Noname manuscript No.
(will be inserted by the editor)

Introducing Uncertainty in Complex Event
Processing: Model, Implementation, and Validation

Gianpaolo Cugola - Alessandro
Margara - Matteo Matteucci - Giordano
Tamburrelli

Received: date / Accepted: date

Abstract Several application domains involve detecting complex situations
and reacting to them. This asks for a Complex Event Processing (CEP) engine
specifically designed to timely process low level event notifications to identify
higher level composite events according to a set of user-defined rules. Several
CEP engines and accompanying rule languages have been proposed. Their
primary focus on performance often led to an oversimplified modeling of the
external world where events happens, which is not suited to satisfy the demand
of real-life applications. In particular, they are unable to consider, model, and
propagate the uncertainty that exists in most scenarios. Moving from this
premise, we present CEP2U (Complex Event Processing under Uncertainty),

Gianpaolo Cugola

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano

Piazza L. da Vinci 32, Milan, Italy

E-mail: cugola@elet.polimi.it

Alessandro Margara

Dept. of Computer Science

Vrije Universiteit

De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands
E-mail: a.margara@vu.nl

Matteo Matteucci

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano

Piazza L. da Vinci 32, Milan, Italy

E-mail: matteucciQelet.polimi.it

Giordano Tamburrelli

Faculty of Informatics.

Universita della Svizzera Italiana
Via Buffi 13, Lugano, Switzerland
E-mail: giordano.tamburrelliQusi.ch

2 Gianpaolo Cugola et al.

a novel model for dealing with uncertainty in CEP. We apply CEP2U to an
existing CEP language ~TESLA—-, showing how it seamlessly integrate with
modern rule languages by supporting all the operators they commonly offer.
Moreover, we implement CEP2U on top of the T-Rex CEP engine and per-
form a detailed study of its performance, measuring a limited overhead that
demonstrates its practical applicability. The discussion presented in this pa-
per, together with the experiments we conducted, show how CEP2U provides
a valuable combination of expressiveness, efficiency, and ease of use.

Keywords Complex Event Processing - Uncertainty Management - Uncer-
tainty Modeling

1 Introduction

Several systems operate by observing a set of primitive events that happen in
the external environment, interpreting and combining them to identify higher
level composite events, and finally sending notifications about these events to
the components in charge of reacting to them, thus determining the overall
system’s behavior. Examples are sensor networks for environmental monitor-
ing [12,22]; financial applications requiring a continuous analysis of stocks to
detect trends [18]; fraud detection tools, which observe streams of credit card
transactions to prevent frauds [41]; RFID-based inventory management sys-
tems, which perform a continuous analysis of registered data to track valid
paths of shipments and to capture irregularities [46].

More in general, as observed in [29], the information system of every com-
plex company can and should be organized around an event-based core that
acts as a nervous system to guide and control the operation of other sub-
systems.

Complex Event
Processing Engine
primitive
events

composite
events

event consumers
(sinks)

event observers -
(sources) event definition

==\ rules

rule managers

Fig. 1: The high level view of a CEP application

The general architecture of such an event-based application is shown in
Fig. 1. At the peripheral of the system are the sources and the sinks. The

Introducing Uncertainty in Complex Event Processing 3

former observe primitive events and report about them, while the latter re-
ceive composite event notifications and react to them. The task of identifying
so called composite events from primitive ones is referred as Complex Event
Processing (CEP) and relies on a Engine which operates on the basis of a set
of rules conceived and deployed by rule managers.

In the last few years several CEP engines and accompanying rule languages
have been proposed, both from the academia and from the industry [17]. One
of the main goals of such engines is to provide low delay processing of incoming
primitive events. As we observed in [17], this often led to the design of over-
simplified languages for rule definition, which are not well suited to capture
the complexity of the aforementioned application scenarios. In particular, one
of the main limitations of existing approaches is their inability to consider,
model, and propagate the uncertainty that exists in most applications [7].

Starting from these premises, we developed CEP2U (Complex Event Pro-
cessing under Uncertainty), a new model for dealing with uncertainty in com-
plex event processing. CEP2U considers two types of uncertainty, namely un-
certainty in the data coming from sources, and uncertainty in the induction
step that derives composite events from primitive ones. The first form of un-
certainty models the inherent imprecision of the information collected from
sources. An example of this kind of uncertainty is the error introduced by a
set of distributed sensors that measure temperature and humidity in a large
area for weather forecast. CEP2U allows to represent such uncertainty and to
propagate it into the generated composite events, e.g., the expected weather.
The second form of uncertainty models the imprecision of rules, i.e., the pos-
sibility that rules do not completely reflect the behavior of the monitored
environment. As an example, a rule that detects a fire event from smoke and
high temperature may generate false positives if a smoker triggers a sensor for
smoke detection.

In designing our model of uncertainty, we had four goals: (i) expressiveness:
to make our model suitable for disparate real-world scenarios; (ii) generality: to
allow easy integration of our model into existing rule languages; (%) simplicity:
to keep the model as simple and easy to use, read, and understand as possible;
(iv) efficiency: to keep the overhead introduced by uncertainty management
small w.r.t. event processing.

Organization of the paper. The rest of the paper is organized as follow.
Section 2 presents background work in the field of complex event processing;
it introduces the TESLA language and uses it to discuss the main features of-
fered by existing systems. Section 3 presents the problem statement in details.
The CEP2U model of uncertainty is described in Section 4, where we show,
using TESLA as a practical example, how it can be easily integrated into the
data and rule models of most existing CEP systems. Section 5 describes how
we extended our T-Rex CEP engine [15] to fully support CEP2U. The per-
formance of this prototype are thoroughly studied in Section 6 to show how
the additional processing required by our uncertainty model introduces a lim-

4 Gianpaolo Cugola et al.

ited overhead. Finally, Section 7 describes related work and Section 8 provides
some conclusive remarks.

2 Background

2.1 Complex Event Processing

A heterogeneous world. Although complex event processing is a relatively
new area of research, several CEP engines have been developed in the last few
years, each one bringing its own data model, its own rule definition language,
and its own processing algorithm and implementation.

Two main approaches have emerged and are currently growing in paral-
lel [17]. On the one hand, there are systems developed by the database commu-
nity, based on a processing model that is similar to that of relational databases,
augmented with ad-hoc operators to support on-the-fly data processing. They
are known as Data Stream Management Systems (DSMSs) [8]. Similar to SQL
queries, the rules of DSMSs include operators that specify how to manipulate
the (streaming) input information to transform it and generate one or more
output streams.

On the other hand, the solutions proposed by the community working on
event-based systems adopt rules that specify how composite events are defined
starting from patterns of primitive ones. These kinds of rules do not express the
processing steps to be performed on input events ezplicitly; on the contrary, the
computation is implicitly specified by the pattern. The TESLA language [14]
used in the remainder of the paper belongs to this second class.

A small world, after all. Despite their differences, these two approaches
pose their roots on a common ground. Indeed, at the core of existing systems
is usually a reduced set of abstract operators: selection, to isolate the primitive
events relevant for processing based on their content; combination of multiple
events based on their mutual relations in terms of content and occurrence time;
negation, to identify events that must not occur in order to satisfy the rule;
aggregation, to build composite events by putting together the content of the
primitive events they come from; production of new (composite) events.

Next section presents these abstract operators in details, through a con-
crete example developed in TESLA, which is also the language we use in the
remainder of the paper as a practical case to show how CEP2U is applicable
to all the aforementioned abstract operators.

2.2 A Concrete Example

Tunnel Ventilation System (TVS) are crucial to guarantee safety in tunnels. To
this end, they are constantly monitored by several sensors to detect possible
failures, such as obstructions. In usual setups sensors are evenly distributed

Introducing Uncertainty in Complex Event Processing 5

along the tunnel and they measure the temperature and the concentration
of oxygen in air. Now, consider a CEP application designed to detect TVS
malfunctioning. Such application has to recognize critical situations starting
from the raw data measured by sensors. Depending on the environment, the
application requirements, and the user preferences, the presence of a TVS
malfunctioning can be specified in many different ways. Here we present three
possible definitions of the TVS malfunctioning event, and we use them to
illustrate the abstract operators provided by event processing languages.

D1. There is a TVS malfunctioning when there is an oxygen concentration
lower than 18%, while a temperature higher than 30 degrees was detected
in the same sector of the tunnel in the previous 5 min. The malfunctioning
notification has to embed the sector of the tunnel, together with the oxygen
concentration and temperature actually measured.

D2. There is a TVS malfunctioning when there is a temperature higher than
30 degrees in absence of a traffic jam in the same tunnel sector.

D3. There is a TVS malfunctioning when there is an oxygen concentration
lower than 18% and the average temperature in the last 5 min., in the
same tunnel sector, was higher than 30 degrees.

To be implemented in a CEP system, all these definitions require the abil-
ity to select relevant notifications according to the values they carry (e.g.,
those about temperature higher than 30 degrees). Definition D1 also contains
a specific example of combination, by coupling heterogeneous events (i.e., tem-
perature and oxygen concentration) according to their relations on time (i.e.,
detected in the previous 5 min.) and on content (e.g., those occurred in the
same sector of the tunnel). Similarly, definition D2 introduces negation by
requiring an event (the traffic jam) not to occur in a given interval; while defi-
nition D3 introduces aggregation by requiring a specific function (average) to
be applied to a specified set of elements (temperature readings in the last 5
minutes) to calculate the value associated with the composite event. Finally,
each definition also states which notifications (i.e., TVS malfunction) have to
be produced when the condition is verified. By doing this, it also specifies the
internal structure of such notifications (e.g., TVS malfunctioning notification
has to embed the tunnel sector and the oxygen and temperature readings).

2.3 TESLA in a Nutshell

This section leverages the example above to introduce TESLA and to show
how the abstract operators above map to a concrete CEP language. The reader
interested in a complete description of TESLA, including a rigorous discussion
of its semantics, may read [14].

2.3.1 TESLA event and rule model

TESLA assumes that each event notification has a type, which defines the
number, order, names, and types of the attributes that build the notification.

6 Gianpaolo Cugola et al.

Moreover, by assuming that events occur instantaneously at some points in
time, TESLA notifications also include a timestamp, which represents the time
of occurrence of the event they encode.

Referring to the TVS example above, the TESLA event model allows to
capture the fact that the air temperature at time 10 in the tunnel sector at
16.2km is 24.5C, using the following notification:

Temp@10 (km=16.2, value=24.5)

Where Temp represents the type of the notification, which includes two
attributes: a value that identifies the tunnel sector in which the temperature
was measured, and the actual reading (both represented as floats).

As a final remark, notice that in the following we assume events to enter
the system in timestamp order. This is a typical assumption in CEP systems,
which delegate the ordering of events to external protocols. Existing solutions
include waiting for a (fixed) time for out-of-order events before start pro-
cessing, or introducing flexible heartbeats which take into account both clock

synchronization and event propagation delays [42].
TESLA rules define composite events from simpler ones. The latter can be
observed directly by sources (i.e., they can be primitive events) or they can be

composite events defined by other rules'. Each TESLA rule has the following
general structure:

Rule R

define CE(att_-1:Type_1, ..., attmn:Typen)
from Pattern

where att.1 = f1, .., attn =fn
consuming e_.1, .., en

The define and where clauses, taken together, represent the production opera-
tor we identified above. Indeed, the former introduces the new composite event
and its structure, while the latter defines the actual values for the attributes
att_1, .., att.n of the new event using a set of aggregation functions f_1,

., f_n, which may depend on the arguments defined in Pattern. This pat-
tern, part of the from clause, sets the conditions that lead to the composite
event, selecting the primitive events and combining them according to well
precise relationships. Finally, the optional consuming clause defines the set of
events that have to be invalidated for further firing of the same rule.

2.3.2 TESLA by Examples

To present the operators supported by TESLA in an easy and clear way, we
use the three definitions of TVS malfunctioning presented above, showing how
they can be encoded in TESLA. In particular, definition D1 can be represented
by the TESLA Rule R1 below:

Rule R1
define TVS_Malfun(km:double, temp:double, ox:double)
from Oxygen(concentr=<18% and km=$a) and

L This mechanism allows the definition of “hierarchies of events”.

Introducing Uncertainty in Complex Event Processing 7

last Temp($a-10 < km < $a+10 and value>30)
within 5 min. from Oxygen
where km=0xygen.km and temp=Temp.value and ox=0xygen.concentr

First, Rule R1 selects Oxygen and Temp events based on their content (i.e.,
concentr<18Y% and value>30). Then, it combines the two on the basis of their
content (i.e., the value of attribute km put in relation using parameter $a)
and their time of occurrence (i.e., within 5 min). Finally, it produces TVS
malfunctioning events (TVS_Malfun) setting its attributes as specified by the
where clause.

