
Black-box forensic and antiforensic characteristics of solid-state
drives

Gabriele Bonetti · Marco Viglione · Alessandro Frossi ·
Federico Maggi · Stefano Zanero

Received: 13 January 2014 / Accepted: 24 July 2014 / Published online: 9 August 2014

Abstract Solid-state drives (SSDs) are inherently different
from traditional drives, as they incorporate data-optimization
mechanisms to overcome their limitations (such as a lim-
ited number of program-erase cycles, or the need to blank
a block before writing). The most common optimizations
are wear leveling, trimming, compression, and garbage col-
lection, which operate transparently to the host OS and, in
certain cases, even when the disks are disconnected from a
computer (but still powered up). In simple words, SSD con-
trollers are designed to hide these internals completely, ren-
dering them inaccessible if not through direct acquisition of
the memory cells. These optimizations may have a significant
impact on the forensic analysis of SSDs. The main cause is
that memory cells could be preemptively blanked, whereas a
traditional drive sector would need to be explicitly rewritten
to physically wipe off the data. Unfortunately, the existing
literature on this subject is sparse and the conclusions are
seemingly contradictory. In this work we propose a generic,
practical, test-driven methodology that guides researchers
and forensics analysts through a series of steps that assess the

G. Bonetti · M. Viglione · A. Frossi · F. Maggi · S. Zanero (B)
DEIB, Politecnico di Milano, Milan, Italy
e-mail: stefano.zanero@polimi.it

G. Bonetti
e-mail: gabriele.bonetti@mail.polimi.it

M. Viglione
e-mail: marco.viglione@mail.polimi.it

A. Frossi
e-mail: alessandro.frossi@polimi.it

F. Maggi
e-mail: federico.maggi@polimi.it

“forensic friendliness” of a SSD. Given a drive of the same
brand and model of the one under analysis, our methodology
produces a decision tree that can for instance help an analyst
to determine whether or not an expensive direct acquisition
of the memory cells is worth the effort, because optimiza-
tions may have rendered the data unreadable or useless. Con-
versely, it can be used to assess the antiforensic techniques
that stem from the characteristics of a given hardware, and to
develop novel ones that are specifically suited to particular
drives. We apply our methodology to three SSDs produced
by top vendors (Samsung, Corsair, and Crucial), and provide
a detailed description of how each step should be conducted.
As a result, we provide two use cases, a test-driven triage clas-
sification of drives according to forensic friendliness, and the
development of an anti-forensic technique specifically suited
to a given drive.

1 Introduction

Solid-state drives (SSDs) have reached remarkable popular-
ity nowadays, as their increasing capacity and affordable
prices made them a good alternative to traditional, platter-
based hard drives (HDD, from hereinafter) [12]. SSDs offer
the flexibility and compatibility of HDDs, along with the
shock-resistance ensured by the lack of mechanical compo-
nents typical of flash drives, and the speed offered by flash
memories.

SSD have a shorter lifespan than HDDs. NAND-based
flash chips, in fact, have a physical limit of approximately
10,000 program-erase cycles. When approaching this limit,
NAND floating gates exhibit problems in retaining their
charge and, if not constantly refreshed, they lose their con-
tent. This means that keeping an SSD without power for
several days may lead to data loss, which is obviously unac-

and (iii) useful information to build, or detect, anti-forensic
approaches that are unique to that specific hardware/software
combination.

As our methodology is black-box, it is transparently
applicable to any SSD brand and model. Throughout this
paper, we show this by applying our workflow on three SSDs
of different vendors, each with a different controller, chosen
because they are the most used ones: we cover this way a
very vast variety of devices on the market and can analyze
their peculiar behaviors, directly tied to the controller they
are built with. Regardless of the specific experiments that we
carry out for the sole purpose of demonstrating the practical-
ity of our workflow, we show that a forensic analyst can use
our tests to assess whether a certain feature is implemented
in an arbitrary SSD.

Our original contributions can be summarized as follows:

• We propose a test-driven, black-box methodology to
determine whether a SSD implements trimming, garbage
collection, compression and wear leveling.

• We show our methodology by applying it on three popular
SSD brands and models, and detail precisely how each
step is conducted and how the results of each step are
interpreted.

• We show how our the outcome of our methodology
guides the practitioners in understanding how they impact
their chances of data retrieval using traditional black-box,
or expensive white-box analysis techniques.

• We show how the findings can be practically used to
develop an anti-forensic technique that makes use of the
specific peculiarities of one of the devices, and how this
can be used by a forensic expert to try to avoid falling
victim of one such technique.

The remainder of this paper is structured as follows. In
Sect. 2 we describe the relevant state of the art that we
analyzed to derive the research gaps defined in Sect. 3. In
Sect. 4 we overview our methodology, which is detailed in
Sect. 5. In Sect. 6 we provide two use cases that show the
type of conclusions that can be drawn by applying our
methodol-ogy. In Sect. 7 we critically discuss our
methodology and propose the directions for future follow-
up work in this area.

2 Background and related work

SSDs employ a complex architecture, with many hardware
and software layers between the physical memory packs and
the external interface to the computer. These layers, merged
in the flash translation layer (FTL)[14], are in charge of
reading and writing data on the ATA channel on one side and
on the memory chips on the other side, as well as to com-

ceptable. While 10,000 cycles may seem a very high
number, it is a rather low lifespan for hard drives. Another
limita-tion is that whenever a block needs to be rewritten, it
must be blanked first, causing a non negligible overhead in
SSD drives, which use 16–512 kB blocks.

SSD vendors have developed specific techniques (such
as write caching, trimming, garbage collection and
compres-sion) to reduce the actual number of physical
program-erase cycles. With these optimizations, SSD
controllers make the already thick layers (e.g., operating
system, driver, firmware) that over the years became
necessary to bridge the application level with the physical
level, even thicker. Indeed, previous work [11]
demonstrated that, when it comes to implement-ing
sensitive operations such as secure deletion, the entire data
storage path needs to be taken into account, with unsus-
pectable complexity.

As a consequence of this complexity, existing and widely
adopted forensic data acquisition and analysis procedures
may not be completely suitable for SSDs (e.g., the hash of
an SSD may not be “stable” over time, as obsolete data may
be automatically wiped by internal optimizations). In some
cases, the only viable option is a white-box acquisition that
bypasses the controller and reads the content of the NAND
chips. Unfortunately, as explained in Sect. 2.1, a white-box
acquisition is expensive, not always feasible, can possibly
disrupt the drive, and may lead to the conclusion that data
is lost or damaged. In this regard, it would be useful to
have a simple and affordable (black-box) triage procedure
to decide whether a white-box analysis may produce some
usable outcome on given the SSD brand, model and release,
and OS.

Looking at the problem from a dual perspective, a skilled
attacker could develop an anti-forensic approach specifi-
cally suited to that combination in order to avoid detection.
Therefore, forensic analysts and security researchers may be
interested in exploring and exploiting the peculiarities of a
given device to obtain anti-forensic effects that are specifi-
cally suited to that combination of SSD model, firmware
and OS.

