T (v) = e1T1(v1) + e2T2(v2),

where v ∈ V , v = e1v1 + e2v2.
(4) The operator T� maps V� to itself, i.e.

T� : V� → V�, � = 1, 2.

In particular the operators I� : V� → V� are the identities on V�, � = 1, 2.

P r o o f. Point (1) it is true since T is BC-linear. Point (2) follows from

T = e1T + e2T = T1 + T2 = e1T1 + e2T2.

Point (3). The action of T on V can be decomposed using the actions of T� on V�, � = 1, 2, their linearity and the
fact that e1e2 = 0, as

T (v) = (e1T1 + e2T2)(e1v1 + e2v2) = e1T1(v1) + e2T2(v2).

Point (4). The statement follows from

T1(e1v1 + e2v2) = e1T1(e1v1 + e2v2) = e1T1(v1).

The case of T2 is similar. �
Definition 3.3 The decomposition (3.1) is called idempotent decomposition of the operator T .

Remark 3.4 If T is an m × n matrix with bicomplex entries, then the idempotent decomposition can be
further strengthened. In fact we have T = [ti j ] with ti j ∈ BC so ti j = e1t1

i j + e2t2
i j , t�

i j ∈ A�, � = 1, 2. Thus we can
write T = e1T̃1 + e2T̃2 where T̃�, � = 1, 2, have complex entries. A similar statement is true, in particular, for the
elements in V when V = BC

m×1, V = BC
1×n or when V is finite dimensional (in this case it is sufficient to use

the isomorphism V ∼= BC
m×1 where m = dim V ).

In the rest of the paper we assume that V is a Banach BC-module endowed with norm ‖ · ‖ and let B(V ) be the

BC-module of the bounded operators acting on V . Here we consider ‖ · ‖ = 1√
2

(‖ · ‖2
V1

+ ‖ · ‖2
V2

)1/2
where ‖ · ‖V�

is the norm in V� considered as a Ci1 -linear space, � = 1, 2. The norm ‖ · ‖ is a real norm on the BC-module V ,
seen as a real vector space, in the sense that for any v ∈ V and a ∈ BC the inequality ‖av‖ ≤ √

2|a|‖v‖ holds. As
we shall see in the sequel, the fact that the norm is not multiplicative does not affect our results. For a complete
discussion on the subtle issue of the norms in a BC-module, we refer the read to [1], Section 4.1.

It is easy to verify that B(V ) is a Banach BC-module if we endow it with the norm

‖T ‖ := sup
v∈V, v �=0

‖T (v)‖
‖v‖ .

Definition 3.5 Let T ∈ B(V ). We define the resolvent set ρ(T ) of T as the subset of BC for which the operator
(λI − T )−1 exists as a linear bounded operator. The spectrum σ (T ) of T is defined as the complement of ρ(T ),
i.e.

σ (T ) = {λ ∈ BC | λI − T is not invertible in B(V )}.
The operator R(λ, T ) = (λI − T )−1 is called the resolvent of T , for λ ∈ ρ(T ).



In the case of bounded complex linear operators the spectrum is compact. Also for quaternionic, bounded
linear operators (where the notion of spectrum has to be substituted by the notion of S-spectrum), we have that
the S-spectrum is compact and non empty see [4]. In the bicomplex case this is not anymore true, as illustrated in
the next example.

Example 3.6 Let us compute the spectrum of the identity matrix I in BC
n×n . This is the simplest case

of matrix one may consider but it is useful to illustrate the situation in this setting. If λ = η + i2μ = e1(η −
i1μ) + e2(η + i1μ), then λI − I = e1(η − 1 − i1μ)I + e2(η − 1 + i1μ)I . The spectrum of I coincides with the
set of eigenvalues λ, so we need to look for the solutions of (λI − I )v = 0, v = e1v1 + e2v2 ∈ BC

n×1, which
corresponds to the system

(η − 1 − i1μ)v1 = 0, (η − 1 + i1μ)v2 = 0, v1, v2 ∈ C
n×1
i1 .

We easily obtain that the spectrum is the set

{λ ∈ BC | λ = e1 · 1 + e2μ̃, λ = η̃e1 + e2 · 1, η̃, μ̃ ∈ Ci1},
where μ̃ = 1 + 2i1μ and η̃ = 1 − 2i1μ. The spectrum is not a compact set since it is unbounded.

