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1. Introduction

The dynamic behaviour of a car negotiating a curve or running straight ahead is widely
discussed in the literature. In most cases the interest is focused on the vehicle alone (i.e.
without driver).[1] However, the vehicle and the driver are two parts of a single system and
their interaction can change the overall behaviour of the vehicle. In this paper, the combined
dynamic behaviour of the vehicle and the driver is considered. Many different driver models
have been presented in the literature, with different applications and scopes.[2] In the following
analysis, a preview tracking driver model is considered.[2—8] This model is well suited to
describe the lateral vehicle dynamics. The longitudinal dynamics are simply not considered
here,[2] even if they are not independent on the steering task of the driver. Actually steering the
front wheels causes a component of the lateral tyre force to act along the longitudinal axis of
the vehicle. This contribution is usually neglected if the manoeuvre lasts for a very short time.
This is the hypothesis under which the two-wheel (or bicycle) model is derived and used. The
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combination of lateral and longitudinal dynamics can be taken into account as shown in.[1] A
discussion about the influence of the driver and the steering system on the dynamic behaviour
of a car can be found in.[2,8]

For the majority of situations, actually all those a normal driver is likely to experience, a
linear model of the vehicle and a linear model of the tyres are sufficient. There are, however,
a number of important situations, mostly related to emergency manoeuvres, in which high
slip angles are reached and the nonlinear behaviour of the vehicle plays a crucial role. In
such situations, a well-designed vehicle (i.e a vehicle whose nonlinear behaviour has been
considered and understood) can make the difference between a tragic accident and a barely
notable risky situation.[1,9] Control systems are usually developed and tested on low friction
surfaces, so that the nonlinear part of the tyre characteristics is reached. Thus, understanding
nonlinear phenomena is of paramount practical importance in order to improve the controls
and the active safety of road vehicles.

In this paper, the study of the nonlinear behaviour of a vehicle when negotiating a curve
and when running straight ahead is discussed in the framework of bifurcation analysis.[10]
This approach allows one to compute and characterise all the possible equilibria of a non-
linear system and has been successfully applied to many aspects of vehicle dynamics and
control.[5,11-22] For example, when considering the dynamic behaviour of a road vehicle
at high lateral acceleration levels, more than one equilibrium may occur due to the nonlin-
ear characteristics of the tyres.[12,14] In this situation, bifurcation analysis, supported by
the handling diagram theory,[23] is a very useful tool for the computation of all the existing
equilibria.

The paper is organised as follows. First, the vehicle and driver models are introduced along
with a validation against telemetry data of a racing car during a track lap.

Two case studies are discussed, referring either to an understeering (UN) or to an
oversteering (OV) vehicle.

The shape and the characteristics of the basins of attraction at different vehicle speeds are
presented and discussed.

Finally, a three-parameter bifurcation analysis is performed, referring to driver’s gain,
driver’s prediction time and forward speed.

2. Vehicle and driver models

The mechanical model analysed in this paper is the well-known two degrees of freedom
(2 d.o.f.) single-track model [1,7,9,23,24] shown in Figure 1.
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Figure 1. Representation of the single-track model.



The main simplifying hypotheses are:

the forward speed u is constant;

the centre of gravity (c.g.) lies at the ground level,

the vehicle body is modelled referring to its longitudinal axis;

the resultant of the forces acting at the front and rear axles are applied at the centres of the
axles;

the slip angles «;, i = 1,2, and the steering angle § (Figure 1) are small

e no longitudinal forces are acting at the wheels.

2.1. Vehicle mathematical model
Under the above hypotheses, the equations of motion read [23]

m®V + ur) = Fy, + F,,,

ey
Li = Fya—Fyb

where u and v are the longitudinal and lateral speeds, respectively, r is the yaw rate, subscripts
1 and 2 refer, respectively, to the front and rear axle, Fy, is the lateral force on the ith axle, m
is the vehicle mass, a and b are the distances, respectively, of the front and the rear axle centre
from the vehicle’s centre of mass, I, is the moment of inertia of the vehicle around the vertical
axis at the c.g. The front and rear slip angles can be obtained through the following equations:
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The lateral forces F), (o;) (i = 1,2) can be expressed as functions of the slip angles «;.[23]
The functions Fy, («;), namely the tyre characteristics, can have very different shapes.[1,23] In
this paper, for the sake of space, we will analyse only two different tyre characteristics, which
will be presented in Section 2.4.