In this work we propose a generalized, practical analysis
methodology to selectively address the peculiarities of
SSDs that may impact forensic acquisition and
reconstruction. Our methodology is a test-driven workflow
that guides the foren-sic analyst through a series of
experiments. The goal of each experiment is to assess how
the controller logic behaves under different conditions and
provide the analyst with useful insights on how the SSD
under examination works and what are the optimizations
adopted. Given the SSD model, brand and release, and the
OS (if any) used on that SSD, our work-flow provides (i)
insights on the potential impacts of such optimizations on
the results of standard forensic tools, (ii) a practical
decision framework to determine the expected suc-cess rate
of retrieving lost data through white-box analysis,

press, encrypt or move data blocks to perform
optimizations. In HDDs the OS has direct access to the data
contained on platters, and the controller is mostly limited to
moving the magnetic head and read or write data. Instead,
the FTL of SSDs performs much more complex functions:
It translates logical block addresses (LBA) as requested by
the OS into the respective physical block addresses (PBA)
on memory chips. The underlying mapping is completely
transparent and can be modified by the FTL at any time for
any reason. The need for mechanisms such as the FTL has
been studied extensively in [19], who analyze the lifespan
of cells and their likeli-hood of losing their ability to retain
data. They show that the endurance of memories greatly
varies among the vendors and chip models, and that
premature decay is caused by stressing cells with
continuous writes.

2.1 White-box forensics analysis

The action of the FTL is transparent to software and to the
host OS: To the best of current knowledge, there is no way
to bypass the FTL via software, and explore the raw con-
tent of the memory chips. Such access requires tampering
with the hardware, in what is commonly called a white-box
acquisition.

Although a complete white-box analysis of a SSD is the-
oretically possible and in some cases feasible, it is also very
difficult, time consuming and expensive, because no sin-gle
hardware tool or methodology can help with every SSD
drive, since each of them has a different architecture, dif-
ferent chips positioning, and many other details that make
“generic” hardware tools impossible to build. Creating cus-
tom hardware requires the forensics analyst to acquire spe-
cific skills, buy expensive equipment, and, once a
successful acquisition is finally carried out, spend a
significant amount of time to reverse the implementation of
the policies of SSD controllers.

In fact, [8] showed that it is possible to acquire data from
a flash memory chip in several ways. One option is to use
flasher tools that interact with the chip directly via the pins
of the board; other ways are the use of a JTAG port usually
left by vendors on devices to bypass the controller or, in
extreme cases, the physical extraction of the chip for
dumping via standard readers.

We performed an exploratory experiment with the three
drives mentioned in the following (Samsung, Corsair, and
Crucial) and limited hardware resources, and found it very
hard even to access the chips on the board, without disrupt-
ing them, or to find accessible JTAG ports: Understandably,
vendors tend to protect their intellectual property (i.e., the
FTL algorithms) by discouraging this kind of access to the
hardware.

To examine the feasibility of white-box acquisition, we
attempted to read directly from the memory chips using

non-expensive clips1 but we obtained a fragmented, incom-
plete raw file. In addition, SSDs use different flash memory
chips, with very different working parameters and low-level
requirements. In some cases, it may be physically impossi-
ble to connect to the memory chips because of the way they
are soldered to the board; as a consequence the chip often
needs to be removed, thus potentially damaging the drive or
destroying the evidence.

Similarlyto[8,18] also addressed data acquisition from
flash memory chips, but at a lower level. His technique, how-
ever, is not suitable for forensic purposes because of the non-
optimal recovery rate. This is actually a general concern with
white-box methodologies: SSD controllers are specifically
built to reach high throughput by leveraging parallel reads
and writes; custom forensic hardware is much slower and can
read only one chip at a time, making the dump (and the
reconstruction) of an entire drive a very long process.

The state of the art in white-box analysis is the work by
[9] and [20], who built a complete custom setup to interact
with flash memory chips using an FPGA and several
custom wing boards to enhance its compatibility. Although
their goal is to enable easy development and prototyping of
FTL algorithms, compression, cryptography and
sanitization protocols, the same setup can be theoretically
used to re-implement part of the FTL functionalities to ease
white-box acquisition of SSDs. However, the internals of a
controller are definitely proprietary information, unlikely to
be documented publicly or even privately shared.

Indeed, the analyst would need to know any compression
or obfuscation algorithm in use, as well as the data allocation
policy (i.e., how bytes are spread over the memory chips).
Otherwise it would be close to impossible to reconstruct files
directly from the acquired data, as traditional file carvers are
likely to fail. Although [6] showed how is possible to analyze
a raw flash dump and reconstruct files without prior
knowledge of the disposition of blocks performed by the
FTL, their technique works only with small capacity chips (in
the order of hundreds of megabytes).

[16] concentrated on FAT structure and demonstrated how
to rebuild audio and video files from dumped NAND
memories; their work suffers from the very same shortcoming:
It is tailored for small amounts of data (e.g., cellphone
memories). Also, data reconstruction is made even more
difficult by SSD controllers because they often make use of data
parallelism over the flash memory chips on the board.

2.2 Black-box forensics analysis

Differently from white-box approaches, black-box approac-
hes read data as presented to the ATA interface by the SSD
controller. Such approaches are by far more convenient and

1 We used the TSOP NAND clip socket, available online for 29USD.

why caching is the most reasonable explanation of [4]’s odd
results. Last, [4] focused on TRIM, whereas our methodol-
ogy considers the features implemented in most of the SSDs
currently on the market.

3 Research challenges and goal

Having examined the relevant state of the art, we notice a
relevant research gap that has practical implications. When
applied to SSDs, black-box and white-box approaches have
symmetric advantages and drawbacks: the former fails
when a drive performs internal optimizations silently,
whereas the latter fails on proprietary hardware, which is
difficult to manipulate and access, or when data is com-
pressed or encrypted. Black-box methods are faster and
cheaper, white-box methods, if feasible, can yield better
results. Our key observation is that a black-box triage is a
mandatory prerequisite before committing resources to a
challenging, costly and potentially fruitless white-box
analysis.

With the above rationale in mind, we conclude that as
every drive and every controller behave differently one from
the other, it is important to provide a general methodology
to perform forensically sound tests and determine how the
FTL of a given SSD affects the results that standard foren-
sic techniques may yield. To this end, we propose an analysis
methodology that advances the state of the art for its general-
ity, and hopefully offers a useful reference for forensic prac-
titioners and researchers. Moreover, we provide pure black-
box techniques to “estimate” the likelihood of retrieving
additional data through a white-box effort, allowing forensic
experts to triage evidence and avoid wasting resources. Last,
we strive to replicate and validate the experiments described
in the literature to take into account the previous conclusions
in our methodology.

4 Methodology overview

The input of our methodology is an SSD of the same brand
and model of the one under examination. The first step is to
conduct a series of tests that determines whether the SSD
implements certain features (regardless of the features
stated by the vendor, which often turn out to be incorrect).
If they are implemented, in some cases we are able to
determine how fast and aggressive they are, and therefore
how much they would influence data reconstruction.

Our methodology covers the following aspects:

TRIM This functionality mitigates the limitation that requires
any block to be blanked before it can be rewritten. The trim-
ming function erases data blocks that have been marked

practical than white-box ones, and, most importantly, guar-
antee that the SSD is not damaged in the process. However,
as we observed in Sect. 1, treating SSDs just like HDDs with
black-box tools ensures only partial observability over the
controller’s behavior.

A seminal paper is [5], where the authors analyzed the
file recovery rate on SSDs versus HDDs during a standard,
black-box forensic acquisition. When issued a quick format
command, the SSD used in the experiment wiped the entire
content irrecoverably in a matter of minutes. They
confirmed this result with a write blocker (i.e., re-attaching
the SSD to a write blocker after the quick format), showing
that this deletion did not happen as a result of commands
issued by the host or its OS: SSDs can indeed schedule and
perform their own write operations. This work provided one
of the first hypothesis on how garbage-collection algorithms
work, stating that some of them (primarily Samsung) are
capable of “looking at the used/unused aspects of an NTFS
filesystem by examining the free space bitmap”. The authors
hypothesized that these controllers may be file-system
aware, and need no OS intervention to blank unused blocks.
This would pose major issues, rendering traditional forensic
methodologies (such as the use of write blockers)
insufficient to preserve the digital evidence. However, as we
report in Sect. 5.2, we were unable to replicate their
experiment, even using the same OS, scripts, drive
(including firmwares and versions) and working conditions.
Even with the authors’ help, we were unable to find the
reason for this difference.

