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Summary
Introduction: This article is part of the Focus 
Theme of Methods of Information in Medi-
cine on “Biosignal Interpretation: Advanced 
Methods for Neural Signals and Images”. 
Background: Voxel-based functional con-
nectivity analysis is a common method for 
resting state fMRI data. However, corre-
lations between the seed and other brain  
voxels are corrupted by random estimate  
errors yielding false connections within the 
functional connectivity map (FCmap). These 
errors must be taken into account for a cor-
rect interpretation of single-subject results. 
Objectives: We estimated the statistical 
range of random errors and propose two 
methods for an individual setting of corre-
lation threshold for FCmaps.
Methods: We assessed the amount of ran-
dom errors by means of surrogate time series 
and described its distribution within the 
brain. On the basis of these results, the 
FCmaps of the posterior cingulate cortex 
(PCC) from 15 healthy subjects were thresh-
olded with two innovative methods: the first 

one consisted in the computation of a unique 
(global) threshold value to be applied to all 
brain voxels, while the second method is to 
set a different (local) threshold of each voxel 
of the FCmap.
Results: The distribution of random errors 
within the brain was observed to be homo-
geneous and, after thresholding with both 
methods, the default mode network areas 
were well identifiable. The two methods 
yielded similar results, however the applica -
tion of a global threshold to all brain voxels 
requires a reduced computational load. The 
inter-subject variability of the global thresh-
old was observed to be very low and not cor-
related with age. Global threshold values are 
also almost independent from the number of 
surrogates used for their computation, so the 
analyses can be optimized using a reduced 
number of surrogate time series.
Conclusions: We demonstrated the efficacy 
of FCmaps thresholding based on random 
error estimation. This method can be used for 
a reliable single-subject analysis and could 
also be applied in clinical setting, to compute 
individual measures of disease progression 
or quantitative response to pharmacological 
or rehabilitation treatments.
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1. Introduction
Voxel-based functional connectivity 
(FC) analysis (also called seed-based 
FC) was the first technique used for 
the analysis of resting state fMRI data 
[1] and it is still  extensively applied 
[2, 3]. The simplicity of the method, its 
straightforward interpreta-bility with 
respect to the other methods, and its 
moderate to high reliability [4], 
make voxel-based FC an attractive and 
use-ful approach.

The functional connectivity 
map (FCmap) is usually computed as 
Pearson’s linear correlation between 
the signal extracted from a specific 
region of interest (seed) and all the 
other brain voxels, show-ing the 
network of regions functionally 
connected with the seed [5]. In a 
recent study, Hlinka and colleagues 
[6] demon-strated that, after standard 
fMRI prepro-cessing steps, linear 
correlation well cap-tures the full 
functional connectivity. Addi-tionally, 
spatial and temporal filtering 
further diminish small nonlinearities 
in the data. However, some linear 
correlations could be artefactual, i.e. 
due to chance and not to real FC, and 
the p-value associated to Pearson’s 
correlation coefficient, al-though 
significant per se, is not indepen-dent 
from this random error.

To our knowledge, these random 
errors are usually ignored and 
significant con-nected voxels are 
detected only at group level. At 
single-subject level, the use of an 
arbitrary threshold without the 
quantifi-cation of the random error 
size could lead to misinterpretation of 
the FC map, bias the extraction of 
quantitative information, and affect 
the final results when used in 

Individual Thresholding of Voxel-based Functional 
Connectivity Maps
Estimation of Random Errors by Means of Surrogate Time Series

L. Griffanti1,2; F. Baglio1; M. M. Laganà1; M. G. Preti1,2; P. Cecconi1; M. Clerici1,3;
R. Nemni1,3; G. Baselli2
1MR Laboratory, IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; 
2Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy; 
3Università degli Studi di Milano, Milan, Italy



combination with other imaging modali -
ties, (e.g. in neurosurgical planning) [7].

For this reason, in voxel-based FC ana-
lyses, a more reliable method is needed for 
the identification of voxels significantly 
connected with the seed, taking into ac-
count for random errors.

In this work we describe a method for 
the estimation of this random error by 
using surrogate time series. Moreover, two 
thresholding methods are proposed for a 
reliable analysis of single-subject FC maps.