2.2. Validation

The validation of model (1) has been performed considering a sports car. Model simulations
have been compared with the telemetry data acquired by the vehicle manufacturer during a
lap run. The main parameters of the vehicle are reported in Table 1.

The time history of the steering-wheel angle § and of the car longitudinal speed u has
been considered as the model inputs. The measured yaw rate and lateral acceleration have
been compared with the simulated ones. Figure 2 shows a satisfactory agreement between
experimental data and simulated outputs.

Despite the very high lateral accelerations attained by the sports car and the simplicity of
the model, a reasonable matching of computed and measured data is found because of the

Table 1. Main parameters of a sports car used to validate the vehicle

model (1).

Value Unit
Vehicle mass (m) 550 kg
Vehicle yaw moment of inertia (1) 750 kg m?
Distance from front axle to c.g. (a) 1.64 m

Distance from rear axle to c.g. (b) 0.98 m
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Figure 2. Lateral acceleration and yaw rate (measured and simulated) on a track (right panels). Steering wheel
angle and vehicle speed (left panels) are used as model inputs. Vehicle data are reported in Table 1.

stiffness of the suspension system that makes the tyres considerably influence the dynamic
behaviour of the car.

It must be acknowledged that this validation study only confirms that model (1), namely a
2 dof model with nonlinear lateral tyre forces, is capable of good agreement with measured
responses, at least in this case study (we anticipate that the bifurcation analyses of Sections 4—-6
will be carried out with different parameter values). Although this does not ensure that the
model is able to accurately describe the stability properties of any generic car, since much
more extensive and detailed tests would be required, it is nonetheless a fact supporting the
validity of model (1).

2.3. Driver model

We adopt the driver model described in [2,3,7] and based on the block diagram of Figure 3.

The driver chooses a desired trajectory y,om referring to a specified curvature, and so the
steering angle is set at a certain value 8. While steering, the current position y is compared
with the desired one, the error being Ay. Then the error Ayp in a nearby future time # 4 Tp is
predicted by a prediction block Gp(s). Based on this prediction, the steer angle A4 is applied,
through the control block G¢(s). A new steer angle 6 is so applied, which is the input to the
vehicle model (1) which gives as a result the new position y on the trajectory.

The following assumptions are made on the way the driver predicts and compensates the
error Ay. For the prediction, we simply assume that the driver can exactly anticipate the error
Ay by a certain time Tp, so that the transfer function Gp(s) will be simply e’ . For the control,
we assume that the driver has a certain delay 7 to react, and then she/he gets convergence
with a time constant 7¢. So G¢(s) is the first-order transfer function e k¢ /(1 + Tcs), where
kc is the gain of the transfer function. The complete transfer function from the error Ay to the
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Figure 3. Block diagram of the driver model.
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control signal A$ is

AS = eTpsef‘[skC Ay — e(Tpf‘r)ka 1
1+ TCS’ 1+ Tcs’
1+ (Tp — 1/2)((Tp — 7)s)?
Ay = ke + (Tp — 1)s + (1/2)((Tp — 7)s) Ay,
1+ Tcs

where the exponential function has been approximated by a truncated Taylor series, as in [7].
Notice that this approximation is valid only for low-frequency corrections (approximately less
than 0.2 Hz).