Similarly to [5,15] performed experiments on 16 differ-
ent SSDs: They simulated real usage scenarios and tested
the block-level recoverability. Each scenario was replicated
under three OSs (Windows XP, Windows 7 and Ubuntu
Linux 9.04). Their conclusion is that different combinations
of usage, OS and file size influence the forensic recoverabil-
ity of the SSD. Although this is by far the most exhaustive
test on SSDs before our own, the authors focus solely on
data deletion as effect of TRIM and garbage collection,
without generalizing their findings. What is missing is an in-
depth study of the correlation between the environment
conditions (e.g., OS, filesystem, file size), the internal state
of a disk (e.g., amount of free space, wear) and the
corresponding behavior of the SSD. Our work goes beyond
[15] because we designed and evaluated a comprehensive,
test-driven methodology to fully understand the reasons
behind each specific behavior.

[4] analyzed the behavior of one of the first SSDs with
respect to file deletion. He wrote some typical files such as
documents and images on an NTFS-formatted SSD, and then
erased them to see how much data was recoverable afterward.
Surprisingly, none of the files was recoverable via carving.
These experiments, however, were narrowed to a single sce-
nario and did not take into account all the possible factors that
our methodology accounts for. For instance, as detailed in Sects.
4.2 and 5, thanks to our methodology we can explain

as “deleted” by the OS. Trimming has an obvious negative
impact on forensic analysis, as on-disk data persistence after
deletion is no longer guaranteed: Once a block is marked
as free by the OS, the controller decides when to blank it
according to its policies. As noted in [5], this can occur
regardless of data connection between the SSD and a host
computer (e.g., during an acquisition, even when write block-
ers are used). Our methodology can determine the percent-
age of blocks that get erased and how fast this happens
(Sect. 5.1).
Garbage collection (GC) This is a functionality that SSD
vendors often tout as capable of greatly improving perfor-
mance. However, as explained in Sects. 4.1 and 5.2, it is
an ill defined concept. [5] hypothesizes that GC works by
making the controller somehow filesystem-aware, and thus
able to infer on its own which blocks are obsolete by mon-
itoring the file-allocation table. If this were the case, GC
would bias forensic acquisitions significantly. GC is not trig-
gered by the OS; consequently, data could be erased when-
ever the disk is powered on, even if no write commands are
issued, thus rendering write blockers and other precautions
useless. Therefore, it is important to analyze this feature. Our
methodology can determine whether a form of GC is active.
Erasing patterns Some SSDs show peculiar behaviors when
using TRIM: They do not erase all the marked blocks but
rather a subset of them based on some drive’s internals. Our
methodology explores this behavior to characterize the eras-
ing patterns (Sect. 5.3).
Compression Some drives transparently compress data to
use less blocks and reduce cell wearing. Compression poses
no direct challenges in black-box forensics acquisitions,
whereas it makes white-box analysis challenging, since the
data read directly from the chips would be unusable, unless
the compression algorithm were known or reverse engi-
neered. Therefore, in our methodology we included a step
that can verify whether compression is active.
Wear leveling (WL) This functionality reduces the usage of
flash cells by spreading their consumption as evenly as
possible across the drive. The easiest and least expensive
wear-leveling implementations activate if certain blocks
have reached an excessive number of writes compared to the
rest of the disk, in which case the FTL writes the new block
on a less-used portion of the disk, and updates the internal
file mapping table that the FTL maintains [2]. Alternatively,
ven-dors sometime provide the disk with extra physical
space, so that new blocks can be written on brand new
memory cells. This second technique is used, for example,
by the Corsair F60 SSD, which has a total of 64 GB flash
memory but allows to address only 60 GB at a time; the
drive itself is more expensive for the vendor, but if the wear
leveling functional-ity is correctly implemented it grants a
much longer lifespan. Since wear leveling is standard in
modern drives, it is useful

to explore whether the SSD implementation masks the effect
of the so-called “write amplification” (see Sect. 5.5).
Files recoverability Even though blocks may not be erased,
they might be changed or partially moved, making it impos-
sible to retrieve them through carving. This test checks how
many deleted files can be retrieved from the drive (Sect. 5.6).

We combine the analysis of all these factors in a ranking
of a drive in terms of its “forensic friendliness”, as detailed
in Sect. 6.1.

Our methodology covers all known combinations of fac-
tors that may trigger each feature. In addition, our method-
ology is designed to avoid redundant tests, which would
certainly not trigger any of the features. When feasible, we
compare our results with the outcome of previous studies.
In particular, we validate the experiments of [5] on garbage
col-lection, which is a particularly controversial and ill-
defined topic as detailed in Sect. 4.1.

4.1 Garbage collector vs. garbage collection

The difference between garbage collector and garbage col-
lection is a controversial concept that needs to be clari-fied
before explaining our methodology. Many works in the
literature treat these two features as being substantially
the same and propose methods to trigger and reverse-
engineer this functionality. They are, however, two differ-
ent (logical) components of an SSD controller, which unfor-
tunately share a very similar name causing considerable
confusion.

For the purpose of our work, the garbage collector is the
process that deals with unused blocks—as a garbage col-
lector does with unused variables in modern memory man-
agers. The internals of SSD garbage collectors are not dis-
closed, and they may vary from drive to drive. However, it
is known that the garbage collector is tightly tied to the
TRIM functionality: among other capabilities, it has access
to the “preemptive-erase table” (Sect. 5.1) filled by TRIM
and takes care of physically wiping trimmed blocks. Addi-
tionally, the garbage collector helps wear leveling by
moving around blocks whenever the wear factor of a cell is
beyond a certain threshold.

On the other hand, vendors never disclosed any details
about the garbage collection functionality, although there
were some speculations about how it is supposed to work.
The only known work is by [5], who—partially supported by
Samsung—hinted that the garbage collection functional-ity
allows the drive controller to introspect the file alloca-tion
table of known file systems (i.e., NTFS, ext3 and ext4) to
autonomously decide which blocks can be safely wiped,
without the OS intervention or the implementation of TRIM.
As a matter of fact, in Sect. 5.2 we document our tests on

Table 1 SSD features as reported by vendors

SSD WL TRIM GC Compression

Corsair F60 � � � �
Samsung S470 � � �
Crucial M4 � �

5.1 TRIM

Using trimming, whenever blocks are erased or moved on
an SSD, they are added to a queue of blocks that should be
blanked. This operation is lazily performed by the garbage
collector process as soon as the disk is idle, preparing blocks
to be (re)written and ensuring balanced read-write speeds.
Trimming needs operating system support (it should be noted
that even where supported it is not always enabled by default),
as the OS needs to tell the controller when a block can be
trimmed. Windows 7 and 8 (and Server 2008R2), as well as
Linux version 2.6.28 and later support trimming.

5.1.1 Methodology

Figure 1 shows the steps required to determine whether and
how an SSD implements trimming. Before start, the disk is
wiped completely and the write cache is disabled or filled,
as detailed in Sect. 4.2. Then, a stub filesystem is created
and filled with random content (i.e., files) up to different
percentages of their capacity: 25, 50, 75 and 100 %. This is
because certain controllers exhibit different trimming strate-
gies depending on the available space. The tests described
below are repeated for each level of filling.

As both [15] and our experiments show that some TRIM
implementations behave differently when dealing with
quick formats or file deletions, we analyze both cases
indepen-dently.