In order to define a functional calculus we need a more refined description of the spectrum. We recall the
following definition.

Definition 3.7 Let T : V → V be a BC-linear operator. The spectrum σ (T ) decomposes into three disjoint
sets:

(1) the point spectrum σp(T ) defined as

σp(T ) = {λ ∈ BC | ker(λI − T ) �= {0}};
(2) the residual spectrum σr (T ) defined as

σr (T ) = {λ ∈ BC | ker(λI − T ) = {0}, Ran(λI − T ) �= V };
(3) the continuous spectrum σc(T ) defined as

σc(T ) = {
λ ∈ BC | ker(λI − T ) = {0}, Ran(λI − T ) = V, (λI − T )−1 �∈ B(V )

}
.

We now describe more in detail the spectrum of a BC-linear operator. To this end, we need the following result:

Proposition 3.8 Let T : V → V be a bicomplex linear operator. Then T is bounded if and only if T1 and T2

are both bounded.

We omit the proof since the arguments are as in the proof of Theorem 3.1 in [3].

Lemma 3.9 Let T : V → V be a BC-linear bounded operator and let T = e1T1 + e2T2 be its idempotent
decomposition. Then T is invertible if and only if T1, T2 are invertible on V1, V2 respectively, and

T −1 = e1T −1
1 + e2T −1

2 .

P r o o f. Assume that T is invertible, and denote by S := e1S1 + e2S2 the idempotent decomposition of its
inverse. We have

I = e1 I1 + e2 I2 = T (e1S1 + e2S2) = (e1T1 + e2T2)(e1S1 + e2S2) = e1T1S1 + e2T2S2

from which we deduce T�S� = I�, � = 1, 2, where I� is the identity operator acting on V� (note that the idempotent
decomposition of an operator is obviously unique). Thus T� admits right inverse and so it is invertible on V� and
T −1

� = S�, � = 1, 2. Conversely, if T� is invertible for � = 1, 2 we can consider the operator e1T −1
1 + e2T −1

2 . A
simple computation shows that

T
(
e1T −1

1 + e2T −1
2

) = (
e1T1 + e2T2

)(
e1T −1

1 + e2T −1
2

) = I

and the statement follows. �



Theorem 3.10 Let T : V → V be a BC-linear operator and let T = e1T1 + e2T2 be its idempotent decompo-
sition. Let σ (T ) be the spectrum of T and let σ (T�) be the spectrum of T� : V� → V� where V� = e�V , � = 1, 2.
Then, using the terminology in Definition 3.7, we have:

σp(T ) = (e1σp(T1) + e2Ci1) ∪ (e1Ci1 + e2σp(T2)), (3.2)

σr (T ) = (e1σr (T1) + e2Ci1) ∪ (e1Ci1 + e2σr (T2)), (3.3)

σc(T ) = (e1σc(T1) + e2Ci1) ∪ (e1Ci1 + e2σc(T2)), (3.4)

and, finally,

σ (T ) = (e1σ (T1) + e2Ci1) ∪ (e1Ci1 + e2σ (T2)). (3.5)

P r o o f. In the proof we consider the three subsets in which the spectrum decomposes and we divide the proof
in steps.

Step 1. Let us consider the point spectrum. Let λ ∈ σp(T ) and let λ = λ1e1 + λ2e2, λ� ∈ A�, � = 1, 2. Then
λI − T is not injective and so there exists a nonzero vector v ∈ V such that (λI − T )v = 0. Using the idempotent
decompositions obtain:

(λI − T )v = [(e1λ1 + e2λ2)(e1 I1 + e2 I2) − (e1T1 + e2T2)](e1v1 + e2v2)

= [(e1λ1 I1 + e2λ2 I2) − (e1T1 + e2T2)](e1v1 + e2v2)

= [(e1λ1 I1 − T1)e1 + (e2λ2 I2 − T2)e2)](e1v1 + e2v2)

= (e1λ1 I1 − T1)e1v1 + (e2λ2 I2 − T2)e2v2 = 0

which implies the two conditions

(e1λ1 I1 − T1)v1 = 0, (e2λ2 I2 − T2)v2 = 0.

Since v �= 0 then at least one between v1 and v2 is not a zero vector. In the first case, we obtain that e1λ1 ∈ σ (T1)
while λ2 can be any number in A2

∼= Ci1 since we can set v2 = 0; in the second case, we obtain that e2λ2 ∈ σ (T2)
while λ1 can be any number in A1

∼= Ci1 . Note that an element in σ (T�) is of the form e�λ� and thus e�σ (T�) =
σ (T�). So we have

σp(T ) ⊆ (e1σp(T1) + e2Ci1) ∪ (e1Ci1 + e2σp(T2)).