Notice how Rule R1 uses the last-within operator to bind each Oxygen
event with the last Temp event observed. Alternative behaviors could be ob-
tained by using other operators provided by TESLA for combining events. For
example, the first-within operator would consider only the first Temp event
observed within the specified time window, while the each-within operator
would consider all available Temp events, producing a different TVS malfunc-
tioning for each of them. The complete set of combination operators provided
by TESLA enables fully customizable selection policies [17], thus allowing the
domain experts to specify which events have to be considered when multiple
choices are available. For a formal description of their semantics see [14].

The second definition of a TVS malfunctioning introduced above (i.e., D2)
can be used to show how time-based negations are expressed in TESLA:

Rule R2
define TVS_Malfun(km:double, temp:double)
from Temp(km=$a and value>30) and
not TrafficJam($a-10 < km < $a+10)
within 5 min. from Temp
where km=Temp.km and temp=Temp.value

Rule R3 shows an example of aggregation function (i.e., Avg) to express
definition DS.

Rule R3
define TVS_Malfun(km:double, temp:double, ox:double)
from Oxygen(concentr=<18} and km=$a) and
30 < $t = Avg(Temp($a-10 < km < $a+10).value
within 5 min. from Oxygen)
where km=0xygen.km and temp=$t and ox=0Oxygen.concentr

Notice that the computed value of an aggregate can be used in the from
clause, as in this case, to constrain the triggering of the rule, but it may also
be used in the where clause, to set the attributes of the produced event.

3 Problem Statement

CEP rules are conceived to model —and capture— some aspects of interests of
the real world. As for any modeling approach, accuracy is crucial. At the same
time, our ability to capture a phenomenon is often affected by some form of
uncertainty. Ignoring it may lead to incomplete, inaccurate, or even incorrect

8 Gianpaolo Cugola et al.

decisions concerning the phenomenon itself. To achieve an effective manage-
ment of uncertainty for CEP, the following three aspects must be considered:

— iddentification of the sources of uncertainty;
— modeling of uncertainty;
— propagation of uncertainty across the system.

Identification. The first step requires a careful analysis of the phenomenon
to model, the way it is captured, and in general the environment where CEP is
deployed, in order to identify the potential sources of uncertainty. For example,
the limited accuracy of sensors may introduce uncertainty in data observations.
In addition, even in presence of precise data observations, the behavior of the
phenomenon under observation may depend from aspects hard to capture or
changing over time, which if not considered may lead to imprecise models. As
an example, when trying to detect fire in a building, the presence of smoke can
be the key indicator, but it may also be unrelated with fire (e.g., if someone is
smoking near the sensor), while high temperature is another indicator but its
exact definition may change during the year (e.g., during the summer there is
a non-negligible probability of having high temperature readings even without
a fire).

Modeling. Once the sources of uncertainty have been identified they must be
incorporated into the CEP system. The modeling phase aims at providing a
sound mathematical foundation to represent uncertainty, let the CEP engine
be aware of it, and manipulate it consistently. For example, probability theory
can be used to model measurement errors, allowing the CEP engine to process
uncertain values and combine them with other, possibly certain, ones.

Propagation. An uncertainty-aware CEP engine should produce a result
characterized by an appropriate degree of uncertainty, consistent with: ()
the identified sources of uncertainty and (#) the models adopted to represent
them.

As mentioned in the introduction, the design of a CEP system should meet
three key requirements: (i) expressiveness of the rule definition language,
(4) simplicity of this language, which results in a reduced effort in writing
rules and increase readability and maintainability; (i) efficiency in process-
ing rules, to better support those scenarios, like financial applications, where
a lower latency in detecting composite events results in a tangible advantage
over competitors.

The same requirements should also drive the process of integrating uncer-
tainty into CEP. Concretely, in presence of uncertainty, rules should remain
concise and easy to write and read, while the overhead resulting from the
introduction of uncertainty should be relatively limited.

Introducing Uncertainty in Complex Event Processing 9

4 Model of Uncertainty

This section describes the CEP2U model in details. As underlined above, the
first step to model uncertainty consists in the identification of its sources.
CEP2U focuses on two possible sources of uncertainty:

— wuncertainty in events, i.e., the uncertainty deriving from an incorrect ob-
servation of the phenomena under analysis. This means to admit that the
notifications entering the CEP engine can be characterized by a certain
degree of uncertainty.

— uncertainty in rules, i.e., the uncertainty deriving from incomplete or erro-
neous assumptions about the environment in which the system operates.
This means to admit that the CEP engine has only a partial knowledge
about the system under observation, and consequently the CEP rules can-
not consider all the factors that may cause the composite events they are
in charge of detecting.

CEP2U models uncertainty in events using the theory of probability, while
it exploits Bayesian Networks (BNs) [25] to model uncertainty in rules. In
particular, it extends the model of events to include probabilistic data into
event notifications, while it automatically builds a BN for each TESLA rule
deployed in the system. Domain experts are expected to extend such BNs to
capture a-priori knowledge about those aspects of the environment that cannot
be directly observed by sources.

4.1 Uncertainty in Events

In this section we focus on uncertainty that affects event notifications, showing
how we model it and how we propagate it during processing.

4.1.1 Modeling Uncertainty in Events

For each event e, CEP2U considers two forms of uncertainty:

i. the uncertainty regarding the content of e (i.e., regarding the values of its
attributes).
1. the uncertainty regarding the occurrence of e;

The first form of uncertainty stems from the fact that most attributes
that builds event notifications hold a measure of some physical entity or phe-
nomenon. These measures are inevitably affected by some degree of uncer-
tainty, which derive from the inaccuracy, imprecision, and noise that affect
sensors. CEP2U models this kind of uncertainty by considering the value of
each attribute Attr; as a sample from a random variable X! = X; + €;, where
X; is the real, unknown value that would be measured in absence of errors,
while €; is the measurement error.

10 Gianpaolo Cugola et al.

CEP2U assumes that the probability distribution function (pdf) of e; is
known. It depends upon the noise at sources, including fabrication randomness
of sensors, inaccuracies in the measurement technique, etc. This information
can be provided by the sources themselves (e.g., a sensor knows an estimate
of its error and attaches it to the event notifications it produces) or it can
be provided by a domain expert and integrated into event notifications before
processing. Notice that our model supports generic pdfs, including discrete
functions.

The second form of uncertainty is modeled through an estimate of the
probability of occurrence of e. Events whose occurrence is assumed to be cer-
tain have a probability of 1, while events whose occurrence is not certain have
a lower probability. In CEP2U, we assume all primitive events to be certain?.

The definitions above result in extending the event model presented in
Section 2.3 as follows:

i. For each event notification attribute Attr;, the information received by the
CEP engine is the couple: (X/, pdf;), where X/ is the observed value of
Attr; and pdf; is the probability distribution function of e;.

1. Each event notification is augmented with an explicit probability of occur-
rence;

As a concrete example, consider our TVS scenario. The air temperature
in a given tunnel sector at a specific time could be captured by the following
event notification:

Temp@10 %1 (km = <16.2, U(-1, 1)>, value = <24.5, N(0,1)>)

Where %1 represents the probability of occurrence of the event Temp (it
is certain that the measure was taken and consequently it is certain that the
event occurred), while both the km and the value attributes have an associated
uncertainty modeled through the pdfs of their measurement errors, which is a
uniform (U) between —1 and 1 for km and a Gaussian (N) with mean 0 and
variance 1 for value.

Before ending this section we need to discuss the aspect of events that
was neglected so far: the time of occurrence. As the careful reader may have
already noticed, we are assuming that the time at which events occur, and con-
sequently the timestamp associated with event notifications (see Section 2.3.1),
is a definite value. This is a debatable assumption. In principle, we could eas-
ily associate a degree of uncertainty to timestamps, modeling them as random
variables instead of crisp values. On the other hand, we cannot ignore the
fact that time represents a very critical aspect for every CEP system. Indeed,
some of the fundamental CEP operators rely on timing constraints. This is the
case of windows [8], sequence operators [17], and the xxx-within operator in
TESLA, not to mention time-based aggregates.

2 In particular, we assume that we receive all events (no false negatives) and that all
received events actually occurred (no false positives). CEP2U can models the presence of
false positives and negatives as part of the uncertainty in rules, as discussed in Section 4.2.2.

Introducing Uncertainty in Complex Event Processing 11

Associating uncertainty to a critical parameter as time could impact the
semantics of rule languages, which often model cause-effect relationships and
rely on temporal ordering to express causality. Furthermore, associating uncer-
tainty to time would also negatively impact the efficiency of processing, with
a potential explosion of the composite events captured, since primitives events
“floating” in time may trigger much more rules than events whose occurrence
time is precisely known. These considerations motivate our choice but we do
not exclude to change it in the future.

4.1.2 Propagating Uncertainty in Events

Here we consider the abstract operators described in Section 2 and we show
how uncertainty in primitive events propagates to composite events.

Selection. Consider the following, simplified version of Rule R1, which de-
tects a malfunction every time a Temp event is detected that satisfies the two
constraints: km<17.1 and value>30:

define TVS_ Malfun()
from Temp (km<17.1 and value>30)

When a Temp event enters the system whose attributes have an associated
uncertainty, the satisfaction of the constraints in rule becomes uncertain, also.
In such a situation we can compute the probability that each constraint is
satisfied from the pdf of each attribute’s measurement error €;.

As an example, assume that a Temp event is received at time 13 with the
following measured values and associated errors:

Temp@13 %1 (km = <16.2, U(-1, 1)>, value = <31.8, N(0,1)>)

The probability that the first constraint in rule above is satisfied is:
P(Xgm < 17.1) where Xy, is the real, unknown value of attribute km. We
know that:

/
ka = ka + €xm

which means:

Xim = Xpn — €km ~ U(16.2 —1,16.2 + 1) = U(15.2,17.2)

Accordingly, the probability that Xy, is lower than 17.1 corresponds to
calculating P(U(15.2,17.2) < 17.1) = 0.9. Similarly, for attribute value we
have:

!
Xvalue =X

value

— €value ™~ N(318 -0, 1) = N(318, 1)

Accordingly, the probability that it is greater than 30 is equivalent to
calculating P(N(31.8,1) > 30) = 0.964.

12 Gianpaolo Cugola et al.

Finally, CEP2U assumes that the values of different attributes are inde-
pendent from each other®. Under this assumption, the overall probability that
the Temp event satisfies both constraints in the rule above is the product of
the probability that each constraint is satisfied, i.e., 0.9 - 0.964 = 0.868. Since
these are the only constraints in the rule, this is also the probability that the
TVS_Malfun event is generated, i.e., the probability of occurrence that CEP2U
associates to the composite event.

Combination. In several situations, composite events combine several prim-
itive event by relating them on the basis of the values of their attributes.This
case requires a different processing w.r.t. the selection case, as it relies on the
comparison of multiple distributions. As an example, consider the following
rule:

define TVS_Malfun()

from Oxygen(km=$a) and

last Temp($a-10 < km < $a+10 and value>30)
within 5 min from Oxygen

which requires the combination of Oxygen and Temp under the constraint
that they occur in a neighborhood of 10km. As in the previous case, the
evaluation of such constraint may be affected by uncertainty, since both event
notifications may associate a measurement error to attribute km. To show how
CEP2U addresses such case, assume we receive the following events:

Temp@10 %1(km=<10.5, N(0,1)>, value=<31.8, N(0,1)>)
Oxygen@12 %1(km=<10.3, N(0,2)>)

We already know from the previous example that the (selection) constraint
on value is satisfied with probability 0.964. We now want to compute the prob-
ability that the constraint on km is satisfied. Assuming that the two readings
of km are independent from each other?, we want to compute the following
probability:

P(*IO < XTemp.k7n - XSmoke.km < +1O)
We know that:

Xtempkm = XTemp kom — €Temp.km
~ N(10.5—0,1) = N(10.5,1)
Xoaygen.km = XOzygen.km — €0zygen.km
~ N(10.2 — 0,2) = N(10.2,2)

3 In principle, we could remove this assumption and consider a multivariate pdf that
involves all the attributes of incoming events, but this would complicate the model and it
would require information that is usually unavailable at sources.

4 This is a reasonable assumption, since the two readings come from different, independent
sources. Only the occurrence of a TVS malfunctioning, whose probability is exactly what
we are computing, may lead to correlated readings.

Introducing Uncertainty in Complex Event Processing 13

from which we derive:

XTemp.km - XOmygen_km ~ N(105 - 102, 1 + 2)
= N(0.3,3)

This probability can be computed as: P(—10 < N(0.3,3) < +10) = 0.999.
Combining this result with the previous one (about the selection opera-
tor) we calculate the overall probability of occurrence of TVS_Malfun as:
0.964 - 0.999 = 0.963.