When a quick format command is issued, the OS will
sup-posedly notify the SSD that the whole drive can be
trimmed. The disk is left idle and the filesystem is checked
for zeroed blocks. If the SSD implements TRIM
procedures, we expect to observe changes in the number of
zeroed blocks; other-wise, no changes will happen. To
check for zeroing, we use a sampling tool—as [5] did—
which loops over the entire disk and samples 10 Kb of data
out of every 10 MB. It then checks whether the sample is
completely zeroed. Whenever a non-zeroed sample is
encountered, the tool checks whether it is zeroed in
subsequent loops. The sampling size was chosen
empirically to find a good trade-off in terms of overhead
and accuracy. The choice of the sampling size depends on
the time that the analyst wants to spend on this test, and
only affects the final decision. The test ends when the
situation does not change within a timeout, which can be
sometimes obtained

the garbage collection functionality under these hypotheses
to see whether the results from various drives could confirm
its presence and behavior. Our experiment lead to results
that contradict [5]’s work.

4.2 Write caching in SSD experiments

SSDs are equipped with a small amount of DRAM-based
cache memory, which is used to reduce the number of physi-
cal writes. This feature must be taken into account when per-
forming experiments on SSDs, because it affects the number
and speed of writes.

For instance, biases introduced by caching were not
addressed by [4], who performed experiments by writing
graphic and text files on an SSD and then verified that they
were completely unrecoverable after deleting them.
Although in [4] there is no clear statement about the OS
used, in 2008 no OS had TRIM support for SSD drives [3],
and therefore file deletion could not be a consequence of
TRIM. The only explanation is that the files were not large
enough to completely fill the drive cache (usually around
512 MB to 1 GB), and were therefore never actually written
on disk: they were simply erased from cache, and no trace
was left to allow a full or partial recovery. The same bias
can be noted in [15], where the percentage of recoverable
blocks when using small files is considerably lower than the
same percentage with big files, even under the same
conditions and usage patterns. This can be explained by the
fact that small files get usually stored in cache and not
written to disk.

Disabling write caching via software drivers or via the
OS (e.g., via the hdparm -W 0 command), while recom-
mended, does not always succeed. The only reliable way to
avoid being biased by caching is to use large files for write
operations, in order to fill up the cache and force the drive
to physically write on flash cells.

5 Implementation details

We apply the methodology described in this section on
three SSDs, each with a different controller and
combination of features, namely a Corsair F60 (controller:
SandForce SF-1200), a Samsung S470 MZ-5PA064A
(controller: Samsung ARM base 3-core MAX) and a
Crucial M4 (controller: Mar-vell 88SS9174-BLD2). As
stated by the vendors, these drives implement wear
leveling. Furthermore, the Corsair F60 per-forms data
compression, whereas both Samsung S470 and Corsair F60
are said to implement garbage collection. Table 1
summarizes the functionalities according to the official
spec-ifications. Instead of presenting the results of our tests
in a separate section, for the sake of practicality we explain
the results immediately after the description of each step.

Fig. 1 TRIM test flow

Fig. 2 The amount of blocks
erased by TRIM in our Corsair
F60 disk depends on the amount
of used space

 0

 5

 10

 15

 0 10 20 30 40 50 60

Z
er

oe
d

sp
ac

e
[G

b]

Allocated space on disk [Gb]

by the vendor’s documentation (i.e., the time between cycles
of execution of the garbage collector). If no documentation
is available, we set a very long timeout (i.e., 24 h, based on
several trials that we run on all our disks). During our experi-
ments, we found out that if the TRIM functionality is present
and active, it triggers within 1–10 s.

To test the behavior for deletion, we proceed in a simi-
lar way. Our workflow deletes single files from the filesys-
tem and monitors their respective blocks. Depending on the
file size, sampling may not be necessary in this case. The
test ends, as before, when all the (remaining) portions of the
erased file do not change within a timeout.

5.1.2 Results

We run this test on Windows and Linux, which both included
stable support for TRIM.

On NTFS (Windows 7), Samsung S470 and Crucial M4’s
trimming was very aggressive in both quick format and file
deletion: The disk was (apparently, see below for discus-

sion) wiped in 10 s by the Samsung S470 controller; on
the Crucial M4, wiping occurred even before notifying the
OS. Similar results were obtained with file deletion: the
sectors were completely wiped in 5 and 10 s respectively.
The Corsair F60, instead, behaved differently. After issu-
ing a quick format, only a small percentage of data was
erased; when we repeated the test at different filling levels,
we surprisingly found out that the fraction of erased blocks
is someway proportional to the total used space, as shown
in Fig. 2: There are some thresholds that define how much
space must be trimmed depending on the used space. In par-
ticular, there are 5 ranges in which the amount of zeroed
space increases linearly, whereas it remains constant at all
the other filling values. The Corsair F60 behaved unexpect-
edly also when dealing with file deletions: Some files were
wiped in at most 3 s after deletion, whereas some other files
were not wiped at all and could be recovered easily, depend-
ing on their allocation. This discovery spurred an interesting
study of the erasing patterns, which is explained separately
in Sect. 5.3.

5.2 Garbage collection

5.2.1 Methodology

The entire test must be carried out on an OS and drivers
that do not support TRIM, as the effects of the two features
would not be distinguishable from a black-box viewpoint.
Figure 3 summarizes our test to determine whether GC is
implemented and when it starts.

After the usual preliminary steps, the dummy filesystem
is created and filled with random files. The content is not
important, yet the size is: we must use large files due to the
considerations in Sect. 4.2. Then, the same sampling proce-
dure described in Sect. 5.1 is started, and a quick format is
issued. As there is no reliable information regarding the
trig-gering context and timeout, our methodology explores
two different paths. First, the disk is kept idle to allow the
trig-gering of the GC. Alternatively, the SSD is kept active
by continuously overwriting existing files, adding no new
con-tent. [5] found out that GC triggers in almost 3 min.
Some non-authoritative sources, however, state that a
reasonable timeout ranges between 3 and 12 h. Our
methodology pro-poses to wait up to 16 h before
concluding the experiment.

5.2.2 Results

Even hours after the default timeout, none of the SSDs per-
formed GC. Since Samsung S470 and Corsair F60 were
advertised as having GC capabilities, we devised a simple

Fig. 3 Garbage collection test
flow

On ext4 (Ubuntu Linux 12.04) we obtained signifi-
cantly different results. In the quick-format branch the out-
comes are similar across different disks: The entire con-
tent of the SSD was (apparently) erased in about 15 s.
This can be explained by the fact that for all the SSDs
Linux used the same AHCI device driver. The single file
deletion, instead, showed a different behavior. The Sam-
sung S470 did not erase any block and all the files were
completely recoverable. The Crucial M4 apparently did not
erase any file, at least until the device was unmounted; at
that point the blocks were erased. Apparently, the driver
notifies a file deletion only when it becomes absolutely
necessary to write data on disk (i.e., when the disk is
unmounted or when the system is in idle state long enough
to flush data on the non-volatile storage). The Corsair
F60 showed none of the behaviors exhibited with NTFS:
All the files were erased correctly. Supposedly, Windows
drivers implement a different trimming policy, or the Sand-
Force controller used by this SSD features NTFS-specific
optimizations.

In the paragraphs above, we often noted that the files, or
the drives, were “apparently” erased within 10–15 s. The
reason for using this word is the following. While checking
for the zeroing, we are reading the disk through the con-
troller (as our methodology is purely black-box). Therefore,
we cannot be sure if the memory packs have been physically
zeroed or if the controller returns a content of zeros for any
block which is tagged for trimming, regardless of its physical
content.