The opposite inclusion follows by an analogous reasoning, thus we conclude that (3.2) holds.
Step 2. Let us now consider the residual spectrum and let us assume that ker(λI − T ) = {0} but

Ran(λI − T ) �= V . Observe that for any operator T = e1T1 + e2T2 it is Ran(T ) = Ran(e1T1) + Ran(e2T2).
So, the decompositions T = e1T1 + e2T2 and λ = e1λ1 + e2λ2, imply that the range of λI − T equals
Ran(e1λ1 I1 − T1) + Ran(e2λ2 I2 − T2) and

Ran(λI − T ) = Ran(e1λ1 I1 − T1) + Ran(e2λ2 I2 − T2).

Thus Ran(λI − T ) �= V if and only if either

Ran(e1λ1 I1 − T1) �= V1, or Ran(e2λ2 I2 − T2) �= V2.

Assume that e1λ1 ∈ σr (T1); then Ran(e1λ1 I1 − T1) �= V1 and thus Ran(λI − T ) �= V . Similarly if we consider
e2λ2 ∈ σr (T2). Conversely, if λ ∈ σr (T ) then either

Ran(e1λ1 I1 − T1) �= V1 or Ran(e2λ2 I2 − T2) �= V2

and so the equality (3.3) holds.



Step 3. Finally let us look at the continuous spectrum and let us assume that λ ∈ σc(T ), i.e. let λ be such that
(λI − T )−1 �∈ B(V ). We have

λI − T = e1(e1λ1 I1 − T1) + e2(e2λ2 I2 − T2),

where λ = e1λ1 + e2λ2, and thus Lemma 3.9 imply that

(λI − T )−1 = e1(e1λ1 I1 − T1)−1 + e2(e2λ2 I2 − T2)−1.

From Proposition 3.8 we deduce that (λI − T )−1 is bounded if and only if (e1λ1 I1 − T1)−1, and (e2λ2 I2 − T2)−1

are both bounded. Thus λ ∈ σc(T ) if and only if either (e1λ1 I1 − T1)−1 or (e2λ2 I2 − T2)−1 are not bounded and
this happens if and only if

λ ∈ e1σc(T1) + e2Ci1 or λ ∈ e1Ci1 + e2σc(T2).

Thus we have proved (3.4).
Step 4. Since σ (T ) decomposes as σ (T ) = σp(T ) ∪ σr (T ) ∪ σc(T ) and since (3.2), (3.3), (3.4) hold, then we

have the statement. �

The following is an immediate consequence of the previous theorem, and shows the general nature of
Example 3.6:

Corollary 3.11 The spectrum σ (T ) of any operator T ∈ B(V ) is unbounded.

P r o o f. It follows from the fact that σ (T ) = (e1σ (T1) + e2Ci1) ∪ (e1Ci1 + e2σ (T2)). �

The proof of Theorem 3.10 also shows the following:

Corollary 3.12 Let T ∈ B(V ), Then the spectrum of T� is contained in e�Ci1 , � = 1, 2.

It is now clear that the notion of spectrum is not useful to define a functional calculus, and we therefore
introduce another notion of spectrum, which is better suited to our purposes:

Definition 3.13 We call reduced spectrum the set σred(T ) defined as:

σred(T ) := (e1σ (T1) + e2Ci1) ∩ (e1Ci1 + e2σ (T2)) = e1σ (T1) + e2σ (T2).

Example 3.14 In the case of the identity matrix, the reduced spectrum consists of the point e1 + e2, i.e. the
real number 1.

Theorem 3.15 Let T ∈ B(V ) and let U ⊂ BC be a domain containing the reduced spectrum of T . Let
w1 + i2w2 ∈ U and let γ1 ⊂ A1 and γ2 ⊂ A2 be simple, positively oriented, closed curves which are unions of
continuously differentiable Jordan curves and such that γ1 surrounds w1 − i1w2, γ2 surrounds w1 + i1w2, and
� = γ1 × γ2 ⊂ U. Then:

(1) Let T = e1T1 + e2T2. Then the resolvent operator series
∑

n≥0 λ−n−1T n converges in the bi-disk
D(0, r1, r2) centered in the origin for r1 > ‖T1‖ and r2 > ‖T2‖.