2. Methods

Resting state fMRI data were acquired 
from 15 healthy subjects (age: 46.6 ±  
23.0 years; six males) with a 1.5T Siemens 
scanner. Each volunteer underwent a 3D 
high resolution T1-weighted sequence 
(TR/TE = 1900/3.37 ms; voxel size =  
1 ´ 1 ´ 1 mm3) and a 7 min 30 sec EPI 
run with BOLD contrast (TR/TE = 2500/ 
30 ms; voxel size = 3 ´ 3 ´ 2.5 mm3;  
180 volumes) in resting state condition 
(they were instructed to be relaxed, with 
eyes closed, not to think anything in par-
ticular and not to fall asleep). All subjects 
provided written informed consent to  
participate in the study according to the 
recommendations of the declaration of 
Helsinki.

The starting preprocessing steps, per-
formed with SPM8, involved the following: 
1) correction for slice-timing differences; 
2) correction of head motion across 
functional images; 3) coregistration to the  
anatomical image and spatial 
normalization to the MNI space with a 
voxel size of 3 ´ 3 ´ 3 mm3; 4) spatial 
smoothing with a 4 mm full-with at half-
maximum Gaussian kernel. Then, further 
steps specific for resting state fMRI were: 
5) regression of nuisance variables (head 
motion, mean white matter signal and 
mean cerebro spinal fluid signal); 6) tem-
poral pass-band filtering (0.01– 0.08 Hz) to 
remove linear trends and constant offsets 
over each run. For these operations we 
used REST toolbox [8].

For each subject, a region of interest 
(ROI) of 6 mm radius was positioned in 
the posterior cingulate cortex (with center 
at MNI coordinates: 0 –53 26) based on 
previous studies [9, 10]. This area plays a 

central role in the default mode network 
(DMN), the principal and more investi-
gated resting state network. The corre-
sponding time series (PCC-time course) 
was extracted as the mean signal within the 
ROI. Voxel-based functional connectivity 
map (FCmap) was then obtained by com-
puting the linear correlation between the 
PCC-time course and the time courses of 
all acquired voxels. Correlation maps were 
then converted to z-maps using Fisher’s 
r-to-z transformation (zFCmap).

Surrogate time series of the PCC-time
course were constructed with the iteratively 
refined amplitude adjusted Fourier trans-
form (iAAFT) method, proposed by 
Schreiber and Schmitz [11]. First, the 
 Fourier transform of the series was com-
puted to impose the amplitude spectrum 
(second order properties). A white series 
with random phases was then created by 
shuffling the original series. Reordering the 
series, a random phase surrogate with orig-
inal probability distribution was provided. 
Deviations in spectrum and distribution 
from the goal set were iteratively corrected. 
In this way, the obtained iAAFT surrogates 
preserved both amplitude distribution and 
spectral shape of the original time series, 
but the phases were randomized.

From the PCC-time course of each sub-
ject, 39 surrogate series were generated. 
Voxel-based functional connectivity was 
then computed using each surrogate time 
series as seed. Since the temporal informa-
tion of the PCC-time course has been de-
stroyed in the surrogates, no more corre-
lation is expected between brain voxels and 
the seed. Any correlation in the new 
FCmap is due to chance, so we obtained a 
set of 39 random error maps and the corre-
sponding z-maps (zERR).

For each brain voxel, the mean and the 
standard deviation of the random error 
among the 39 maps was computed. Thus, 
we obtained an error mean map (mean-
ERRmap) and an error standard deviation 
map (stdERRmap) for each subject, whose 
distributions were fitted to theoretical 
sample distributions, respectively the nor-
mal distribution and the chi-square dis-
tribution, using maximum likelihood esti-
mation method on shape parameters.

The mean values of meanERRmap and 
stdERRmap distributions (respectively m–– 

and s–t–d– ) were then used to compute a 
2 * std (i.e., p < 0.05) confidence interval 
(CI) with Equation 1:

            (1) 

The boundaries of this CI (Tsup and Tinf) 
were then used as threshold values and ap-
plied to all voxels of zFCmaps (global 
thresholding): only voxels showing a corre-
lation value higher than Tsup or lower than 
Tinf were considered as significantly con-
nected with the seed.

A possible alternative to this thresh-
olding method was to apply a different 
threshold to each voxel, according to the 
amount of random error. 

For this local thresholding, the 2 * std  
(p < 0.05) CI was computed for each brain 
voxel (i) using ▶Equation 2:

CIlocal (i) = 
mean(zErr(i)) ± 2 * std (zERR(i)) 

         (2)

In this way, two additional maps were gener-
ated for each subject: the superior confidence 
interval map (supCImap) and the inferior 
confidence interval map (infCImap). Finally, 
zFCmaps were thresholded using supCImap 
and infCImap: voxels showing a correlation 
value out of the CI were considered as sig-
nificantly connected with the seed.