Notice that the merging of random variables required to combine primitive
events together, may result in complex pdfs that do not admit a closed formu-
lation. CEP2U can deal with such cases exploiting Monte Carlo simulations,
but they potentially require expensive computations to be performed online.
However, their execution time may be tuned such that users can trade preci-
sion for efficiency °. In addition, we expect most applications to involve linear
combinations of well known distributions, which can be analytically evaluated
and computed (as in the example above).

Negation. Capturing the probability that a negation is satisfied is relatively
easy. Indeed, assume we do not want an event of type T to occur in a given
time window w. Also assume we receive n events of type T in w. Let us call p;,
1 < i < n, the probability that the i*" event occurs and satisfies the constraints
stated by the rule (calculated as explained in the previous paragraphs). The
probability that the negation constraint is satisfied equals to the probability
P4 that no T event occurs in w, which can be computed as follows:

}%meg =1- Ii[}%
i=1

As an example, consider the following rule, which is a simplified version of
Rule R2 presented in Section 2:

define TVS_Malfun()

from Temp (km=$a and value>30) and
not TrafficJam($a-10 < km < $a+10)
within 5 min. from Temp

It includes a negation, requiring that no TrafficJam happens near the area
where a high temperature was detected. Now assume we received the following
three notifications:

5 To better understand the overhead introduced by Monte Carlo simulations, we per-
formed some experiments using curve fitting from randomly generated samples to approxi-
mate an unknown function. In presence of hundreds of samples, curve fitting required some
hundreds of milliseconds to complete in our reference hardware. This is two order of mag-
nitude higher than the typical processing time of a CEP engine (see Section 6 for more
details). However, by reducing the granularity of the sampling intervals we could easily re-
duce the computation time to a few milliseconds. As future work, we plan to perform a
detailed analysis of the tradeoffs between efficiency and precision.

14 Gianpaolo Cugola et al.

TrafficJam@10 %1 (km=<25.3, N(0,2)>)
TrafficJam@12 %1(km=<24.8, N(0,3)>)
Temp@14 %1(km=<10.5, N(0,1)>, value=<31.8, N(0,1)>)

By applying the process explained for combination operators, we obtain the
following probability for the two TrafficJam events: 0.055 and 0.141. Using
the formula above, the overall probability of occurrence of the TVS Malfun
event is:

2
Preg=1— Hpi =1 —(0.055-0.141) = 0.992
i=1
The overall probability of TVS_Malfun is computed starting from the prob-
ability of temp and the probability of negation 0.992.

PTVSJVIalfun - Pneg . Ptemp =0.992-0.964 = 0.956

Aggregation. Computing an aggregation requires applying a function f to
the values extracted from a set of primitive events. As an example, consider
the following simplified version of Rule R3:

define TVS_Malfun()

from Oxygen() and 30 < $t=Avg(Temp().value
within 5 min. from Oxygen)

In this case the uncertainty of the aggregate value only depends on the un-
certainty of the attribute value in Temp. In general, the theory of probability
dictates how to compute the pdf of a random variable that results from apply-
ing a function f to a set V = {vy,...,v,} of random variables. In our example,
such pdf represents the distribution of the average of all value in Temp events
received within 5 minutes from Oxygen. For example, assume that n different
Temp events have been received, with a value v; and an error €; ~ N(0,02).
By remembering that X = X, +¢;, and that a linear combination of Gaussian
pdfs is a Gaussian itself, the constraint on the average value of the attribute
can be computed with the formula:

n v; n 0_2
P(N(Y_ %) >30)
i=1 i=1

As already mentioned, in general things can be more complex, since com-
bining random variables may lead to pdfs that do not admit a closed form.
CEP2U may exploit Monte Carlo simulations to solve those cases.

Finally we note that, in the general case, a rule may also introduce ad-
ditional (selection and composition) constraints that apply to the primitive
events included in the computation of an aggregate as shown in the following
rule.
define TVS_Malfun()
from Oxygen() and

30 < $t = Avg(Temp($a-10 < km < $a+10) .value
within 5 min. from Oxygen)

Introducing Uncertainty in Complex Event Processing 15

In this case, the set of events to be considered for the computation is
itself uncertain, as it depends on the satisfaction of additional constraints (i.e.,
the condition on km), which affects the distribution of the aggregated value.
CEP2U supports this general case by considering the contribution of every
possible subset S of primitive events (temp events in our example), weighted
by the probability that all (and only) the events in S satisfy the selection and
composition constraints. As a simple example assuming we receive two temp
notifications 1, t2, in this case we compute the aggregate value as follows:

avg(t1,te) - P(t1,t2) + avg(ty) - P(t1) + avg(ts) - P(t2)

where P(t1), P(t2) represent the probability that ¢; (respectively t5) occurs,
while P(t1,t2) represents the probability that both ¢; and ¢ occur. Being ¢,
and to two random variables, their average is still represented by a random
variable, thus the above computation generates another random variable®.

Production. In all the examples above, we considered simplified versions of
the rules presented in Section 2, in which the TVS malfunctioning event does
not contain any attribute. Within this assumption, the uncertainty related to
the measurement error only reflects on the probability associated to the occur-
rence of the composite events. In the general case, composite events include
one or more attribute, whose value is determined starting from the attributes
of primitive events. As an example consider again a simplified version of Rule
R1:

Rule R1

define TVS_Malfun(km:double, temp:double)

from Oxygen(km=$a) and last Temp($a-10 < km < $a+10 and value>30)
within 5 min. from Oxygen

where km=0xygen.km and temp=Temp.value

where the TVS malfunctioning event includes two attributes, km and temp.
The first one is initialized to the tunnel sector of Oxygen and the second
one to the value of Temp. CEP2U deals with such cases by propagating the
uncertainty associated to the attributes of primitive events to the attributes
of composite events. For instance, assume that we receive the following events:

Temp@10 %1 (km=<10.5, N(0,1)>, value=<31.8, N(0,1)>)
Oxygen@12 %1 (km=<10.3, N(0,2)>)

We already seen this situation when discussing composition and we com-
puted the probability of TVS Malfun as Prvs_ maifun = 0.963. Now, we also
have to compute the attributes of the composite event with their pdfs. The
resulting TVS_Malfun event becomes:

6 Notice that, in the general case, the cost for computing the value of an aggregate can
grow exponentially with the number of event notifications received. To limit the impact of
this problem, it is possible to trade precision for efficiency, e.g., by approximating to 0 the
occurrence probability of an event when it is sufficiently low (below a certain threshold) and
to 1 when it is sufficiently high (above a certain threshold). The thresholds can be chosen
based on the requirements in terms of precision and processing time.

16 Gianpaolo Cugola et al.

TVS Malfun@12 %0.963(km=<10.5, N(0,2)>, temp=<31.8, N(0,1)>)

In most cases, we expect that the values of the attributes in composite
events are copies of primitive event attributes (as in the example above) or
linear combinations of them. Not only CEP2U supports these simple opera-
tions, but also extends to the general case of non linear operations over differ-
ent pdfs by relying on approximate distributions as discussed for combinations
and aggregations.

Hierarchies of events. Several existing languages for CEP, including
TESLA, allow the definition of rules that consider some composite events
as their input to produce other (higher level) composite events. This enables
rules manager to create hierarchies of events.

Consider for instance our tunnel ventilation system scenario. A user may
want to define a rule that combines several TVS_Malfun events to detect a
Danger (higher level) composite event.

Managing uncertainty in presence of hierarchies of events may become
complex. Let us consider a rule R1, which generates a composite event CE
used by another rule R2. In principle, the evaluation of uncertainty carried on
in rule R2 over CE could depend from the computation performed in R1 to
generate CE. An example of this situation is reported below:

Rule R1
define CE(attr:double)
from SE(attr>10)

where CE.attr = SE.attr

Rule R2
define CE2()
from CE(attr>20)

Clearly, the evaluation of the selection constraint in rule R2 (i.e., attr>20)
is not indepenent from the evaluation of the selection constraint in rule R1
(attr>10). Indeed, the attribute CE.attr is directly computed from SE.attr.

Intuitively, tracing the dependencies from rule to rule would severely im-
pact on the complexity of processing, especially in presence of deep hierarchies,
with multiple rules involved. Because of this, in CEP2U we decided to take
a different approach, introducing two simplifying assumptions: () if an event
CE is generated from a rule R1 and used as input for another rule R2, then
R2 considers CE as occurred with probability 1; (#) when a rule evaluates an
event CE, it assumes that every computation involving the attributes of CE is
independent from the process that led to the generation of CE.

Intuitively, through these assumptions CEP2U “forgets the past”, ignoring
the processing that led to the generation of an event CE while evaluating it. In
other words, CEP2U considers all the events relevant for processing, including
composite events generated in recursive rules, as if they were produced by
external, independent, sources.

Since recursive rules are often used to build layers of abstraction, the as-
sumption above can be interpreted by saying that CEP2U users “trust” the

Introducing Uncertainty in Complex Event Processing 17

results of lower levels when writing rules that define events at a higher level.
While this may introduce some approximation in the computation of probabil-
ity, it simplifies the semantics of rules and their design. Moreover, this enables
CEP2U to process all input events in the same way, regardless if they are
primitive events or composite events generated from other rules.

To mitigate the burden associated to recursive evaluation of composite
events when their probability of occurrence is extremely low, we introduce an
explicit (optional) clause to each rule, min probability. Such clause repre-
sents the minimum probability for considering the produced events as occurred
and can be set by domain experts based on the application scenario at hand.
If such a threshold is not reached the composite event is discarded for further
processing and not delivered to interested sinks. Notice that this mechanism
has the additional consequence of smoothing the effect of assumption (7).

A note about consumption. Another key feature considered in most CEP
language, including TESLA, is the consumption policy [17,13]. It specifies
which (primitive) events that fired a certain rule R have to be consumed, i.e.,
excluded from further evaluations.

In general, it is easy to understand that the model of uncertainty we intro-
duced so far is not impacted by the mechanism of event consumption. Similarly,
CEP2U has no impact on event consumption. Considering the specific case of
TESLA, a definition of the currently supported consumption policies can be
found in [14]. They apply seamlessly in presence of uncertainty.

4.2 Uncertainty in Rules

In the previous section we focused on the uncertainty associated with event
notifications, under the assumption that the rules that detect composite events
from primitive ones were definite and “certain”. Here we relax this assumption
and explain how CEP2U models the uncertainty deriving from rules using
Bayesian Networks (BNs).

We adopted BNs to model the uncertainty in rules because they constitute
a natural way to represent the dependencies between concepts. This perfectly
fits our goal of modeling the uncertainty in the causal relationship between
primitive and composite events.

As we will better explain later, one of the main drawbacks of BNs is rep-
resented by the complexity of their definition. To overcome this issue, CEP2U
offers an automatic generation of BNs from rules and enables domain experts
to modify and enrich them to better fit the scenario under analysis.

4.2.1 Bayesian Networks

Before giving the details of our solution, we provide an intuitive description of
BNs. A BN is a graphical statistical model used to represent the conditional
dependencies between random variables. Each BN is a directed acyclic graph
(DAG): each node represents a random variable, while an edge from node

18 Gianpaolo Cugola et al.

Boiler
Solar Panel Solar Panel ON OFF
ON OFF ON 0.2 0.8
0.6 0.4 OFF 0.9 0.1
Hot Water
Solar Panel Boiler ON OFF
ON ON 1.0 0.0
ON OFF 0.9 0.1
OFF ON 0.9 0.1
OFF OFF 0.1 0.9

Fig. 2: Bayesian Networks: an example

N; to node N, represents a causal dependency between Ni and No, i.e., Ny
causes Ns. Each node has an associated probability function that specifies the
probability of each value that the node can assume as a function of the values
assumed by parent nodes. BNs can be used to infer the expected values for
one or more variables, given the values (or the a-priori distribution of values)
of other variables in the network.

Fig. 2 shows a simple BN that models the availability of hot water using
three random variables: Solar Panel, Boiler, and Hot Water.

Each of the three variables can assume two values, ON and OFF. The two
edges entering Hot Water represent a causal dependency of this variable from
both Solar Panel and Boiler. This dependency is quantified in the table
associated to Hot Water: the availability of hot water is certain when both
the boiler and the solar panel are ON, and highly probable (P(ON) = 0.9)
when at one of them is ON and the other is OFF. When both the boiler and
the solar panel are OFF then it is highly probable that there is no hot water
((P(OFF) = 0.9). Notice that the network includes also a causal dependency
between Solar Panel and Boiler, which models the presence of a controller
to switch the boiler ON or OFF depending on the state of the solar panel. Finally,
the state of the Solar Panel does not causally depend from any other random
variable; accordingly, its table is filled with the a-priori probability that the
solar panel is working correctly.