(2) For every m ∈ N ∪ {0} we have

T m = 1

2π i1

∫
�

(λI − T )−1 λm dλ. (3.6)

(3) The reduced spectrum σred(T ) of T is compact and nonempty.

P r o o f. Point (1). Using the idempotent decomposition of the operator T and of λ ∈ BC we have∑
n≥0

λ−n−1T n =
∑
n≥0

(e1λ1 + e2λ2)−n−1(e1T1 + e2T2)n

= e1

∑
n≥0

e1λ
−n−1
1 T n

1 + e2

∑
n≥0

e2λ
−n−1
2 T n

2 .



We have that
∑

n≥0 e�λ
−n−1
� T n

� converges to (e�λ� I� − T�)−1, � = 1, 2, if and only if r1 > ‖T1‖ and r2 > ‖T2‖.
Thus in D(0, r1, r2) we have∑

n≥0

λ−n−1T n = e1(e1λ1 I1 − T1)−1 + e2(e2λ2 I2 − T2)−1 = (λI − T )−1.

Point (2). We observe that, using point (1), the idempotent decomposition of the resolvent operator and of
λ = e1λ1 + e2λ2, we get

1

2π i1

∫
�

(λI − T )−1λm dλ

= 1

2π i1
e1

∑
n≥0

∫
D1(0)

λ−n−1
1 T n

1 λm
1 dλ1 + 1

2π i1
e2

∑
n≥0

∫
D2(0)

λ−n−1
2 T n

2 λm
2 dλ2

= 1

2π i1
e1T n

1

∑
n≥0

∫
D1(0)

λ−n−1
1 λm

1 dλ1 + 1

2π i1
e2T n

2

∑
n≥0

∫
D2(0)

λ−n−1
2 λm

2 dλ2

= e1T m
1 + e2T m

2 .

Since e1T m
1 + e2T m

2 = T m we get the statement.
Point (3). For m = 0 in Point (2) we have

1

2π i1

∫
�

(λI − T )−1 dλ = I.

which shows that σred(T ) is a nonempty set, otherwise the integral would be zero by the Cauchy’s theorem. The
reduced spectrum is closed because the complement of σred(T ) is open. Indeed, since

λI − T = e1(e1λ1 I1 − T1) + e2(e2λ2 I2 − T2),

the function

G : e1λ1 + e2λ2 �−→ e1(e1λ1 I1 − T1) + e2(e2λ2 I2 − T2)

is trivially continuous and, by Theorem 10.12 in [17], the set U(V ) of all invertible elements of B(V ) =
e1B(V ) + e2B(V2) is an open set in B(V ). Therefore g−1(U(V )) is an open set in BC. The reduced spectrum is
a bounded set because the series

∑
n≥0 T n

j λ−1−n
j , j = 1, 2, converges for ‖Tj‖ < |λ j |, j = 1, 2. So we conclude

that it is compact. �
In our next result we obtain an estimate on the spectral radius. First of all, we note that in order to define the

functional calculus we used the reduced spectrum, thus it makes sense to define the (reduced) spectral radius as
follows:

r(T ) := sup{|λ| | λ ∈ σred(T )}.
We have the following result:

Proposition 3.16 (Spectral radius) Let V be a Banach module over BC and let T : V → V be a BC-linear
bounded operator. The spectral radius r(T ) satisfies

r(T ) ≤
√

2

2
(r(T1) + r(T2)).

P r o o f. Since λ = e1λ1 + e2λ2 we obviously have that |λ| ≤
√

2
2 (|λ1| + |λ2|) and so r(T ) ≤

√
2

2 (r(T1) +
r(T2)). �

Theorem 3.17 Let λ ∈ ρ(T ) and consider the idempotent decomposition of the resolvent operator

(λI − T )−1 = e1(e1λ1 I1 − T1)−1 + e2(e2λ2 I2 − T2)−1.