The thresholded maps obtained with 
the two methods were compared by calcu-
lating the Dice’s index as similarity 
measure, and evaluating the difference in 
the number of voxels that passed the 
thresholds (paired t-test).

For global thresholding, mean and stan-
dard deviation of Tsup and Tinf across sub-
jects were computed and their correlation 
with age was tested in order to evaluate the 
inter-subject variability of CIglobal . Finally, 
the variability due to the number (N) of 
surrogates used, was assessed repeating the 
computation of random error and CIglobal 
values with N = 2 : 39.

3. Results
In  Figure 1, the meanERRmap and 
stdERRmap of one subject are shown as 
examples, as well as their distributions. The 
mean and standard deviation values of ran-



dom error are spatially homogeneous with-
in the brain and the relative distributions 
were found to be well fitted by correspond-
ing theoretical distributions.

The PCC-zFCmap of one subject before 
(a) and after global (b) and local (c) ran-
dom error thresholding is illustrated in
▶ Figure 2. With both methods, the princi-

pal DMN areas (posterior cingulate cortex, 
medial prefrontal cortex and inferior parie-
tal lobule) are well identifiable. Comparing 
the two thresholded maps, the mean Dice’s 
index across subjects was 0.81 ± 0.04 and 
the number of voxels significantly con-
nected with the seed obtained using global 
and local thresholding was not significantly 

different (N voxel after global thresholding 
= 9144.400 ± 3522.104; N voxel after local 
thresholding = 9322.330 ± 3755.627; p = 
0.429, paired t-test).

Regarding inter-subjects variability of 
global threshold, CIglobal standard deviation 
across subjects was very low compared to 
its mean value (Tsup(z) = 0.252 ± 0.008, 

Figure 1  
Random Error esti-
mation. The mean 
random error (top 
panel) is spatially 
homogeneous within 
the brain and the dis-
tribution is Gaussian-
shaped centered in 
zero. Also the stand -
ard deviation of the 
random error (bot-
tom panel) is homo-
geneous with chi-
square distribution. 
Data relative to a 20-
year female healthy 
subject.

Figure 2  
Random error thresh-
olding. The single-
subject PCC-FCmap is 
shown before (a) and 
after global (b) and 
local (c) random error 
thresholding. It can 
be observed that, 
after thresholding, 
DMN areas are well 
identifiable. 



Tinf(z) = – 0.254 ± 0.005) and not cor -
related with age (correlation Tsup-age:  
p = 0.28; correlation Tinf-age: p = 0.34). 
Obtaining a mean global threshold of z = 
 ± 0.25 (corresponding to a correlation co-
efficient r = 0.245), the associated p-value 
for a Pearson probability distribution is  
p < 0.001. As shown in  Figure 3, this 
small variability is quite independent from 
the number of surrogates and CIglobal 
boundaries reach stable values using a 
small number of surrogates (N ≈ 10).

4. Discussion and
Conclusions

In this work we examined the problem of 
random errors in voxel-based functional 
connectivity analyses and proposed a 
method for error evaluation based on sur-
rogate time series. Observing a homogene-

ous distribution of random error within the 
brain, we can infer that there are no regions 
more influenced by random error than 
others and that this kind of error is inde-
pendent from the resting state activity.

Random errors are usually ignored in this 
kind of analysis and correction is only per-
formed at group level. In order to perform a 
reliable single-subject analysis, we proposed 
two individual thresholding methods, which 
allow the identification of voxels significantly 
connected with the seed region. The two 
methods have been proven to be effective in 
identifying the DMN areas and are substan-
tially equivalent, although the global thresh-
olding approach requires a reduced compu-
tational load and may be preferable for 
further analyses. The boundary values of the 
CIglobal have a low inter-subject variability not 
depending from subjects’ age. Moreover the 
number of surrogates needed for the analysis 
can be reduced, further decreasing the com-

putational load required for the analyses 
without significant changes in the results.

The proposed method is promising for 
an application in a clinical setting to extract 
quantitative information about FC alter-
ations with respect to a seed ROI and to be 
used as part of multimodal imaging tools 
[7]. Indeed, the availability of a reliable 
single-subject FC analysis could be particu-
larly useful for rare case studies (when a 
group study is not feasible), for neurosurgi-
cal planning, and for the longitudinal 
evaluation of a single patient’s disease pro-
gression or response to pharmacological 
treatments or rehabilitation.
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