A BN can be used to answer queries about its variables and their causal
relationships. For example, the network can be used to extract updated knowl-
edge on the state of one or more variables when other variables are observed.
In our case, we may observe that the solar panel is working (the value of
Solar Panel is ON with probability 1) and use this information to compute
the probability of having hot water equal to 98%.

Introducing Uncertainty in Complex Event Processing 19

4.2.2 Modeling Uncertainty in Rules through Bayesian Networks

As a concrete example to motivate the need of considering uncertainty not
only in events but also in rules, consider Rule R1 again:

Rule R1
define TVS_Malfun(km:double, temp:double, ox:double)
from Oxygen(concentr=<18Y, and km=%$a) and

last Temp($a-10 < km < $a+10 and value>30)
within 5 min. from Oxygen
where km=0xygen.km and temp=Temp.value and ox=0xygen.concentr

It describes how the presence of a TVS_Malfun event can be detected
through the contemporary observation of high temperature and low oxygen
concentration.

As it often happens in computer systems, this rule implicitly assumes a
closed world in which only the three entities of oxygen, temp, and malfunc-
tions exist, and there are no additional factors that influence their occurrence
and their causal dependencies. However, reality is much more complex than
this and a lot of other factors may actually influence the behavior of our tun-
nel. Some of these factors could be impossible to observe and measure, or it
could be too complex to precisely monitor them. In general every modeling
activity abstracts away those details that are considered marginally relevant,
but in doing so it trades simplicity for precision, exposing to the risk that
these omissions could result in incomplete models, possibly leading to wrong
deductions. The ability to model the level of uncertainty present in rules is
precisely what we offer to avoid this risk.

In particular, given a TESLA rule R: (i) CEP2U automatically translates
R into a corresponding BN; (i) rule managers or other domain experts are
offered the chance to enrich such BN to include additional factors that may
influence the occurrence of events; (éit) the updated BN is then evaluated
to compute the probability of occurrence of composite events, taking into
account the factors added in the previous step; (iv) the computed value is
integrated with the results obtained by considering the uncertainty in events
and propagated to the composite events generated by R.

Notice that steps (i—iii) occur at rule design time. Step (i) is performed by
the CEP system every time a new rule is deployed. Rule managers may refine
rules by enrichment —step (i#)—, automatically triggering step (ii). Step
(iv) is the only one that occurs at run-time, while the CEP engine processes
incoming events.

Translation. Each TESLA rule defines how the occurrence of a composite
event can be detected from the observation of one or more primitive events.
Put in other terms, it models a causal dependency among the composite events
and the primitive ones. Moving from this consideration, CEP2U automatically
translates each Rule R into a BN, which includes one node for each event
(primitive or composite) in R and one edge (a causal relationship) connecting
the composite event to each primitive event. As an example, Fig. 3 shows the
BN obtained from Rule R1.

20 Gianpaolo Cugola et al.

Temp Oxygen
TVS_Malfun YES NO TVS_Malfun YES NO
YES 1.0 0.0 YES 1.0 0.0
NO 0.0 1.0 NO 0.0 1.0

Fig. 3: The Bayesian Network Generated from Rule R1

Notice that this approach considers the composite event as the cause that
determined the primitive events. This is reasonable in several situations, in-
cluding our example of TVS malfunctioning, but there are scenarios in which
what we observe (the primitive events) are the causes of the phenomenon that
we are interested to detect (the composite event). For instance, this is the case
of an application that measures seismic waves in a certain shore-side area to
detect possible sea-quakes. In such situations, the rule managers may decide
to revert the direction of the BN edges automatically created by CEP2U.

Moreover, the automatic translation assumes the composite event to be the
only cause of all the primitive events. In other words, the presence of a com-
posite event (TVS_Malfun in our example) always determines the occurrence
of all primitive events (Temp and Oxygen in our example) with probability
1. Domain experts are allowed to modify this model by editing the BN, as
described in the following (see the enrichment phase below).

As a final consideration, we want to recall that CEP2U uses BNs to model
the contribution of uncertainty deriving from rules, exclusively. As a conse-
quence, it abstracts away most aspects present in rules. In particular, each
node in the BN obtained from a Rule R models a purely Boolean variable
that represents, in abstract, the occurrence of an event that fully satisfies
the constraints in R. For instance, node Temp in Fig. 3 represents the occur-
rence of a Temp event that satisfies the constraints ($a-10 < km < $a+10 and
value>30).

Enrichment. During the enrichment phase, we allow rule managers or other
domain experts to edit the BN, changing the direction of edges (see discussion
above) if necessary, and introducing new nodes together with their causal
dependencies with existing primitive and composite events.

Fig. 4 shows a possible enrichment of the BN obtained from Rule R1. In
this case, we identified TrafficJam as an external cause of high temperature
and low oxygen concentration. Accordingly, we added a new node representing
such factor and connected it to both Temp and Oxygen. CEP2U admits generic
(discrete and continuous) variables in BN, not only binary ones. In this case,
we assumed TrafficJam may get three values: HIGH, MEDIUM, and LOW, and
we added to the BN the a-priori distribution of these values. Notice that
these distributions can be modified over time, for example to better represent
variable scenarios such as seasonal trends.

Introducing Uncertainty in Complex Event Processing 21

Temp Oxygen
TVS_Malfun | TrafficJam YES NO TVS_Malfun | TrafficJam YES NO
YES LOW 0.94 0.06 YES LOW 0.95 0.05
YES MEDIUM 0.96 0.04 YES MEDIUM 0.97 0.03
YES HIGH 0.99 0.01 YES HIGH 0.99 0.01
NO LOW 0.05 0.95 NO LOW 0.08 0.92
NO MEDIUM 0.1 0.9 NO MEDIUM 0.12 0.88
NO HIGH 0.15 0.85 NO HIGH 0.16 0.84

TrafficJam
Low [meobum [HIGH
03 | o5 | o2

Fig. 4: Bayesian Network for Rule R1: an Example of Enrichment

Furthermore, when including additional nodes in the BN, the domain ex-
perts should also model how they influence existing ones. In Fig. 4, we modified
the probability tables of Temp and Oxygen to take into account the possible
presence of traffic jams.

Evaluation. The goal of the evaluation step is to determine the probability
of occurrence of the composite event under the hypothesis that the primitive
events have been observed. In practice, every node that represents a primitive
event is set as happened (i.e., P(YES) = 1), and the BN is solved [26].

If the BN was a direct and “non-enriched” translation of a TESLA rule,
the result of this step is to associate a probability of 1 to the occurrence of
the composite event. For example, in the BN in Fig. 3 when both Temp and
Oxygen are observed, the probability of occurrence of the TVS Malfun event
evaluates to one as well. This is not the case if the BN was enriched. Changing
the probability tables of the various nodes or introducing new factors, like the
TrafficJam in Fig. 4, changes the result of the evaluation step. As an example,
solving the BN in Fig. 4 we get a probability of 98.70 for the occurrence of
TVS_Malfun. Indeed, now the occurrence of Oxygen and Temp events cannot
be directly and uniquely related to the occurrence of the TVS_Malfun event,
as the former ones may also be caused by the presence of a traffic jam.

Propagation. Summing up the process explained so far, CEP2U produces
two probabilities of occurrence for composite events. One by looking only
at the uncertainty intrinsically related with events (see Section 4.1) and one
by looking only at the uncertainty coming from rules, as just discussed. At
this point, we need to merge them in a single probability value, but this is
straightforward. Indeed, these two probabilities are independent by construc-
tion, accordingly we may combine them by simply multiplying the two. The
result is the uncertainty we associate to the composite event (hence the name
“propagation” of this step).

22 Gianpaolo Cugola et al.

4.3 Discussing CEP2U Design

As mentioned in Section 3, when it comes to design an uncertainty model
for CEP, there are some key requirements that must be carefully considered.
Focusing on the rule language, they include a balanced trade-off between sim-
plicity and expressiveness.

CEP2U allows engineers and domain experts to easily capture the two
sources of uncertainty we identified in our analysis: the uncertainty coming
from events and the uncertainty in rules.

In addition, CEP2U meets the separation of concern principle by consider-
ing them independently, as the uncertainty coming from rules does not affect
the pdfs of the attributes in composite events, which are entirely and uniquely
determined by the processing of the uncertainty coming with events. More
specifically, the BNs we create are completely unaware of attribute values and
only reason about event occurrences, while the processing of uncertainty as-
sociated with attributes assumes rules are definite and correct. This modeling
choice allows a precise and clear separation of the factors that influence uncer-
tainty in CEP, which keeps the model simple and easy to understand, while
enabling its efficient evaluation at run-time, as discussed later on in Section 6.3.

Moreover, this approach maximizes the generality of our model, which
has virtually no impact on the rule language. In integrating CEP2U with
TESLA we only added a new (optional) min probability clause, the rest of
the language remained the same.

Finally, the easiness of integrating CEP2U in TESLA, a language that
includes all the typical CEP operators, hints at its general applicability to
other CEP languages.

5 Implementation

The validation of CEP2U has been carried on by implementing the model and
its TESLA incarnation into our T-Rex engine [15]. In this section we illustrate
such implementation. The discussion will proceed by difference with respect to
the previous implementation of T-Rex, focusing on the components introduced
or modified to support our model of uncertainty.

The interested reader can find a detailed description of the architecture of
T-Rex in [15]. Concerning specifically the event processing algorithm, i.e., the
algorithm used to perform pattern matching over incoming events, we started
from the CDP algorithm described in [16,30].

Fig. 5 shows the overall architecture of T-Rex, highlighting the components
that have been added or modified to support uncertainty. In particular:

— we modified the processing algorithm of T-Rex to fully support the new
CEP2U data model, which includes uncertainty on the occurrence and on
the content of events;

Introducing Uncertainty in Complex Event Processing 23

Rules |

Incoming Events l Rule Manager
—»(JGueue) 7
l Columns
Static [——| Rulet Rule2 Rule3
Index —*|

[
Ela

Events

IR TN TR ;
[Generator I Generator [Generator]

Yhed b dbey vy

‘ Subscription Manager

D Modified Components . New Components

Fig. 5: Architecture of the T-Rex engine: components introduced and modified
to support uncertainty.

— we implemented a BN Translator, BN Editor, and BN Evaluator, which
automatically generate BNs from TESLA rules, support their editing, and
evaluate them, respectively.

The first change is required to deal with the uncertainty in events during
processing, to take into account possible measurement errors, and to propagate
them into the generated composite events. The second change introduces the
components to define and evaluate the uncertainty in rules.

5.1 Implementing Uncertainty in Events

The CDP processing algorithm adopted by T-Rex organizes events into ad-hoc
data structures called Columns. More precisely, it generates a separate column
for each primitive event appearing in each rule R. As an example, in Fig. 5
we see the engine handling 3 rules, each one involving 4 primitive events (and
thus defining 4 columns). For efficiency reasons, a single copy of each event
is stored in the Stored Events repository, while only pointers are actually
present in Columns.

When a new event e enters the engine, the Static Index determines the
set of columns it is relevant for based on e’s type and content. In other words
the Static Index implements the selection of primitive events, as described
in Section 2. When the primitive events have been collected, the Columns
component is responsible for performing the combination of such events, for
evaluating negations, and for executing all the computations —including ag-
gregation— that is necessary to understand if the pattern expressed in a rule is
satisfied. When this happens, the Generators (one for each rule) are respon-
sible for producing the corresponding composite events. Finally, the composite
events enter the Subscription Manager, which is responsible for delivering
them to the interested (local or remote) sinks.

24 Gianpaolo Cugola et al.

As discussed in Section 4, considering the uncertainty in events impacts all
the abstract operators of a CEP engine: selection, combination, negation, ag-
gregation, and production. Accordingly, we had to modify the Static Index,
Columns, and Generators components.

The Static Index received the most substantial changes. The goal of this
component is to match incoming events against the selection constraints ex-
pressed by rules. This is the typical task performed by publish-subscribe sys-
tems, and several efficient algorithms have been proposed for it [3]. In ab-
sence of uncertainty we reused one of this algorithms, which exploits com-
plex indexed structures to reduce the processing effort. Unfortunately, such
mechanisms cannot be applied in presence of uncertain data. Accordingly,
we re-implemented the Static Index from scratch using a simpler but more
flexible algorithm that evaluates constraints and their satisfaction probability
sequentially against each incoming event. Despite this significant change, the
overhead of uncertainty handling over the selection step is limited. We will
investigate this aspect in details in Section 6.