Fig. 4 Erasing patterns test
flow

additional test to validate this result. This goal was to deter-
mine what percentage of non-random files can be recovered
after a quick format. We filled each disk with the same JPEG
image until there was no space left on the device, and format-
ted it on a TRIM-incompatible OS and let it idle. As shown in
Table 5, even with simple tools (e.g., Scalpel), we recovered
100 % of the files from both drives, confirming that no GC
occurred. Note that we used a carver merely as a baseline
for recoverability: Our approach is not meant to evaluate the
performance of carvers in general.

5.3 Erasing patterns

As showed in Sect. 5.1, certain SSD controllers (e.g., Cor-
sair F60 with NTFS) may exhibit unexpected trimming pat-
terns. Therefore, we devised a workflow to further explore
these cases and assess to what extent a forensic acquisition
is affected by TRIM or GC.

5.3.1 Methodology

As shown in Fig. 4, after the preliminary steps the disk is
filled with a dummy filesystem containing files with random
data (the content is irrelevant as we are focusing on how the
controller handles deletion). Then, a raw image of the disk is
acquired with dd before issuing a quick format instruction.
A second raw image is then acquired after a while (see the
considerations in Sect. 5.1 on timeouts). Clearly, “raw” here
refers to what the controller exposes to the OS. The obtained

10%. 50% 75% 100%(a) (b) (c) (d)

Fig. 5 Test results for erasing patterns test performed on Corsair F60
SSD: at different filling levels an increasing number of evenly-spaced
stripes are visible. Green areas are zeroed by the controller, while blue
areas remain unchanged. The non-erased blocks in the first stripe (a)
contain the copy of the master file table and are therefore not zeroed
(color figure online)

images are compared block-wise to highlight erased sections.
This test must be ran at different disk filling levels, in case
the controller behaves differently based on the amount of free
space.

5.3.2 Results

We applied this test on the Corsair F60 SSD, which exhib-
ited odd behavior in the TRIM test. We analyzed it at 10,
50, 75 and 100 % of space used. At each level we analyzed
the entire disk as explained above and, using custom scripts,
mapped disk sectors into the maps shown in Fig. 5. Inter-
estingly, we notice four stripes in predictable areas (green)
where the files are surely going to be erased, whereas the
rest of the disk (blue) is not modified even after file
deletion. The small difference in the first stripe is due to the
fact that the master file table is allocated within it, and this
portion is not erased (Fig. 5a).

Table 2 File-recoverability test for Corsair F60 SSD

Position Written Recovered %

Within erased stripes 29,545 1 0.34

Outside erased stripes 71,610 71,607 99

Table 3 Compression ratio of the files used for compression test

File gzip 7zip bz2 Entropy

/dev/zero 1,030 7,086 1,420,763 0.0

/dev/urandom 1.0 0.99 0.99 0.99

Files with high (Shannon’s) entropy are difficult to compress and
there-fore result in more data to be written on disk

The Crucial M4 test showed in Fig. 7b yielded the same
results, even if with different values. This drive exhibits sys-
tematic performance glitches at the same points in time for
each run. This happens almost every 25 s, regardless of the
file’s size and transfer time, and does not happen with other
drives under the same conditions. We transferred files of dif-
ferent sizes and under different conditions (i.e., computer,
source, OS) but obtained consistent results. We can
speculate that these glitches are due to some computations
performed by the controller at regular time intervals.

The Corsair F60 is the only one advertised as having
com-pression capabilities. Indeed, as shown in Fig. 7c, it
behaves in a very different fashion: The transfer time for
compress-ible files is about one third files than for
incompressible files. Therefore, we can infer that the actual
amount of data physically written on disk is considerably
lower, meaning that the controller compresses it
transparently.

All graphs show an initial transitory phase with a very
high transfer rate, due to the effect of write caching on the
initial portion of the files being sent to the disk, as explained
in Sect. 4.2. However, the effect of caching does not affect
our results.

5.5 Wear leveling

Wear leveling is a very common and basic feature, but none
of the examined vendors clearly states what happens to the
old versions of the same file (i.e., how write amplification
[13] is treated). From a black-box viewpoint there are two
possible situations. One alternative is that old blocks are not
erased and remain where they were: in this case a carver
may be able to extract many different versions of the same
file, rep-resenting a clear snapshot of the data at a given
point in time. Alternatively, the old data may be erased,
moved out of the addressable space or simply masked by the
controller, which in this case would tell the OS that no data
is present (virtually zeroed block). Unfortunately, if we get
no data from the disk, there is no way (with a black-box
approach such as ours) to determine which of these is the
case.

Another detail to take into account when dealing with
wear leveling is that vendors do not explicitly reveal the con-
ditions under which the functionality is triggered. From the
available information and previous work ([1,2,10]) it appears
that two conditions must hold: there should be enough free

Only one of the files that were written within the erased areas could be
recovered, whereas 99 % of those outside those bounds could be
retrieved with standard tools

This result is consistent with the results described in Sect.
5.1. In particular, the first four linearly-increasing por-tions
that appear in the TRIM test result of Fig. 1 correspond to
the very same green areas highlighted with this erasing-
pattern experiment. Therefore, the reaction of the controller
when dealing with file deletion on NTFS is explainable by
the very same green areas: If a file is allocated within the
green stripes, it will surely be erased by TRIM, whereas files
that fall outside the green areas are not trimmed.

We validated this result as follows. We formatted the
drive and filled it with easily-recoverable files (i.e., JPEG
image files, as the JPEG header is easy to match with
carvers). Then, we selectively deleted the files allocated
inside or outside the green stripes and, after acquiring the
entire disk image, tried to recover them, and to map their
(known) position against the stripes position. Table 2 shows
that only 0.34 % of the files within the erased stripes are
recovered, whereas this percentage reaches 99 % for files
allocated entirely outside the green areas, thus confirming
the results of Fig. 5.

5.4 Compression

5.4.1 Methodology

The key intuition behind this test is that the overhead due to
hardware compression is negligible in terms of time. Thus, it
will take considerably less time to physically write a com-
pressed file with respect to an uncompressed one. However,
this could not be the case if the controller actually goes back
and compresses the files afterward as a background task.

As shown in Table 3, compression algorithms yield the
best results with low-entropy files, whereas are not very effec-
tive on high-entropy data. We therefore created two differ-ent
files with very different levels of entropy: /dev/zero
and /dev/urandom. The methodology is summarized in
Fig. 6. After creating the two files (10 Gb each, to bypass
write caching), we monitor via iostat the time spent in
transfer and the throughput: A high throughput indicates
compression, as less data is physically written on disk.

5.4.2 Results

As Fig. 7a shows, both file transfers in the Samsung S470
took almost the same time, showing no sign of compression.

Fig. 6 Compression test flow

blocks with a lower write count than the one that is being
overwritten, and there must be a certain difference between
the writes of the used block and the ones of the new des-
tination block. Since the precise values depend on the ven-
dors and are not publicly available, in our experiments we
erred on the side of caution and left at least 25 % of the
disk capacity free, and overwrote the same blocks more than
10,000 times to cover whatever write cycle gaps may be
present.

5.5.1 Methodology

Our test is not aimed at determining if an SSD implements
a wear leveling feature, since this is pretty much standard
nowadays. From the forensic viewpoint, what matters is if
wear leveling can be leveraged via black-box analysis to
recover data. If a drive has no wear leveling capabilities, or
if write amplification is completely masked by the FTL, the
end result is the same: nothing is lost and nothing is gained
from a forensic viewpoint.

Our test flow is shown in Fig. 8. As the entire test flow
requires the continuous re-writing of the same files, and it

is extremely important that these write operations are phys-
ically sent to the disk, the considerations in Sect. 4.2 are of
paramount importance.

The disk is filled up to 75 % with a dummy filesystem.
Since wear leveling is internal, the file or filesystem type has
no impact, so we choose files with known patterns (to ease
carving operations afterward), and an ext4 filesystem under
Ubuntu Linux.