Let us describe how 8o, can be computed, i.e. how the desired trajectory y,om (referring to
a given curvature 1/p, where p is the radius of the bend) can be attained. Notice that specifying
dnom Means that the system vehicle+-driver will run into the bend at a certain steady-state couple
of lateral and angular speed (vr, rr). Such a couple satisfies Equation (1), i.e. it satisfies the
steady-state equilibrium of the bare vehicle running into abend with § = 8,0, - The longitudinal
speed u is kept constant by hypothesis, and only the lateral displacement from the trajectory
Ay is used for control. Under this assumption, the error in position (both lateral displacement
Ay and angular displacement %) is simply given by

Ay =vRrcost —usin® — v,

7.9 =7r — IR.
Summarising, the complete mathematical model for the vehicle+driver is

m 4+ ur) = Fy, (v, 7, 8nom + AS) + F,, (v, 1),
Li = Fy, (v,7,800m + A8)a — Fy, (v, )b,
TcAS = ke(Ay + (Tp — T)AY + 1/2(Tp — 1)>AF) — AS, 3)
Ay =vgrcost —usin — v,

19 =71 —1FR,
where
A¥ = —vg sin 99 — ucos 9 — .

Notice that the complete model is a fifth-order model in which the state variables are v, r, A§,
Ay, ©. The only equilibria that will be considered for this model are of the type

V =R,

r=rg,
AS =0, “4)
Ay =0,

U =0,

as explained and discussed in Section 3. Notice that, by means of Equation (2), the state
variables (v, r) can be interchanged with (o, a7).
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Figure 4. Tyre characteristics. The left panel refers to an understeering vehicle at low centripetal acceleration (UN
case). The right panel refers to an OV case.

Table 2. The parameter set of model (3)—(5).

Vehicle Driver Front tyre Rear tyre
Mass m 950 kg UN OV UN OV
Principal inertia Control time T¢ 0.2s
moment [, 1100kgm? Control delay © 0.2s By 10 10 By 20 10
Wheelbase [ 2.46m Prediction time Tp 0.7s Cc 1 1 C 1 1
k — 0.3u rad
a 095m  Control gain k¢ IMAXTUOUIC k0 0 B2 0 0
u m
. rad
b 1.51m Maximum control 50— nr 09 09 py 08 0.7
gain kmax m

Notes: Vehicle and wheel parameters are taken from [1], while driver parameters are taken from [7] (k¢ as a function of the forward
speed u is obtained fitting the values reported in [7], Figure 120.7).

2.4. Case studies

With respect to the analysis performed in,[1] we consider here two cases only. In the first case
a vehicle is fitted with tyres whose characteristics are depicted on the left panel of Figure 4.
Such a vehicle has an understeering behaviour at low lateral acceleration (UN case). In the
second case the same vehicle is fitted with tyres whose characteristics are depicted in the right
panel of Figure 4. The vehicle has an oversteering behaviour at any lateral acceleration (OV
case).

The tyre characteristics are defined through the formulae proposed in,[11] which read

. _ B b

Fy (a1) = Dy sin(C) tan "(Biay — E\(Bia; — tan" ' (Bi1)))), F,, = Hamg

Q)

. _ _ a

Fy,(a2) = Dy sin(Cy tan™ ' (Bray — Ex(Bray — tan™' (Bown)))),  F, = Hamg
where

mg mg
D, = M17b, D, = H2—-a,

with parameters reported in Table 2.



3. Computation of equilibria

For bifurcation analysis it is imperative to rely on a computational method that provides all the
existing equilibria of the system. In [1,23] the powerful handling diagram method is exploited
with this aim. For the vehicle running into a bend at a fixed steering angle §, the motion is
described by the second-order dynamical system (1), while the mathematical model of the
system composed of vehicle and driver is the fifth-order dynamical system (3). We investigate
whether the handling diagram method, used in [1,23] for the second-order system (1), can be
exploited to compute the equilibria of the vehicle4-driver system. The answer we illustrate
here is positive, under the hypotheses that the vehicle+driver system runs into a bend at a
constant forward speed u and that we look exclusively at the steady-state equilibria defined by
Equation (4). Such equilibria are defined by A§ = 0, Ay = 0, % = 0, and additionally we set
v = vg and r = ry in such a way that the steady-state lateral slips «;, oy of the vehicle with
driver are equal to the corresponding steady-state lateral slips (o, ) for the vehicle without
driver (notice that, by means of Equation (2), the state variables (v, r) can be interchanged
with the state variables (o, »)). Such hypotheses are quite general and do not limit the cases
that can be studied both theoretically and in practice.