Uncertainty has a minor impact on the structure of the Columns compo-
nent. Indeed, we simply modified the functions used to evaluate the constraints
appearing in a rule —e.g., constraints on the combination of events, on nega-
tion, or on the values of aggregates— so that they do not return whether a
constraint is satisfied or not (as a Boolean value), but its satisfaction proba-
bility (as a double).

Finally, the Generators have been modified to include the probability of
occurrence into the generated composite events, and to include uncertainty on
the values of attributes.

All the statistical computing required to consider and propagate the un-
certainty in event attributes have been implemented on top of the math and
statistical toolkit of the boost libraries [10].

As a final remark, we note that we had also to modify the Rule Manager
component, which is responsible for receiving new TESLA rules and for creat-
ing all the data structures required to process them. This component under-
went two (minor) updates: on the one hand it has been extended to consider
the additional information in rules that result from introducing uncertainty
(e.g., the threshold of probability required for producing composite events);
on the other hand, it has been modified to deliver newly deployed rules to the
BN Translator.

5.2 Implementing Uncertainty in Rules

To implement the uncertainty in rules, we exploited the Netica API [34] for
representing and evaluating BNs. More precisely, we used it to build three
components: the BN Translator, which translates new TESLA rules into BNs;
the BN Editor, which enables the modification of BNs; the BN Evaluator,
which uses BNs to evaluate the probability of occurrence of composite events.

Introducing Uncertainty in Complex Event Processing 25

The BN Evaluator provides the result of its computation to the
Generator, which uses it while generating the composite event notifications
(integrating it with the results obtained from the processing of events and
their uncertainty).

The BN Editor consists of a front-end, which enables graphical editing of
BNs, directly connected with the BN Evaluator, which acts as a back-end,
performing the evaluation step every time a BN is modified.

Notice that our components use a representation of BNs that is enriched to
store the nature of each node, which can denote a primitive event, a composite
event, or an additional factor provided by domain experts. As explained at the
end of Section 4.2, this information is used by the BN Evaluator to calculate
the the occurrence probability of composite events.

5.3 Discussing CEP2U Implementation

In Section 4 we claimed the simplicity of CEP2U at the language level. This
section illustrated the effort required to implement CEP2U in an existing
processing engine.

Despite several components had to be modified, the changes introduced
were typically small and concentrated in some specific functions (e.g., in the
function for evaluating the value of aggregates, or for testing negations), while
the general flow of execution remained unchanged.

This is possible because our model of uncertainty is almost orthogonal with
respect to the processing algorithm that evaluates CEP rules. Indeed, the in-
troduction of uncertainty in events simply transforms Boolean satisfaction
of constraints into a probability of satisfaction, while uncertainty in rules is
mostly managed outside the normal flow of CEP processing, delegating to BNs
(at rule design time) large part of the computation (excluding the straightfor-
ward step —called “propagation” in Section 4.2.2— which consists of a simple
multiplication).

6 Evaluation

As discussed in Section 2, performance is a key requirement for CEP engines:
in many scenarios it is of primary importance to provide low delay processing
to detect and notify critical situations as promptly as possible. Consequently,
a good model for uncertainty should have a limited impact on the performance
of the CEP engine.

Because of this, a large part of this section is devoted to study the im-
pact of CEP2U on performance, by considering our implementation in T-Rex
and measuring the overhead on event processing when uncertainty is man-
aged. During our evaluation, we separately consider the uncertainty related
to events and the uncertainty related to rules. As far as performance is con-
cerned, the former is more critical, since it requires additional computation at

26 Gianpaolo Cugola et al.

run-time, during event processing. Conversely, most of the processing related
with uncertainty in rules happens at design time, when the BN associated to
each rule is evaluated, the only computation occurring at run-time being a
multiplication (see Section 4.2.2).

Beside performance, our evaluation also aims at understanding the added
value that a CEP user gets in receiving information about uncertainty. To this
end, we measure the accuracy of CEP2U in correctly identifying the occurrence
of composite events.

6.1 Uncertainty in Events

All the tests described below were performed on a 2.8 GHz AMD Phenom II
PC, with 6 cores and 8 GB of DDR3 RAM, running 64 bit Linux. We use a
local client to generate events at a constant rate and to collect results. This
way, the interaction with the CEP engine is realized entirely through local
method invocations, which eliminates the impact of the communication layer
on the results we collected and allows to focus on the raw performance of the
engine. T-Rex is configured to take advantage of all available CPU cores, i.e.,
5 out of 6, being 1 core used by the local client.

During our tests, we measure the average time required by T-Rex for pro-
cessing a single input event e. In particular, we measure the interval from the
point in time when e starts to be actively processed (i.e., when it exits the
queue of incoming events in Fig. 5) to the instant when all the composite
events that result from e are ready to enter the Subscription Manager. Given
a specific workload, this metric enables us to compute the maximum input
rate that T-Rex can handle. For example, with an average processing time
of 1ms, we could theoretically process 1000 events per second. However, since
lms is only an average measure, specific events may take longer: in presence
of a finite input queue, this means that the engine can start dropping events
before this theoretical rate”. For this reason, all our tests also measure the
99th percentile of the processing time.

We execute each test 10 times, computing and plotting the 95% confidence
interval of each measure we collect.

The lack of standard benchmarking is a well known problem in the domain
of event processing. Despite some scenarios have been defines (e.g., Fast Flower
Delivery citepetzion-book), they are not well suited for a general assessment of
CEP engines. This is mainly due to the heterogeneity of the solutions proposed.
This problem is exacerbated in the case of uncertainty.

Because of this, in this section we decided to follow the structure of Sec-
tion 4, and we defined several workloads to isolate the contribution of un-
certainty over the processing of each abstract operator, i.e., selection, combi-
nation, negation, and aggregation. This solution based on microbenchmarking

7 A detailed analysis on the impact of the input queue on performance is outside the scope
of this paper, and can be found in [15].

Introducing Uncertainty in Complex Event Processing 27

1

‘ Averaée —

99th Percentile - - -
» 08
E
()
£ 06
'_
jo)}
= 0.4
g 7
o
o 02

0 L L L L
0 20 40 60 80 100

Number of uncertain attributes (%)

Fig. 6: Selection: processing delay

enables us to consider all the parameters that could impact on the performance
and accuracy of CEP2U.

6.1.1 Selection

As we have seen, selection is the first, fundamental step performed by the
CEP engine to isolate the primitive events relevant for each rule. To evaluate
the performance of selection, we deployed 1000 rules, all having the following
structure:

define CompEv_i()
from PrimEv_i(x-5 < value < x+5)

we considered 10 different types of primitive events, PrimEv_1, ...
PrimEv_10, each of them including a value attribute assuming values from
1 to 100. We deployed 100 different rules for each primitive event type, each
one including a different constraint on value (i.e., a different value of x).

Afterward, we generated 10000 primitive events, selecting their type and
value uniformly. We measured the performance of the engine while changing
the percentage of primitive events whose value has an associated uncertainty,
the remaining percentage of events being certain. The uncertainty of attributes
(i.e., their measurement error ¢) was modeled using Gaussian distributions.

Intuitively, this is a challenging workload, since it presents a (relatively)
large number of rules and only a small number of event types. Indeed, T-Rex
exploits the type of incoming events to efficiently distinguish between the rules
that those events may potentially trigger and the rules that are not affected:
a reduced number of event types negatively impacts the effectiveness of this
approach, increasing the number of rules to consider and consequently the
number of attribute-constraint comparisons to perform. Since the evaluation
of a constraint against an attribute is influenced by the presence of uncertainty,
the workload we adopt emphasizes impact of uncertainty on selection.

Fig. 6 shows the results we measured. First of all, we notice that T-Rex,
even in presence of uncertainty, exhibits a low processing delay, below 0.6ms

28 Gianpaolo Cugola et al.

with 1000 rules deployed on the engine. Second, we observe that the processing
time increases linearly with the percentage of uncertain attributes but this
growth is slow and the overall impact is limited.

As a final note, we observe how the presence of uncertain attributes quickly
increases the 99" percentile of the processing time, which remains almost
constant when the percentage of events affected by uncertainty grows. This
can be easily explained by noticing that only the events whose attributes have
an associated uncertainty take longer to be processed.

6.1.2 Combination

As a second step, we evaluated the performance of our CEP2U implementation
using the following rule, derived from our TVS scenario, which combines two
primitive events:

define TVS_Malfun_i()

from LowOxygen_i(km=$a) and
last Temp_i($a-10 < km < $a+10 and value>x)
within 5 min. from LowOxygen_i

To stress the engine, each test deploys 1000 different rules with the same
structure of the rule above but considering 10 different composite events
(TVS_Malfun 1, defined from Temp_1 and LowOxygen 1, ..., TVS Malfun_ 10,
defined from Temp_10 and LowOxygen_10) and asking for a different minimum
temperature (from 1 to 100). The value of the temperature of incoming Temp_i
events is uniformly distributed between 1 and 100, while all events share the
same km to maximize the probability of using events.

Given the impact of the selection policy on performance, we performed
every test twice, once using the last-within operator (as shown in the rule
above) and one using the each-within operator. In both cases, we tested
three different workloads, generating respectively 10%, 50%, and 90% of
LowOxygen_i events (the remaining events are Temp_i).

The presence of a higher number of event types w.r.t. the previous experi-
ment (10 for LowOxygen_i and 10 Temp_i) explains the lower overhead induced
by the presence of uncertainty in events. When the single selection policy is
adopted (see the left column of Fig. 7), the average processing time is even
lower than the one measured in the previous scenario.

The average processing time decreases with the percentage of Temp_i
events. Indeed, they simply need to be stored, while combination is performed
on the arrival of a LowOxygen_i.

However, a high percentage of Temp_i increases the 99*" percentile of the
processing time. In this setting, a large number of Temp_i events is gener-
ated and stored. This leads to a more complex processing when (infrequent)
LowOxygen_i events enter the engine, triggering the evaluation of the combi-
nation constraint.

When considering a single selection policy, the engine needs to find only
one Temp_i event to combine with every incoming LowOxygen_i. As soon as

9th

Introducing Uncertainty in Complex Event Processing 29
1 ! - ! ! 12 ! , ! !
Average —+— Average —+—
99th Percentile » - - « 99th Percentile - -3 -
7 08|] 7107]
g * g
£ R R S ¥----X---- = .
o * * © BK----K----f----K----X-- x
£ 06] £
E =
o o 6 q
£ 04l | £
1%} N 17]
3 g 47]
Q o
o 02} ; ; } + oo 1
0 0 ! o ! o
0 20 40 60 80 100 0 20 40 60 80 100
Number of uncertain attributes (%) Number of uncertain attributes (%)
(a) 10% of LowOxygen_i events
1 . - - . 6 . - . .
Average —+— Average —+—
99th Percentile - - - « 5 99th Percentile - - -
% 08 1 20 . : -
£ E ¥-nn-- koo koK *
© o4r
E 06 % £
= L K----X¥---- =
> K----k----¥ oK * ~ 3l
G 04] 5
3 . . s 4+ S $ + t }
o 0.2 b o
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Number of uncertain attributes (%) Number of uncertain attributes (%)
(b) 50% of LowDxygen_i events
1 . - - . 2 - !
Average —+— Average —+—
99th Percentile - - - 99th Percentile - -% -
@ 08 1 1 —
g £ 15
£ o6 1 - R R R
= e
=) o 1
% 04l 5| @
N Ko---¥--oo X g L+ -
o * + o
Q + O 0.5
a 02 R o
0 0 . . .
0 20 40 60 80 100 0 20 40 60 80 100

Number of uncertain attributes (%)

Number of uncertain attributes (%)

(c) 90% of LowDxygen_i events

Fig. 7: Combination: processing delay using the last-within (left) and each-

within (right) operators

it finds one, it can safely stop processing. This is not possible in presence of a
multiple selection policy (see the right column of Fig. 7), when all the Temp_i
events need to be considered.

On the one hand, this implies higher processing times. On the other hand,
the presence of a high number of Temp_i events becomes even more relevant.