Then we have



(1) For λ,μ ∈ ρ(T )

(λI − T )−1 − (μI − T )−1 = −(λ − μ)(λI − T )−1(μI − T )−1. (3.7)

(2) For λ,μ ∈ ρ(T )

(λI − T )−1(μI − T )−1 = (μI − T )−1(λI − T )−1. (3.8)

(3) For λ,μ ∈ ρ(T )

(e�λ� I� − T�)−1 − (e�μ� I� − T�)−1

= −(λ� − μ�)(e�λ� I� − T�)−1(e�μ� I� − T�)−1, � = 1, 2. (3.9)

(4) For λ,μ ∈ ρ(T )

(e�λ� I� − T�)−1(e�μ� I� − T�)−1 = (e�μ� I� − T�)−1(e�λ� I� − T�)−1, � = 1, 2. (3.10)

P r o o f. Points (1) and (2) can be deduced by standard computations as in the complex case. Points (3) and
(4) follow from (1) and (2) and from the idempotent decomposition since

(λI − T )−1(μI − T )−1

= e1(e1λ1 I1 − T1)−1(e1μ1 I1 − T1)−1 + e2(e2λ2 I2 − T1)−1(e2μ2 I2 − T1)−1. �

Definition 3.18 We will denote by H(T ) the set of functions which are bicomplex holomorphic in a neigh-
borhood of σred(T ).

We now proof our main results

Theorem 3.19 Let V be a Banach module over BC and let T ∈ B(V ). Let f ∈ H(T ), and let
D(a1 + i2a2; r1, r2) be a bi-disk whose closure is contained in an open set U ⊃ σred(T ) on which f is bi-
complex holomorphic. Let γ�, be union of continuously differentiable Jordan curves for � = 1, 2 and such that
� = γ1 × γ2 is contained in D(a, r1, r2). Then the operator

1

2π i1

∫
�

f (λ)(λI − T )−1dλ (3.11)

does not depend on the choice of �.

P r o o f. By Theorem 2.10, there exist f1, f2 complex holomorphic such that

f (λ) = e1 f1(λ1) + e2 f2(λ2)

where

λ = e1λ1 + e2λ2,

and so

dλ = e1dλ1 + e2dλ2.

Moreover,

(λI − T )−1 = e1(λ1e1 I1 − T1)−1 + e2(λ2e2 I2 − T2)−1, λ ∈ ρ(T ),

thus

f (λ)(λI − T )−1dλ = e1 f1(λ1)(λ1e1 I1 − T1)−1dλ1 + e2 f2(λ2)(λ2e1 I2 − T2)−1dλ2,

and
1

2π i1

∫
�

f (λ)(λI − T )−1dλ

= 1

2π i1
e1

∫
γ1

f1(λ1)(e1λ1 I1 − T1)−1dλ1 + 1

2π i1
e2

∫
γ2

f2(λ2)(e2λ2 I2 − T2)−1dλ2.



The two integrands are singular at the points belonging to σ (T1) and σ (T2), respectively. Since � properly contains
the reduced spectrum, the integrand is continuous and thus the integral is well defined and defines a BC-linear
bounded operator. Let us consider a linear functional φ ∈ V ′ where V ′ denotes the dual of V and, for v ∈ V ,
consider the function

g(λ) := 〈φ, (λI − T )−1v〉.
It is immediate to verify that the function g(λ) is bicomplex holomorphic in λ, for λ ∈ ρ(T ). Note that g(λ) → 0
for λ → ∞ so g is bicomplex holomorphic also at infinity. The fact that the integral

1

2π i1

∫
�

f (λ)g(λ)dλ

does not depend on � follows by the Cauchy theorem, see [13]. Thanks to the Hahn-Banach theorem (see Theorem
4.8, [9]) we conclude the proof. �

We can now give the following:

Definition 3.20 Let V be a Banach module over BC, T ∈ B(V ) and � as in Theorem 3.19. For any function
f , bicomplex holomorphic in a neighborhood of σred(T ), we define

f (T ) = 1

2π i1

∫
�

f (λ)(λI − T )−1dλ.

We have the following algebraic properties:

Proposition 3.21 Let V be a BC-module and let T ∈ B(V ). Let f, g be two functions locally bicomplex
holomorphic on the reduced spectrum of T . Then:

(1) ( f + g)(T ) = f (T ) + g(T );
(2) (a f )(T ) = a f (T ), for all a ∈ BC,
(3) ( f g)(T ) = f (T )g(T ),
(4) If f (Z) = ∑∞

j=0 a j Z j on a suitable bi-disk, then f (T ) = ∑∞
j=0 a j T j .

P r o o f. Points (1) and (2) are immediate. Point (3) follows from the classical case of holomorphic functional
calculus and from Theorem 3.17. Point (4) follows from the definition. �
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