At this point files are overwritten with new data (of exactly
the same size) a total of 10,000 times, while monitoring the
amount of zeroed space on disk. Should it decrease, it means
that the controller wrote the new data in a different, less used
position, leaving the old data intact. To validate this, if the
control on zeroed space is positive, carving can be used to
determine if different versions of the same files are effectively
recoverable.

5.5.2 Results

We ran our test on all the disks in our possession. Our results
confirmed our expectations, yielding negative results. As we
mentioned, we cannot know what the controller is really

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0 00

:0
0

00
:3

0
01

:0
0

01
:3

0
02

:0
0

02
:3

0
03

:0
0

03
:3

0
04

:0
0

04
:3

0

Throughput [MB/s]

T
im

e
[m

:s
]

Sa
m

su
ng

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

00
:0

0
00

:1
5

00
:3

0
00

:4
5

01
:0

0
01

:1
5

01
:3

0
01

:4
5

Throughput [MB/s]

T
im

e
[m

:s
]

C
ru

ci
al

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00 00

:0
0

00
:1

0
00

:2
0

00
:3

0
00

:4
0

00
:5

0

Throughput [MB/s]

T
im

e
[m

:s
]

C
or

sa
ir

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0 00

:0
0

00
:3

0
01

:0
0

01
:3

0
02

:0
0

02
:3

0
03

:0
0

03
:3

0
04

:0
0

04
:3

0

Throughput [MB/s]

T
im

e
[m

:s
]

 0 2
0

 4
0

 6
0

 8
0

 1
00

 1
20

00
:0

0
00

:1
5

00
:3

0
00

:4
5

01
:0

0
01

:1
5

01
:3

0
01

:4
5

Throughput [MB/s]

T
im

e
[m

:s
]

 0 1
0

 2
0

 3
0

 4
0

 5
0

 6
0

 7
0 00

:0
0

00
:3

0
01

:0
0

01
:3

0
02

:0
0

02
:3

0
03

:0
0

03
:3

0

Throughput [MB/s]

T
im

e
[m

:s
]

(a
)

(b
)

(c
)

F
ig

.
7

M
ea

n
an

d
va

ri
an

ce
of

th
e

sa
m

pl
ed

th
ro

ug
hp

ut
am

on
g

15
re

pe
at

ed
tr

an
sf

er
s

of
10

G
B

lo
w

an
d

hi
gh

-e
nt

ro
py

fil
es

(t
op

an
d

bo
tto

m
ro

w
,r

es
pe

ct
iv

el
y)

.F
or

a
an

d
b

lo
w

an
d

hi
gh

-e
nt

ro
py

fil
e

tr
an

sf
er

s
ha

ve
al

m
os

t
th

e
sa

m
e

sh
ap

e
an

d
du

ra
tio

n,
sh

ow
in

g
th

at
th

e
co

nt
ro

lle
r

do
es

no
t

pe
rf

or
m

an
y

ki
nd

of
op

tim
iz

at
io

n
(i

.e
.,

co
m

pr
es

si
on

)
on

da
ta

be
fo

re
w

ri
tin

g
it.

O
n

th
e

ot
he

r
ha

nd
,

in
c

th
ro

ug
hp

ut
w

ith
lo

w
-e

nt
ro

py
fil

es
is

co
ns

id
er

ab
ly

hi
gh

er
an

d
th

e
en

tir
e

fil
e

tr
an

sf
er

ta
ke

s
le

ss
th

an
1/

3
th

an
th

e
hi

gh
-e

nt
ro

py
fil

es
tr

an
sf

er
.T

hi
s

re
su

lt
co

nfi
rm

s
th

at
le

ss
da

ta
ha

d
to

be
ph

ys
ic

al
ly

w
ri

tte
n

on
di

sk
,w

hi
ch

m
ea

ns
th

at
co

m
pr

es
si

on
w

as
in

de
ed

pe
rf

or
m

ed
by

C
or

sa
ir

dr
iv

es

Fig. 8 Wear leveling test flow

doing behind the scenes; what we know is just that the effects
of write amplification are completely masked by the con-
troller, and thus a standard forensic procedure will not be
impacted by wear leveling.

5.6 Files recoverability

The tests described so far are all aimed at determining if some
functionalities implemented by a given SSD are forensically
disruptive, to ultimately allow a forensic analyst to assess
whether some data is still retrievable. What usually interests
the forensic analyst most, however, is being able to access
and retrieve files on an SSD much in the same way as on a
traditional HDD.

The tests that we propose in this section determines how
much an SSD behaves similarly to a HDD from a data-
recoverability viewpoint. In HDDs, recoverability is affected
by the filesystem policies on overwriting previous data. In
SSDs, in addition to this, trimming, garbage collection, and
the other unexpected controller behavior described so far neg-
atively impact the recoverability.

5.6.1 Methodology

The test flow is shown in Fig. 9. The drive is first initialized
with a dummy filesystem and filled with “carver-friendly”
files: In our case, we wrote JPEG files of around 500k each,
and then quick formatted the drive. After the usual 24 h time-
out, we used Scalpel to attempt a file recovery.

5.6.2 Results

We ran our experiment on all our disks with a NTFS filesys-
tem with enough copies of the same JPEG image to fill the
entire drive. As summarized in Table 4, both the Crucial M4
and the Samsung S470 have a zero recovery rate, which
means that the TRIM functionality tested in Sect. 5.1
actually works and erases all of the deleted files.

The Corsair F60 behaves differently, as shown in Sect.
5.3: 71,607 files out of the 101,155 were recovered, totaling
a 70.79 % recovery rate on NTFS. Curiously, all the files
that were only partially recovered—or not recovered at all
—were all contiguous in small chunks. On Ext4, instead,
TRIM did not allow the recovery of any file.

Fig. 9 Files recoverability test
flow

Table 4 Files recoverability test results

SSD FS Written Recovered %

Samsung NTFS 112,790 0 0

ext4 110,322 0 0

Corsair NTFS 101,155 71, 607 70.79

ext4 99,475 0 0

Crucial NTFS 112,192 0 0

ext4 110,124 0 0

friendliness” of an SSD. We consider the output of the TRIM,
GC and File Recoverability tests. We follow the workflow
exemplified in Fig. 10.

• A. HDD Equivalent. The SSD behaves as a HDD. Stan-
dard forensics tools are expected to work as usual. SSDs
in this class present no disruptive behaviors (e.g., TRIM,
GC).

• B. High Recoverability. TRIM and other wiping func-
tionalities are implemented but they are not very aggres-
sive: an HDD-equivalent recovery is expected.

• C. Low Recoverability. SSD functionalities are quite
aggressive and succeed in deleting or masking most of
the deleted data that could have been recovered from a
HDD. It is, however, still possible to achieve some results
with standard tools.

• D. Complete Wiping. No deleted data can be recovered
using standard black-box tools. White-box analysis may
be a solution but it is not guaranteed to yield acceptable
results. This is the worst possible case when performing
a forensic analysis on a SSD.

Applying this method to our drives we obtained the follow-
ing classification. The Crucial M4 implements a very effec-
tive TRIM functionality with any filesystem which directly
makes the recoverability test yield a 0 % rate so, even though
the garbage collector does not trigger, the associated class is
D. Complete wiping: this drive is very likely to make recov-

The drives implementing an aggressive version of TRIM (Samsung
S470 on NTFS and Crucial M4), did not allow the recovery of any file
after a format procedure. The Corsair F60 on NTFS, as expected, has a
non-null recovery rate due to the erasing pattern its TRIM implemen-
tation exposes. On ext4, however, this same disk allowed the recovery
of 0 out of 99,475 files

6 Use cases

We applied our methodology and in this section we provide
two use cases, a test-driven triage classification of drives
according to forensic friendliness, and the development of an
anti-forensic technique specifically suited to a given drive.