As the figure shows, both the average and the 9

gth

percentile of the processing

time significantly drop when lowering the percentage of Temp_i.
What is most important however, is that the impact of uncertainty in
evaluating the combination operator is limited: in all the tests we performed,

30 Gianpaolo Cugola et al.

0.5 T T T T 0.5 T T
Average —+— Average —+—
99th Percentile ~ -% - + 99th Percentile » -3 - «
% 04t 1 7 04t
E E
qE> g 0.3
e A T = A i AR
=) X- - =) X
c £
2 0.2 M» 2 02 MF
Q B] 4
o o
o Q
o 0.1 ¢ a 0.1
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Number of uncertain attributes (%) Number of uncertain attributes (%)
(a) 10% of TrafficJam_i events (b) 50% of TrafficJam i events
0.5 T r -
Average —+—
99th Percentile » - - «
@ 0.4
£
g
;0-3);____*__..* K----K----X
j=2}
<
3 02 1
@ 4t
o
o
a 0.1
0
0 20 40 60 80 100

Number of uncertain attributes (%)
(c) 90% of TrafficJam_ i events

Fig. 8: Negation: processing delay

both when considering the average processing time and when considering the
99t percentile, the maximum overhead we measured was below 30%.

6.1.3 Negation

To evaluate the impact of uncertainty in presence of negation we deployed
1000 rules having the following structure:

define TVS_Malfun_i()

from Temp_i(km=$a and value>x) and

not TrafficJam_i($a-10 < km < $a+10)
within 5 min. from Temp_i

As in the previous scenario, we considered 10 different composite events
(TVS_Malfun_1, ..., TVS_Malfun_10) and 100 different values for x, from 1 to
100. Both km and value attributes are uniformly distributed in the range
1-100. As in the previous case, we evaluate the engine with three different
workloads, generating respectively 10%, 50%, and 90% of TrafficJam_i events
(the remaining being Temp_i).

Fig. 8 shows the results we measured. They are similar to those obtained
in evaluating composition with the last-within operator. Indeed, negation
is implemented as a special form of composition under a single selection se-
mantics; indeed the engine performs similar processing steps: it compares the

Introducing Uncertainty in Complex Event Processing 31

4 T T T T 2.5 T T T
Average —+— Average —+—
35 99th Percentile ~ -X - + UK -- - - 99th Percentile ~ - -+
D -7 @ 2
g 3 Lk 2
o ¥ ®
£ 25 E 15
= P =
g 2 K 2
2 15%" 2 1
Q @
o o
e 1 Q
o a 05
05 | ‘ X . ;
0 0
0 20 40 60 80 100 0 20 40 60 80 100
Number of uncertain attributes (%) Number of uncertain attributes (%)
(a) 10% of TrafficJam_i events (b) 50% of TrafficJam_i events
0.8 r -
Average —+—
0.7 99th Percentile » - - «
@
£
(o)
£
=
jo2}
£
2
@
o
Q
o

0 20 40 60 80 100
Number of uncertain attributes (%)
(c) 90% of TrafficJam_ i events

Fig. 9: Aggregation: processing delay

values of km in different events and generates a single TVS_ Malfun_i notifica-
tion when no matching TrafficJam_i event is found.

In this setting, the presence of uncertainty has a minimal impact on
the performance of the engine. Although the engine needs to compare ev-
ery TrafficJam_i event received in the last 5 min upon detecting a Temp_i
event this operation does not seriously affect the performance: the average
processing time increases by about 0.03ms when moving from 0% to 100% of
uncertain attributes, with a total overhead of less then 20%.

6.1.4 Aggregation

To evaluate the overhead of uncertainty when computing aggregates we de-
ployed 1000 rules having the following structure:
define TVS_Malfun_i()

from LowOxygen_i() and x < $t=Avg(Temp-i().value
within 5 min. from LowOxygen_i)

As in the previous scenarios, we built these rules by moving i in the range
1-10 and x in the range 1-100. Moreover, we considered three different work-
loads, generating respectively 10%, 50%, and 90% of TrafficJam i events.

Fig. 9 shows the results we measured. In this case the overhead is greater
than before, but it still acceptable. The maximum overhead we measured when

32 Gianpaolo Cugola et al.

moving from 0% to 100% of uncertain attributes was below 75%, with an
average processing time that remains always under 0.7ms in all the scenarios
we tested.

A final note regards the 99*" percentile of the processing time. As Fig. 9
shows, it decreases as the percentage of TrafficJam_i events increases. Indeed,
the CDP processing algorithm postpones the processing of aggregates until a
valid sequence is found (in our case, until a TrafficJam_i event enters the en-
gine). Consequently, a low number of TrafficJam_i implies infrequent aggre-
gate evaluation; events of type Temp_i are simply accumulated, and contribute
in lowering the average processing time. However, when a TrafficJam_i events
arrives, the computation of aggregates starts and must consider a large num-
ber of Temp_i events (all those accumulated up to that point), which results
in a high processing time that impacts the 99" percentile.

6.1.5 Memory Overhead

As most existing CEP engines, to achieve good performance, T-Rex executes
the processing of events entirely in main memory. Because of this, memory
overhead represents a key criterion to evaluate our uncertainty model and
implementation.

To analyze memory consumption, we focused on one of the scenarios dis-
cussed above, namely composition, and we measured the occupancy of memory
in the two extreme cases in which (i) no attributes are uncertain and (i) all
the attributes are uncertain. More in particular, we repeated the experiments
shown in Fig. 7a, which proved to be the most expensive in terms of processing
time. We considered both a single selection scenario (using the last-within
operator for event composition) and a multiple selection scenario (using the
each-within operator).

In both cases, the maximum memory consumption we measured was below
15 MB. We can conclude that memory does not represent a bottleneck for the
processing algorithm of T-Rex.

Most significantly, the overhead introduced by uncertainty management
was negligible, always below 1% in all the tests we performed. Again, this is due
to the specific architecture of T-Rex, which stores all incoming events only once
and shares them across rules. Because of this, the more complex representation
of attributes required to manage uncertainty does not significantly impact on
the overall memory usage.

6.2 Accuracy

So far, our evaluation only targeted the overhead introduced by uncertainty
management, i.e., its cost. Hereafter, we investigate the benefits of using un-
certainty, i.e., the added value that a CEP user gets in receiving composite
events that include uncertainty annotations.

Introducing Uncertainty in Complex Event Processing 33

Primitive events Measurement Primitive events with
with true values errors imprecise values

Composite Deterministic
event detection < CEP > < CEP2U >
Composite events Composite events Threshold
(Oracle)
V/ Compute > Composite events
\ accuracy

Compute
accuracy

Fig. 10: Evaluation framework to test the accuracy of CEP2U

This is measured through the evaluation framework shown in Fig. 10. It
starts by generating a random history of the primitive events that occur in the
real world, i.e., those that include the true values of attributes, without any
measurement error or uncertainty in data. These events are used to compute
the actual occurrences of composite events as generated by a given Rule R.
These are the composite events that happen in the real world and they rep-
resent our oracle. To evaluate the efficacy of CEP2U against this oracle, we
introduce random measurement errors in the values of the original primitive
events, according to the characteristics of our simulated sensors: these are the
events we expect entering the CEP engine.

At this point, we use both a fully deterministic CEP engine (T-Rex) and
our implementation of CEP2U to detect composite events starting from these
primitive events. T-Rex only considers the actual values carried by events’ at-
tributes, while CEP2U also knows and uses the pdfs of the measurement errors
they bring. T-Rex produces a set of composite events without any indication
about uncertainty, while CEP2U also produces the probability of occurrence
of each composite event. To compare the two sets of results, we introduce a
threshold for CEP2U and filter out all the composite events whose probabil-
ity of occurrence is lower than the threshold. Then, we study the accuracy of
CEP2U while changing such a threshold. In particular, to calculate the ac-
curacy of our CEP engines (i.e., T-Rex and CEP2U) we refer to the results
coming from the oracle, i.e., the true composite events, denoting:

TP the number of true positives, i.e., the number of composite events that are
detected both by the oracle and by the CEP engine under examination;

TN the number of true negatives, i.e., the number of composite events that are
neither detected by the oracle nor by the CEP engine;

FP the number of false positives, i.e., the number of composite events that are
detected by the engine but not by the oracle;

34 Gianpaolo Cugola et al.

FN the number of false negatives, i.e., the number of composite events that
actually occurred (according to the oracle) but were not detected by the
engine.

Using these definitions, the accuracy of each of the two engines under exami-
nation can be computed as follows:

TP+TN
TP+ FP+TN+FN

Intuitively, an accuracy of 1 means that the engine works perfectly (there
are neither false positives FP nor false negatives FN). Conversely, the accu-
racy decreases as more errors are generated. In the following, we analyze and
compare the accuracy of T-Rex and CEP2U using three different workloads:

Accuracy =

— Selection involves one rule that predicates on a single primitive event using
a selection constraint;

— Combination involves one rule that predicates on two primitive event using
a combination constraint;

— Hierarchy involves two rules. Each rule predicates on one event using a
selection constraint. The output of the first rule is used as an input for the
second rule, thus building a hierarchy of events.

In all our tests we consider the measurement errors (i.e., the sensors) to
have a normal distribution N (0, 1). For the selection scenario, we also consider
the case of a uniform distribution U(—1,1).

Fig. 11 shows the results we measured. The column on the left shows the
accuracy for both T-Rex and CEP2U, while the column on the right shows
the Receiver Operating Characteristic (ROC) curve for CEP2U and how it
compares with the T-Rex accuracy. The ROC curve shows the relation between
the rate of false positives (FPR) and the rate of true positives (TPR) while
changing the threshold. Intuitively, an engine that chooses at random (random
guessing about the occurrence or non occurrence of a composite event) would
lie on the diagonal of the plot. A perfect engine would always lie in the upper
left corner. The ROC curve shows how a human expert can tune the threshold
of acceptance to balance between recall (i.e., minimize the number of false
negatives) and precision (i.e., minimize the number of false positives).

In all the scenarios we tested, CEP2U provides a level of accuracy higher
than 0.8. Such value reaches its maximum with a threshold of 0.5, when
CEP2U behaves as the fully deterministic T-Rex engine. However, CEP2U of-
fers a much higher degree of flexibility: indeed, users receive composite events
annotated with their probability of occurrence and are free to decide when to
accept and when to discard them, i.e., users can set their own threshold of
acceptance. This is useful in all those scenarios in which the cost of a false
positive and the cost of a false negative are not equal: for example, in a nu-
clear power plant, it is certainly worth considering warning events even if they
carry a low probability of occurrence. This is something that a deterministic
engine does not provide, always balancing the cost of false positives and that

Introducing Uncertainty in Complex Event Processing

35

5 . . ¥ ¥— KT *
-—;gwkiﬂmk;ﬁﬂi K
08t * 0.9 f@"*
5 06 g o8 ig
8 8 i
g T
& o 0.7
< 04 &
0.2 0.6
CEP2U — *—- CEP2U — *—-
T-Rex —m— 05 T-Rex —m—
0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5
Threshold FPR (1-precision)
(a) Selection (Gaussian Error)
1 1
=23 58 b n s S S R SERHRK
0.8 0.9
g 0.6 g 0.8
g <
g o 0.7
< 04 &
0.2 0.6
CEP2U — %— CEP2U — *—-
T-Rex —m— 05 T-Rex —m—
0 0.2 0.4 0.6 08 1 o 0.1 0.2 03 0.4 05
Threshold FPR (1-precision)
(b) Selection (Uniform Error)
k ! X -
0.8 [x X 0.9 *X‘?*
> 5 ot
§ 0.6 @ 0.8 ;
g T o0
& o 0.7
< 04 &
0.2 0.6
CEP2U — *—- CEP2U — %—-
T-Rex —m— 05 T-Rex —m—
0 0.2 0.4 06 0.8 1 “o 0.1 0.2 0.3 0.4 05
Threshold FPR (1-precision)
(¢) Combination
1 1 e
[SENEE SRR - -
**ﬂ—* AR
0.8 ¥ E 0.9
—_ ¥
3 , 3
g 0.6 g 08
g c
< 0. — 07
< 04 £
0.2 1 0.6
CEP2U — %—- CEP2U — %—-
T-Rex —m— 05 T-Rex —m—
0 0.2 0.4 0.6 08 1 "o 0.1 0.2 03 0.4 05
Threshold FPR (1-precision)

(d) Hierarchy

Fig. 11: Accuracy and ROC graphs for different kinds of rules

of false negatives and ignoring the composite events that implicitly have a low

probability of occurrence.

Looking at the right column of Fig. 11 we also observe that CEP2U offers
a good balance between precision and recall while changing the threshold of

acceptance.

36 Gianpaolo Cugola et al.

Two additional considerations emerge from the results in Fig. 11. First, as
expected, the distribution of imprecision in data has a significant impact on
accuracy: this is clearly visible when comparing a normally distributed error
(Fig. 11a) and a uniformly distributed error (Fig. 11b). Second, in evaluating
the approach of CEP2U in dealing with hierarchies of events (Fig. 11d), we
may observe that the choice of considering all composite events that re-enter
the processing engine as having a probability of 1, CEP2U tend to favorite false
positives against false negatives. Because of this, the graph in Fig. 11d, left be-
comes slightly asymmetric. Nevertheless, the level of accuracy remains higher
that 0.8, even when considering a very low threshold. While our approach for
dealing with hierarchies of events was mainly motivated by performance rea-
sons, it still proved to provide high accuracy, as also proved by the ROC graph
in Fig. 11d.