4. Vehicle without driver control

4.1. Understeering vehicle without driver

Let us consider a vehicle defined by Equation (1) and whose parameters are those in Table 2
(case UN). The vehicle runs at a constant steer angle § = 0.05 rad ~ 2.86° at different constant
forward speeds u.

In the phase portrait of Figure 5(a) three steady states are present (depicted in Figure 6):

e In e, the vehicle is turning leftward, making an anti-clockwise circle of radius p =
1/(8§ + ap — 1) approx 60 m: this equilibrium is stable, i.e. the vehicle steadily runs along
this trajectory. All the perturbations that move the slip angles in the grey region (basin of
attraction) are naturally reabsorbed from the system.

e In ¢; the vehicle is turning leftward, making an anti-clockwise circle of radius p ~ 13 m :
this equilibrium is a saddle, i.e. a perturbation from the equilibrium may not naturally be
reabsorbed from the system which may diverge, or converge to the equilibrium e;.
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Figure 5. Vehicle without driver. Phase portraits of Equation (1) (case UN) at different speeds, steer angle
§ =0.05rad. (a) u = 10m/s. (b) u = 20m/s. (c) u = 40 m/s.
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Figure 6. Steady-state attitudes of the vehicle of Figure 5(a) at the three possible equilibria e, e, and e3.

e In e;3 the vehicle is turning rightward, making a clockwise circle of radius p ~ 13 m while
counter steering: also in this case the equilibrium is a saddle.

In the phase portrait of Figure 5(b) three possible steady states are also present: e, and e, in
which the vehicle is turning leftward (respectively on circles of radius 90 and 50 m), and e3,
in which the vehicle is turning rightward (on a circle of radius 50 m).

In the phase portrait of Figure 5(c) a critical forward speed at which equilibria e, and e;
collide and disappear into a saddle-node bifurcation (this takes place at u &~ 35 m/s) has been
exceeded. The vehicle at this forward speed and with this steering angle cannot turn leftward,
but only rightward (on a circle of radius 200 m), on the saddle equilibrium e3;. No stable
steady-state behaviour exists.

4.2. Oversteering vehicle without driver

Let us now consider a vehicle defined by Equation (1) and whose parameters are those in
Table 2 (case OV). The vehicle runs at a constant steer angle § = Orad at different constant
forward speeds u.

In Figure 7(a) the phase portrait shows that three possible steady states are present: e;, at
which the vehicle does not turn, i.e. it runs straight ahead, e; in which the vehicle is turning
leftward, and e3, in which the vehicle is turning rightward (on circles of radius 90 m).

In Figure 7(b) the only steady state present is e, in which the vehicle does not turn: in this
case, however, the vehicle is unstable (the equilibrium is a saddle). In fact, we are again above
a critical forward speed (u ~ 27.6 m/s) in which e; and e; collide with e, and then disappear
into a pitchfork bifurcation.
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Figure 7. Vehicle without driver. Phase portraits of Equation (1) (case OV) at different speeds, steer angle
8§ =0.0rad. (a) u =20m/s. (b) u =30m/s. (c) u = 60m/s.



Figure 6(c) is qualitatively equivalent to Figure 6(b). Bifurcation analysis and continuation
techniques [10,25,26] allow us to state that equilibrium e, will remain a saddle also for larger
longitudinal speed.

5. Vehicle with driver control

Let us consider the vehicle4-driver system defined by Equations (3) and whose parameters are
those in Table 2. Following the discussion in Section 3 we can state that, at steady state, the
values of the lateral slips (o, oy) of the vehicle+driver system are the same of the vehicle
without driver. This occurrence, representing quite fairly the actual behaviour of a vehicle
running into a bend, is obtained by setting vg = ((§ — )b — acx)u/l, rg = (aa — o + 8)u/l
at each equilibrium where (¢, ;) are the lateral slips computed by the handling diagram
theory [1] for the bare vehicle defined by Equation (1). Therefore at each equilibrium of
the vehicle+driver system, we have v = ((8pom — &¢1)b — acn)u/l, r = (y — @1 + Snom) /1,
Ay=0,9=0,A6 =0.