6.1 Ranking drives

Although proposing a comprehensive and accurate classifi-
cation of SSDs goes beyond the scope of this paper, we show
how our methodology can be applied to indicate “forensic

Table 5 Files recoverability without TRIM on Samsung S470 and Cor-
sair F60 drives

SSD Written Recovered %

Samsung 1,12,790 1,12,790 100

Corsair 1,01,155 1,01,155 100

Fig. 10 Use case workflow for assessing the forensic friendliness of a
SSD

Table 6 Test results for the disks in our possession and derived classi-
fication

SSD FS TRIM GC Recover (%) Class

Samsung S470 NTFS Full × 0 D

ext4 Full × 0 D

Crucial M4 NTFS Full × 0 D

ext4 Full × 0 D

Corsair F60 NTFS Partial × 70.79 B

ext4 Full × 0 D

ery of deleted files impossible. The same happens on the
Samsung S470 with both NTFS and ext4 filesystems and
on the Corsair F60 with ext4. Corsair F60 SSD with NTFS,
instead, present only a partially working TRIM implemen-
tation, which allows the recovery of almost 71 % of deleted
files; this combination between drive and filesystem is there-
fore associated to a B. High recoverability class. These results
are summarized in Table 6.

6.2 An antiforensic filesystem

In Sect. 5.3 we discussed our results on the different behav-
iors of different trimming implementations.

We also discussed how we found out that the Corsair F60
drive behaves weirdly when formatted with NTFS and sub-
jected to a quick format command. Only a small percentage
of data is physically erased (as opposed to complete dele-
tion, which is what happens on other TRIM enabled drives).
Repeating the test at different filling levels, we found the
per-centage of erased blocks to be somehow proportional to
the percentage of used space on disk (as shown in Fig. 2).

By filling the drive with easily-recoverable files, and then
selectively deleting them inside or outside the erased stripes,
we obtained the results in Table 2, which shows that only
0.34 % of the files within certain specific areas of the disk
can be recovered, while this percentage reaches 99 % for
files allocated entirely outside said areas (which in the
following we will call “green areas”, according to the color
used in the graphs, for simplicity).

This peculiarity can be used for antiforensic purposes, i.e.
to make sure that certain files of interest will be physically
wiped from the drive after any deletion command by the
trimming algorithms.

An easy possibility to make use of this would be to posi-
tion a 4 GB-sized container (such as a mountable disk
image) in the stripes. In this case, a simple delete command
would ensure complete destruction of the image, even if the
hard drive were unplugged during, e.g., a search and seizure
oper-ation. Alternatively, smaller files that need to be
securely wiped out after use could be stored in these
portions of the drive.

We investigated the feasibility of exploiting this behavior
by implementing a simple user-space filesystem that allo-
cates a given file in the green areas. We realized our proof-
of-concept, called S2D2 (https://bitbucket.org/necst/s2d2) in
Python. It supports the following operations:

– initialize the working area of disk, cycling over the green
areas, and creating a boot sector and an appropriate, sim-
ple metadata structure

– maintain the metadata for stored files, which for simplic-
ity we implemented by mean of a Python list, holding a
tuple of values for each file (i.e., path, first sector, size).

– create files and write them to disk, adding padding to
ensure that the file size is multiple of 512 bytes, creating
an entry as appropriate in the file list, and writing the data
in the green area.

– read files, which is straightforward
– delete files, implemented by issuing a trim command to

the underlying controller.

In addition, we structured the prototype to allow to allocate
and manage files on the blue areas, to be able to compare the

https://bitbucket.org/necst/s2d2

7.2 OS dependency

The triggering of TRIM depends on the specific combination
of OS, filesystem type, device driver, and AHCI commands
implemented. The current version of our workflow explores
the OS and filesystem type. For instance we have shown in
our experiments how the Corsair behaves differently under
Windows (NTFS) and Linux (ext4). In a similar vein, future
extensions of our work should consider other variables such
as the device driver and AHCI commands.

Another important dependency that should be explored is
that the forensics examiner needs to know the OS version
before performing an investigation. The availability of is this
contextual information varies from case to case, and due to
the sensitive nature of forensic cases there are no statistics
on this.

In summary, future work should focus on running our
methodology on a wide range of OSs, SSD brands and mod-
els, in order to create a reference catalog useful for forensic
investigations.

8 Conclusions

In order to overcome the intrinsic limitations of SSDs,
onboard controllers adopt a number of advanced strategies,
preemptively erasing blocks of deleted files (possibly even
if not solicited by the OS) and even performing compression
or encryption on the data. Consequently, SSDs cannot be
treated as standard HDDs when performing a forensic analy-
sis: Standard tools and well-known techniques are based on
the assumption that the hard drive does not modify or move
data in any way, that every block can be read if it was not
previously wiped, and that reading a block will yield the data
physically contained by that block.

Each vendor implements a different controller, and there-
fore each SSD acts differently. We proposed a complete test-
ing methodology and applied it to three drives of leading ven-
dors. For each test we interpreted the results to provide the
forensic analyst a practical way to fine tune their approaches
to the acquisition of SSD drives, which can be very simi-
lar to acquisition of HDDs, or completely different. Indeed,
we showed that the combination of controller, OS, filesys-
tem and even disk usage can deeply influence the amount of
information that can be retrieved from a disk using foren-
sic procedures. Thanks to our methodology, we were able
to investigate the peculiarities of each implementation (e.g.,
a drive selectively wiping blocks only in specific portions
of it). We also showed how this peculiarity could be easily
exploited to obtain antiforensic delete operations.

We also proposed a test aimed at verifying the implemen-
tation of a compression feature on the SSD. We showed that
our test can indeed devise whether the drive uses compression

effect. As a reminder, those areas behave like a conventional
HDD, with no evidence of trimming support.

We evaluated the effectiveness of our antiforensic
filesys-tem prototype assessing the recoverability of a file
once deleted. We did not evaluate the speed of our
filesystem implementation, as this is not our focus and in
any case per-formant userspace filesystems exist [17].

As expected, all the files written in the green areas were
wiped by the controller when marked as deleted by the OS,
while all other files were not physically deleted from the
SSD’s Flash chips. The same behavior was found when
issu-ing a quick format procedure instead of a file deletion:
the FAT on disk was reset, but the only files actually wiped
were the ones in the green areas.

A forensic analyst, finding and being able to retrieve
deleted files on the rest of the drive, would easily be fooled
into thinking that the controller does not implement trim-
ming, especially if a quick format procedure had been
previ-ously issued and everything (except wiped files) was
retrieved via carving. Applying thoroughly our
methodology, they would be able to know in advance of
this possible attack. It is worth noting that even in our
proof-of-concept implementation the remainder of the file
system is completely consistent.

Besides the specific attack shortly presented here, which is
targeted to one specific controller, we think that this use case
exemplifies a whole new class of vulnerabilities (namely, abuse
of controller characteristics and unexpected behaviors) that will
arise thanks to the growing diffusion of SSDs, and which our
methodology allows to discover in new drives.

7 Future directions

Although our blackbox workflow and experimental results
are far more complete than what has been proposed in pre-
vious work, a few areas remain for further investigation and
research.

7.1 Firmware dependency

Each SSD comes with its own firmware version, which
basi-cally embeds (part of) the FTL logic. As such, it
determines the SSD characteristics and, therefore, its
forensics “friend-liness” with respect to the features tested
by our workflow. Extending our methodology to take into
account the firmware revision is challenging for two
reasons: First, not all SSD vendors release firmware
upgrades. Second, and most impor-tantly, firmware
upgrades are often one-way procedures (i.e., the only way
to downgrade a firmware to a previous version would
consist in buying another SSD, provided that the old
version of the firmware is still on the market); this affects
the repeatability of the experiments in a scalable way.

or not; this is useful to determine the feasibility of a deeper
white-box approach. We also investigated the controversial
topic of garbage collection to see under what conditions it
triggers.