6.3 Uncertainty in Rules

This section measures the time required to evaluate the BN associated to a
rule. As we mentioned in Section 4.2.2, this step occurs entirely at rule design
time8.

In particular, we considered Rule R1, we let CEP2U create the correspond-
ing BN, and we enriched it by adding new nodes. We measured the evaluation
time while changing the number of additional nodes introduced in the BN. We
repeat each experiment 1000 times with different randomly generated probabil-
ity tables for the nodes. We compute the average value and its 99" confidence
interval.

Fig. 12 shows the results we obtained: even when considering a large num-
ber of additional nodes —i.e., of external factors contributing to the probability
of occurrence of the composite event— the evaluation of the BN only takes less
than 0.5ms. Moreover, this value is even lower when considering a reduced
number of nodes, which we expect to be a common case in most applications.

We can conclude that the amount of processing required to evaluate the
uncertainty of rules is negligible: after every rule update, updating the prob-
ability of the composite event is performed in sub-millisecond time.

6.4 Discussing CEP2U Performance

Our relatively long experience in evaluating CEP systems [15,16] convinced
us of the difficulty of finding general answers, due to the huge number of
parameters that may impact performance. To address this issue, in this section
we evaluated the processing overhead coming from uncertainty, by separately
considering the various operators provided by CEP languages. For each of

8 Notice that to capture uncertainty in rules, after evaluating BNs at rule design time,
we have to propagate the calculated value to the composite events; a step that happens at
run-time but with no measurable impact on performance.

Introducing Uncertainty in Complex Event Processing 37

0.35

0.25 -

Evaluation Time (ms)

0 5 10 15 20 25
Number of Nodes Added

Fig. 12: Time to evaluate an enriched BN

them, we focused on a few scenarios chosen to minimize the effects of T-Rex
specific optimization (e.g., early pruning of constraint evaluation by exploiting
event types) and to maximize the amount of processing required to support
uncertainty.

Even considering this challenging scenarios, the maximum overhead we
measured when introducing uncertainty was relatively low: in all the tests we
performed the overall processing time increases by less than 50%, the only
exception being the simple selection scenario.

During our tests, we assumed the measurement error to be normally dis-
tributed. This is a reasonable assumption in most application fields. Moreover,
normal distributions are often adopted as an approximation when providing
an analytic distribution is impossible or computationally expensive.

By separating uncertainty in events from uncertainty of rules, CEP2U en-
ables the computation of the latter at design time, when a new rule is deployed
or modified. Moreover, by exploiting a separate BN for each rule, it reduces
the processing effort required to evaluate the impact of external factors on the
triggering probability of a rule. As shown in our tests, even when the model
used to represent a rule takes into account a large number of factors, the
evaluation of rule uncertainty using a BN can be performed in sub-ms time.

Furthermore, despite CEP2U demands for a more complex representation
of events and attributes, this does not significantly impact on memory con-
sumption.

Finally, CEP2U combines good performance with a high level expressive-
ness and accuracy. By annotating composite events with their probability of
occurrence, it enables CEP users to flexibly select which event are relevant
and which can be ignored, choosing the balance between false positives and
false negatives that better fit the application domain.

In summary we can conclude that the key choices we made in designing
CEP2U resulted in a model of uncertainty for CEP that is expressive and
effective but also efficient.

38 Gianpaolo Cugola et al.

7 Related Work

This section reviews related work. First of all, we present CEP systems, fo-
cusing on the rule definition languages they adopt and on the processing algo-
rithms they provide. This aims at showing the general applicability of CEP2U.
Second, we discuss existing models and solutions to deal with uncertainty in
CEP.

7.1 Complex Event Processing

The last few years have seen an increasing interest around Complex Event
Processing, with several CEP systems being proposed both from academia and
industry [29,21]. The interested reader can find a detailed study of the field
in [17], where we analyze and compare in great detail more than 35 systems.
Despite all existing solutions have been designed to accomplish the same goal,
i.e., to timely process large amount of flowing data, they present different
data models and rule definition languages, as well as processing algorithms
and system architectures.

7.1.1 Data Models and Rule Definition Languages

The data model determines the way each system models and interprets in-
coming information: as mentioned in Section 2, the database community gave
birth to Data Stream Management Systems (DSMSs) [8] to process generic in-
formation streams. On the other hand, the community working on event-based
systems focused on a form of data —event notifications— with a very specific
semantics, in which the time (of occurrence) plays a central role [33].

In practice, the data model a system adopts significantly affects the struc-
ture of the rule definition language it uses. DSMSs usually rely on languages
derived from SQL, which specify how incoming data have to be transformed,
i.e., selected, joined together, and modified, to produce one or more output
streams. Processing happens in three steps [6]: first, Stream-to-Relation (S2R)
operators (also known as windows) select a portion of a stream to implicitly
create traditional database tables. The actual computation occurs on these
tables, using Relation-to-Relation (R2R) operators —mostly standard SQL
operators. Finally, Relation-to-Stream (R2S) operators generate new streams
from tables, after data manipulation. Despite several extensions have been
proposed [20,43,35], they all rely on the general processing schema described
above.

At the opposite side of the spectrum are languages that were explicitly
designed to capture composite events from primitive ones [21]. They interpret
messages flowing into the system as notifications of events occurred in the
observed world at a specific time, and they define how composite events result
from primitive ones. The TESLA language we used to exemplify our model
of uncertainty belongs to this second class. TESLA represents a good test

Introducing Uncertainty in Complex Event Processing 39

case for CEP2U because of its expressiveness. Indeed, languages belonging to
this second class often trade simplicity and performance for expressiveness: for
example, some languages force sequences to capture only adjacent events [11];
negations are rarely supported [28,11] or they cannot be expressed through
timing constraints [2]; other widespread limitations are the lack of a full-fledged
iteration operator (Kleene+ [23]), to capture a priory unbounded repetitions
of events, and the lack of processing capabilities for computing aggregates.
Finally, none of these languages allows to define the selection and consumption
policies rule by rule, as TESLA does.

The languages that present more similarities with TESLA are the language
for complex event detection presented in [36], Sase+ [23,2], Amit [1], and
Etalis [5,4].

Finally, there are commercial systems [44,37,35] that try to combine the
two aforementioned approaches, offering hybrid languages that allow both
SQL-like processing and pattern detection in a single framework.

As we already mentioned in Section 2, CEP2U is agnostic w.r.t. the pecu-
liarities of the rule language adopted. As far as the uncertainty in events is
concerned, CEP2U supports selection of single events, combination of multiple
events according to the attributes they carry, negation, arbitrary computation
over the content of events, and propagation of the results of computation to
the composite events generated. These operators cover all the processing capa-
bilities of both the languages based on relational operators and the languages
based on patterns. In the first case, selection and combination of events is
performed through the select and join operators defined in the relational al-
gebra. In the second case they are defined through pattern matching, using
logic operators (like conjunctions and disjunctions) often complemented with
timing constraints, as in the *-within TESLA operators. Both kinds of lan-
guages allow some form of computation using the values stored in incoming
events; finally, both kinds of languages generate new events as a result of their
processing.

Moreover, CEP2U considers the uncertainty of rules outside the rule def-
inition language, using Bayesian Networks to model the causal relations that
bind together primitive and composite events, this way it straightforwardly
applies to both classes of languages.

7.1.2 Processing Algorithms

The language used to specify rules significantly influences the processing al-
gorithms adopted and their performance. DSMSs usually translate the set of
deployed rules into a query plan composed of primitive operators (e.g., se-
lection, projection, join) that transform the input streams into one or more
output streams.

Systems that offer native support for pattern detection often implement
algorithms based on automata [28,11,2,20,36], where the processing is per-
formed incrementally, as new primitive events enter the engine. We adopted a
similar approach in our first implementation of T-Rex [15]. The CDP algorithm

40 Gianpaolo Cugola et al.

adopted in this paper takes a different approach: it stores primitive events and
delays the processing as much as possible. In [16] we show the advantages,
in terms of processing delay and throughput, of CDP over automata-based
algorithms; moreover, we show how CDP can be easily parallelized to take
advantage of multi-core hardware.

As our implementation in T-Rex demonstrates, adapting an existing CEP
engine to support CEP2U is relatively easy. On the one hand, the uncertainty
of rules is completely delegated to Bayesian Networks: this only requires a new
module for translating rules into the corresponding BN; all the tools used for
editing and evaluating BNs can be re-used without any modification. On the
other hand, dealing with the uncertainty in events only requires a modifica-
tion of the functions used to evaluate constraints and combine uncertain data.
These changes are language and algorithm-specific but, as we show in this pa-
per considering TESLA and CDP, they involve relatively simple modifications
to the engine.

As a final note, we observe that in some specific cases, the changes men-
tioned above could impact ad-hoc data structures and algorithms that cannot
be easily adapted to fit uncertain data. We provided an example of this situa-
tion in Section 5, when discussing the need of completely re-writing the T-Rex
Static Index component. The performance overhead of these changes may
vary from system to system.

7.2 Models and Solutions for Uncertainty

Despite uncertainty handling has been recognized as one of the most critical
and relevant aspects in the area of CEP [7,17], it still remains an open issue.
Only a few solutions have been proposed, and most of them are tailored to a
specific application domain.

To the best of our knowledge, the first model proposed for dealing with
uncertainty in CEP is described in [47]. This model has been extended in [48],
where the authors introduce a general framework for CEP in presence of un-
certainty. It captures the sources of uncertainty we consider in this paper
—i.e., the uncertainty in events and the uncertainty in rules— and adopts
Bayesian Networks to model both of them. Differently from our approach, it
creates a single BN, including all the possible events of interest; such a BN is
continuously updated at run-time, as new primitive events are observed.

Since the BN is used to capture the uncertainty in events, it is signifi-
cantly more complex than those generated by CEP2U: indeed, its probability
tables must include all possible attribute values. Moreover, the BN cannot
be modified to model external factors that are not captured by rules. As far
as performance is concerned, the proposed methodology requires a (partial)
reconstruction of the BN every time a new primitive event e is detected. The
complexity of such reconstruction is exponential in the number of nodes in-
fluenced by the arrival of e. This significantly impacts processing time: the

Introducing Uncertainty in Complex Event Processing 41

system described in [48] produces a maximum throughput of less than 1000
events/s, decreasing to hundreds, or even tens of events in many scenarios.

Further details about the framework are presented in [49]. An extended
evaluation of the proposed approach confirms the performance results de-
scribed in [48].

A similar approach is presented in [38]. The authors put a great empha-
sis on the processing algorithms proposed and on their performance. More in
particular, they focus on a reduced set of operators —a subset of the rule
language offered by Cayuga [11]— and propose the integration of probabilis-
tic evaluation into an automata-based processing algorithm. Interestingly, the
authors not only focus on real time processing, but also address stored data
and propose pre-processing and analysis techniques to speed up queries over
probabilistic data. In comparison, CEP2U can be applied to more expressive
languages, while introducing low overheads at run-time. Moreover, CEP2U
enables finer grained modeling of uncertainty in rules through BNs.

In [19], the authors present a model to capture and propagate the un-
certainty of primitive events in Data Steam Management Systems (DSMSs).
Similarly to our approach, uncertainty in events is modeled and processed
using the probability theory. Differently from CEP2U, this solution is not ca-
pable of modeling uncertainty in rules. Moreover, the proposed model has not
been implemented in a running system, making it impossible to evaluate its
performance and overhead.

A tutorial has been presented in the DEBS (Distributed Event Based Sys-
tems) 2012 conference, entirely dedicated to event processing under uncer-
tainty [7]. The tutorial points out the need for uncertainty handling in event
processing and proposes a classification of the possible sources of uncertainty
that is similar to the one we adopt in this paper. Moreover, the authors ac-
knowledge the need for modeling and propagation of uncertainty, and propose
probability theory as a possible mathematical foundation to accomplish these
tasks.

Markov Logic Networks (MLNs) [39] represent an effective formalism to
deal with uncertainty. Briefly, MLNs incorporate both hard logical statements
expressed as first order logic formulae as well as a probabilistic reasoning engine
in a unifying mathematical framework. More precisely, a MLN is a first order
knowledge base in which uncertainty is modelled by weights attached to each
first order logic formula. The knowledge base is then used as a template for
constructing a Markov network from which probabilistic inference is computed.
Being based on first order logic, MLNs are extremely expressive and, from an
abstract viewpoint, they could be used to reason under uncertainty in the
scenarios described in this paper. Indeed, the event patterns of interest of
a CEP application could be encoded in first order logic and existing MLN
reasoners may be used for event processing under uncertainty.

However, in practice, two crucial aspects make this choice impractical for
real-world CEP applications and justify instead the adoption of CEP2U.

First, encoding event patterns in first order logic is a difficult, time con-
suming and tedious task. Domain experts may not have the appropriate back-

42 Gianpaolo Cugola et al.

ground to effectively accomplish this task which is, per se, already difficult for
engineers with expertise in logical formalisms. CEP2U builds instead on top
of the rule-based paradigm of existing CEP engines and preserves the same
high level declarative philosophy explicitly conceived to capture complex event
patterns. More specifically, it does not require any particular prior engineering
knowledge from domain experts. This may seem a naive advantage but, in our
opinion, it makes the difference from a theoretical approach to a solution that
can be easily applied in the field.

Secondly, reasoning under uncertainty with MLNs is an NP-complete prob-
lem [39]. It requires a computational effort that is incompatible with the
throughput constraints imposed by typical CEP application domains, which
require to handle up to thousands of events per second with hundreds of rules
deployed into the engine. Differently from MLNs, CEP2U targets at preserv-
ing the high level of performance typically offered by existing CEP engines,
augmenting at the same time their expressiveness to support uncertainty. As
anticipated in Section 1, simplicity as well as efficiency are two aspects that
drove the inception and design of CEP2U since they reflects two crucial re-
quirements of real-world CEP applications.

Despite the limitations discussed above, MLNs represent a valid tool to
reason under uncertainty that has been successfully used in specific domains
characterized by different requirements with respect to CEP applications. For
the sake of completeness, we briefly exemplify hereafter some existing works
based on MLNs. The community of visual event and activity recognition pro-
posed several solutions for event detection and recognition. Among these exist-
ing works it’s worth to mention the work by Tran et al. [45] that addresses the
problem of visual event recognition in visual surveillance. In their approach the
domain knowledge is represented using first order logic statements in which
both negation and disjunction are allowed, while uncertainty of primitive event
detection is represented using detection probabilities. Logical statements and
probabilities are combined into a single framework using MLNs. Analogously,
the works by Kembhavi et al. [27] and Morariu et al. [32] discuss two frame-
works for activity recognition in structured scenarios based on MLNs. Another
relevant existing approach for activity recognition is described in [24]. In this
work the authors propose to use MLNs as a statistical relational framework for
activity recognition in ambient assisted living environments. Finally it’s worth
to mention the work by Biswas [9], which introduces instead a first-order prob-
abilistic model that combines multiple cues to classify human activities from
video data that relies on dynamic MLNs [40].

8 Conclusions

In this paper, we presented CEP2U (Complex Event Processing under Uncer-
tainty), a novel model for dealing with uncertainty in CEP that provides a
valuable combination of expressiveness, efficiency, and ease of use.

Introducing Uncertainty in Complex Event Processing 43

We applied CEP2U to TESLA, showing how it seamlessly supports and
integrates with the typical operators offered by a modern CEP rule language.
It is our claim that our approach significantly reduces the complexity of the
uncertainty management problem, by allowing engineers and domain experts
to easily and separately capture the uncertainty coming from incoming event
notifications and that inherent in rules.

Our experience in implementing CEP2U on top of T-Rex shows the limited
effort required to integrate CEP2U with an existing CEP engine, while the
detailed performance analysis of CEP2U we provided in this paper, shows
how it introduces a reduced overhead: less than 50% in all tests we run.

Future work includes investigating further sources of uncertainty and the
application to a real case study. Furthermore, we plan to consider learning
mechanisms to automatically generate rules from historical data analysis [31].
This could also help domain experts in determining some critical parameters
related to uncertainty (e.g., tune the minimum probability for considering
events based on past occurrences).

To conclude, we believe that uncertainty managements constitutes a critical
yet necessary component in most event processing applications. We hope that
CEP2U could represent a starting point to promote further investiagations in
this area.

Acknowledgment

This research has been funded by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom and Programme FP7-PEOPLE-2011-
IEF, Project 302648-RunMore and by the Dutch national program COMMIT.

References

1. Adi, A., Etzion, O.: Amit - the situation manager. The VLDB Journal 13(2), 177-203
(2004). DOI http://dx.doi.org/10.1007/s00778-003-0108-y

2. Agrawal, J., Diao, Y., Gyllstrom, D., Immerman, N.: Efficient pattern matching over
event streams. In: SIGMOD, pp. 147-160. ACM, New York, NY, USA (2008). DOI
http://doi.acm.org/10.1145/1376616.1376634

3. Aguilera, M.K., Strom, R.E.; Sturman, D.C., Astley, M., Chandra, T.D.: Matching
events in a content-based subscription system. In: Proceedings of the eighteenth annual
ACM symposium on Principles of distributed computing, PODC ’99, pp. 53-61. ACM,
New York, NY, USA (1999). DOI 10.1145/301308.301326

4. Anicic, D., Fodor, P., Rudolph, S., Stuhmer, R., Stojanovic, N., Studer, R.: A rule-based
language for complex event processing and reasoning. In: P. Hitzler, T. Lukasiewicz
(eds.) Web Reasoning and Rule Systems, Lecture Notes in Computer Science, vol. 6333,
pp. 42-57. Springer Berlin / Heidelberg (2010)

5. Anicic, D., Fodor, P., Rudolph, S., Stuhmer, R., Stojanovic, N., Studer, R.: Etalis: Rule-
based reasoning in event processing. In: S. Helmer, A. Poulovassilis, F. Xhafa (eds.)
Reasoning in Event-Based Distributed Systems, Studies in Computational Intelligence,
vol. 347, pp. 99-124. Springer Berlin / Heidelberg (2011)

6. Arasu, A., Babu, S., Widom, J.: The cql continuous query language: semantic founda-
tions and query execution. The VLDB Journal 15(2), 121-142 (2006)

44

Gianpaolo Cugola et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.

29.

30.

31.

32.

33.

Artikis, A., Etzion, O., Feldman, Z., Fournier, F.: Event processing under uncertainty.
In: DEBS (2012)

Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data
stream systems. In: PODS, pp. 1-16. ACM, New York, NY, USA (2002)

Biswas, R., Thrun, S., Fujimura, K.: Recognizing activities with multiple cues. In:
Workshop on Human Motion, pp. 255-270 (2007)

BOOST: BOOST C++ Libraries: Math Toolkit (2012).
Http://www.boost.org/doc/libs/1-49_0/libs/math/doc/sf_and_dist /html/

Brenna, L., Demers, A., Gehrke, J., Hong, M., Ossher, J., Panda, B., Riedewald, M.,
Thatte, M., White, W.: Cayuga: a high-performance event processing engine. In: SIG-
MOD, pp. 1100-1102. ACM, New York, NY, USA (2007)

Broda, K., Clark, K., 0002, R.M., Russo, A.: Sage: A logical agent-based environment
monitoring and control system. In: AmI, pp. 112-117 (2009)

Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K.: Composite events for active
databases: Semantics, contexts and detection. In: Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, pp. 606-617. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1994)

Cugola, G., Margara, A.: Tesla: A formally defined event specification language. In:
DEBS, pp. 50-61 (2010)

Cugola, G., Margara, A.: Complex event processing with t-rex. Journal of Systems and
Software 85(8), 1709 — 1728 (2012). DOI 10.1016/j.jss.2012.03.056

Cugola, G., Margara, A.: Low latency complex event processing on parallel hard-
ware. Journal of Parallel and Distributed Computing 72(2), 205 — 218 (2012). DOI
10.1016/j.jpdc.2011.11.002

Cugola, G., Margara, A.: Processing flows of information: From data stream to
complex event processing. ACM Comput. Surv. 44(3), 15:1-15:62 (2012). DOI
10.1145/2187671.2187677

Demers, A.J., Gehrke, J., Hong, M., Riedewald, M., White, W.M.: Towards expressive
publish/subscribe systems. In: EDBT, pp. 627-644 (2006)

Diao, Y., Li, B., Liu, A., Peng, L., Sutton, C., Tran, T.T.L., Zink, M.: Capturing
data uncertainty in high-volume stream processing. In: CIDR 2009, Fourth Biennial
Conference on Innovative Data Systems Research, Asilomar, CA, USA, January 4-7,
2009, Online Proceedings (2009)

Esper, http://esper.codehaus.org/ (2012)

Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co. (2010)
Event zero, http://www.eventzero.com/solutions/environment.aspx (2012)

Gyllstrom, D., Agrawal, J., Diao, Y., Immerman, N.: On supporting kleene closure over
event streams. In: ICDE, pp. 1391-1393 (2008)

Helaoui, R., Niepert, M., Stuckenschmidt, H.: Recognizing interleaved and concurrent
activities: A statistical-relational approach. In: PerCom, pp. 1-9 (2011)

Jensen, F.: An introduction to Bayesian networks, vol. 36. UCL press London (1996)
Jensen, F.: An introduction to Bayesian networks, vol. 36. UCL press London (1996)
Kembhavi, A., Yeh, T., Davis, L.S.: Why did the person cross the road (there)? scene
understanding using probabilistic logic models and common sense reasoning. In: ECCV
(2), pp. 693-706 (2010)

Li, G., Jacobsen, H.A.: Composite subscriptions in content-based publish/subscribe
systems. In: Middleware, pp. 249-269. Springer-Verlag New York, Inc. (2005)
Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2001)

Margara, A.: Combining expressiveness and efficiency in a complex event processing
middleware. Ph.D. thesis, Politecnico di Milano (2012)

Margara, A., Cugola, G., Tamburrelli, G.: Towards automated rule learning for complex
event processing (2013). Technical Report

Morariu, V.I., Davis, L.S.: Multi-agent event recognition in structured scenarios. In:
CVPR, pp. 3289-3296 (2011)

Miihl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA (2006)

Introducing Uncertainty in Complex Event Processing 45

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Netica: Netica API (2012). Http://www.norsys.com/netica_api.html

Oracle cep. http://www.oracle.com/technologies/soa/complex-event-processing.html
(2011)

Pietzuch, P.R., Shand, B., Bacon, J.: A framework for event composition in distributed
systems. In: Proceedings of the ACM/IFIP/USENIX 2003 International Conference
on Middleware, Middleware ’03, pp. 62—-82. Springer-Verlag New York, Inc., New York,
NY, USA (2003)

Progress-Apama: http://web.progress.com/it-need /complex-event-processing.html
(2011). Visited Nov. 2011

Ré, C., Letchner, J., Balazinksa, M., Suciu, D.: Event queries on correlated probabilis-
tic streams. In: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, SIGMOD ’08, pp. 715-728. ACM, New York, NY, USA (2008).
DOI 10.1145/1376616.1376688

Richardson, M., Domingos, P.: Markov logic networks. Machine learning 62(1-2), 107—
136 (2006)

Sanghai, S., Domingos, P., Weld, D.: Learning models of relational stochastic processes.
In: Machine Learning: ECML 2005, pp. 715-723. Springer (2005)

Schultz-Mgller, N.P., Migliavacca, M., Pietzuch, P.R.: Distributed complex event pro-
cessing with query rewriting. In: DEBS, pp. 4:1-4:12 (2009)

Srivastava, U., Widom, J.: Flexible time management in data stream systems.
In: PODS °’04, pp. 263-274. ACM, New York, NY, USA (2004). DOI
http://doi.acm.org/10.1145/1055558.1055596

Streambase, http://www.streambase.com/ (2011)

Tibco: Tibco BusinessEvents. http://www.tibco.com/software/complex-event-
processing/businessevents/default.jsp (2011). Visited Nov. 2011

Tran, S.D., Davis, L.S.: Event modeling and recognition using markov logic networks.
In: ECCV (2), pp. 610-623 (2008)

Wang, F., Liu, P.: Temporal management of rfid data. In: VLDB, pp. 1128-1139. VLDB
Endowment (2005)

Wasserkrug, S., Gal, A., Etzion, O.: A model for reasoning with uncertain rules in event
composition systems. In: Proceedings of the 21st Annual Conference on Uncertainty in
Artificial Intelligence, pp. 599-606 (2005)

Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Complex event processing over un-
certain data. In: Proceedings of the second international conference on Distributed
event-based systems, DEBS 08, pp. 253-264. ACM, New York, NY, USA (2008). DOI
10.1145/1385989.1386022

Wasserkrug, S., Gal, A., Etzion, O., Turchin, Y.: Efficient processing of uncertain events
in rule-based systems. IEEE Trans. on Knowl. and Data Eng. 24(1), 45-58 (2012). DOI
10.1109/TKDE.2010.204