Each of the proposed experiments is tailored to inspect
how each functionality works and how “aggressive” it is.
They allow the analyst to know, for example, if the SSD
has a disruptive TRIM implementation or if GC does not
work under particular conditions. All these information can
be of great help when performing a forensic acquisition on
such drives, since they can change the expectations or even
suggest some particular techniques to adopt in order not to
allow the controller to delete possible useful data. Also, the
result can help the forensic expert to estimate the success of
costly procedures such as a memory white-box analysis.

Acknowledgments This paper was published, in an earlier version [7],
in the proceedings of the ACSAC 2013 conference. The authors are
grateful to the anonymous reviewers and to the conference atten-dees,
who pointed out weaknesses and significantly contributed to the
improvement of this research. We wish to particularly acknowledge
the fruitful discussions at the conference with Dr. Sarah Diesburg. The
research leading to these results has received funding from the European
Union Seventh Framework Programme (FP7/2007–2013) under Grant
Agreement No 257007, as well as from the TENACE PRIN Project (No.
20103P34XC) funded by the Italian Ministry of Education, University
and Research.

References

1. Wear leveling in micron NAND flash memory. Tech. Rep. TN-
29-61, Micron Technology Inc. (2008). http://www.micron.com/
~/media/Documents/Products/Technical

2. Wear-leveling techniques in NAND flash devices. Tech. Rep. TN-
29-42, Micron Technology Inc. (2008). http://www.micron.com/
~/media/Documents/Products/Technical

3. Microsoft Co.: Support and Q&A for Solid-State Drives.
MSDN Blog (2009). http://blogs.msdn.com/b/e7/archive/2009/
05/05/support-and-q-a-for-solid-state-drives-and.aspx

4. Antonellis, C.J.: Solid state disks and computer forensics. ISSA J.
6(7), 36–38 (2008)

5. Bell, G.B., Boddington, R.: Solid state drives: the beginning of
the end for current practice in digital forensic recovery? J. Digit.
Forensics Secur. Law 5(3), pp. 1–20 (2010)

6. Billard, D., Hauri, R.: Making sense of unstructured flash-
memory dumps. In: SAC ’10, pp. 1579–1583. ACM, New York
(2010)

7. Bonetti, G., Viglione, M., Frossi, A., Maggi, F., Zanero, S.: A com-
prehensive black-box methodology for testing the forensic charac-
teristics of solid-state drives. In: Proceedings of the Annual Com-
puter Security Applications Conference (ACSAC). ACM (2013).
doi:10.1145/2523649.2523660

8. Breeuwsma, M., De Jongh, M., Klaver, C., Van Der Knijff, R.,
Roeloffs, M.: Forensic data recovery from flash memory. Small
Scale Digit. Device Forensics J. 1, 1–17 (2007)

9. Bunker, T., Wei, M., Swanson, S.: Ming II: a flexible platform for
NAND flash-based research. Tech. Rep. CS2012-0978, UCSD
CSE (2012)

10. Chang, Y.H., Hsieh, J.W., Kuo, T.W.: Improving flash wear-
leveling by proactively moving static data. IEEE Trans. Comput.
59(1), 53–65 (2010)

11. Diesburg, S., Meyers, C., Stanovich, M., Mitchell, M., Marshall,
J., Gould, J., Wang, A.I.A., Kuenning, G.: Trueerase: per-file
secure deletion for the storage data path. In: Proceedings of the
28th Annual Computer Security Applications Conference,
ACSAC ’12, pp. 439–448. ACM, New York (2012).
doi:10.1145/2420950. 2421013

12. Gray, J., Fitzgerald, B.: Flash disk opportunity for server applica-
tions. Queue 6(4), 18–23 (2008)

13. Hu, X.Y., Eleftheriou, E., Haas, R., Iliadis, I., Pletka, R.: Write
amplification analysis in flash-based solid state drives. In:
SYSTOR ’09, pp. 10:1–10:9. ACM, New York (2009)

14. Intel: AP-684: Understanding the flash translation layer (FTL)
specification. Intel Application Note. (1998) http://www.jbosn.
com/download_documents/FTL_INTEL.pdf

15. King, C., Vidas, T.: Empirical Analysis of Solid State Disk Data
Retention When Used with Contemporary Operating Systems, pp.
S111–S117. Elsevier Science Publishers B. V., Amsterdam (2011)

16. Luck, J., Stokes, M.: An integrated approach to recovering
deleted files from nand flash data. Small Scale Digit. Device
Forensics J. 2(1), 1941–6164 (2008)

17. Rajgarhia, A., Gehani, A.: Performance and extension of user
space file systems. In: Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ’10, pp. 206–213. ACM, New York
(2010). doi:10.1145/1774088.1774130

18. Skorobogatov, S.P.: Data remanence in flash memory devices. In:
Cryptographic Hardware and Embedded Systems—CHES 2005,
7th Intl. Workshop, Edinburgh, UK, August 29–September 1,
2005, Proc., Lecture Notes in Computer Science, vol. 3659, pp.
339–353. Springer, Berlin (2005)

19. Templeman, R., Kapadia, A.: Gangrene: exploring the mortality
of flash memory. In: HotSec’12, pp. 1–1. USENIX Association,
Berkeley (2012)

20. Wei, M., Grupp, L.M., Spada, F.E., Swanson, S.: Reliably erasing
data from flash-based solid state drives. In: FAST’11, pp. 8–8.
USENIX Association, Berkeley (2011)

http://www.micron.com/~/media/Documents/Products/Technical
http://www.micron.com/~/media/Documents/Products/Technical
http://www.micron.com/~/media/Documents/Products/Technical
http://www.micron.com/~/media/Documents/Products/Technical
http://blogs.msdn.com/b/e7/archive/2009/05/05/support-and-q-a-for-solid-state-drives-and.aspx
http://blogs.msdn.com/b/e7/archive/2009/05/05/support-and-q-a-for-solid-state-drives-and.aspx
http://dx.doi.org/10.1145/2523649.2523660
http://dx.doi.org/10.1145/2420950.2421013
http://dx.doi.org/10.1145/2420950.2421013
http://www.jbosn.com/download_documents/FTL_INTEL.pdf
http://www.jbosn.com/download_documents/FTL_INTEL.pdf
http://dx.doi.org/10.1145/1774088.1774130

	Black-box forensic and antiforensic characteristics of solid-state drives
	Abstract
	1 Introduction
	2 Background and related work
	2.1 White-box forensics analysis
	2.2 Black-box forensics analysis

	3 Research challenges and goal
	4 Methodology overview
	4.1 Garbage collector vs. garbage collection
	4.2 Write caching in SSD experiments

	5 Implementation details
	5.1 TRIM
	5.1.1 Methodology
	5.1.2 Results

	5.2 Garbage collection
	5.2.1 Methodology
	5.2.2 Results

	5.3 Erasing patterns
	5.3.1 Methodology
	5.3.2 Results

	5.4 Compression
	5.4.1 Methodology
	5.4.2 Results

	5.5 Wear leveling
	5.5.1 Methodology
	5.5.2 Results

	5.6 Files recoverability
	5.6.1 Methodology
	5.6.2 Results

	6 Use cases
	6.1 Ranking drives
	6.2 An antiforensic filesystem

	7 Future directions
	7.1 Firmware dependency
	7.2 OS dependency

	8 Conclusions
	Acknowledgments
	References