The analysis of the equilibria of a vehicle cornering into a bend has been already presented
in the previous section. Such equilibria are the same for the vehicle+driver. Obviously, the
nature of the equilibria can change due to the action of the driver that can make stable an
unstable equilibrium and vice versa.

We will analyse a limited but relevant number of cases by performing a preliminary bifurca-
tion analysis by varying a single parameter, namely the forward speed u. We will consider the
steady states discussed in Section 4 and we will derive the phase portrait of the vehicle+driver
system projected on the state variables plane (o, o).

In order to compare the stability properties of the equilibrium, also a sort of basin of
attraction, restricted to initial condition with only slip angles not at equilibrium values, will
be computed. In fact, projecting the five-dimensional basin of attraction on the (o1, «;)-plane
could be misleading [27]: we thus decided not to show the projection, but the section of the
basin of attraction on the plane Ay = % = A§ = 0.

5.1. Understeering vehicle with driver

The three panels of Figure 8 describe the behaviour, with driver, around the equilibria e;, ey,
and ez of Figure 5(a). More precisely the equilibrium e, in Figure 8(a) coincides with the
one in Figure 5(a): one may notice that the grey area is larger, i.e. the basin of attraction is
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Figure 8. Vehicle with driver. Phase portraits of Equation (3) (case UN) at speed u = 10m/s, steer angle
Snom = 0.05rad. Projection of the trajectories on the plane (o1, o). Equilibria e;, e, and e3 correspond to the
equilibria ey, eg, and e3 of Figure 5(a).
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Figure 9. Vehicle with driver. Phase portraits of Equation (3) (case UN) at speed u =20m/s, steer angle
Snom = 0.05rad. Projection of the trajectories on the plane (o1, az). Equilibria ez, e, and e3 correspond to the
equilibria ey, eq, and e3 of Figure 5(b).
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Figure 10. Vehicle with driver, running straight ahead. Phase portraits of Equation (3) (case OV) at different speeds,
steer angle Spom = 0.0rad. (a) u = 20m/s. (b) u = 30 m/s. (¢c) u = 60 m/s. Projection of the trajectories on the plane
(o1, 2).

broadened. The driver has a stabilising effect. For the equilibrium e; (Figure 8(b)), one may
notice that the driver has a stabilising effect even in a tight curve (without driver’s control the
bare vehicle would be unstable). Finally, for the equilibrium ez (Figure 8(c)), one may notice
that the driver has a stabilising effect even in a counter steering manoeuvre. Notice that we
have chosen here a relatively skilled driver and that, although stable, the equilibria e; and e3
have a rather small basin of attraction.

The panels in Figure 9 refer to the case of Figure 5(b) (larger forward speed). Again, for
the equilibrium e, (Figure 9(a)), one may notice that the grey area is larger, i.e. the basin
of attraction is broadened. The driver has a stabilising effect. For the equilibrium e; and e3
instead (Figure 9(b) and 9(c)), one may notice that the driver does not manage to stabilise the
already unstable vehicle.

5.2. Opversteering vehicle with driver

The phase portraits in Figure 10, referring to the vehicle+driver system, have been obtained
starting from the ones in Figure 7 (vehicle without driver). The lateral slips (¢, p) at steady
state corresponding to equilibria e, are the same for both the vehicle+-driver case (Figure 10)
and the vehicle without driver (Figure 7).

Let us analyse Figure 10(a): one may notice that the grey area is larger, i.e. the basin of
attraction is broadened. The driver has a stabilising effect. Also in Figure 10(b) one may
notice that the driver has a stabilising effect (without driver’s control the bare vehicle would



be unstable). On the contrary, in the case of Figure 10(c) the driver does not manage to stabilise
the vehicle.

6. Bifurcation analysis of a vehicle+driver model running straight ahead at different
speeds

In this section, we investigate in detail a simple but important case, namely the motion straight
ahead, and we perform a bifurcation analysis of the vehicle+driver model with respect to the
speed u and to two of the parameters characterising the driver (Table 2), namely the control
gain k¢ and the predictive capability of the response of the vehicle, described by the preview
time Tp-t (the greater the preview time, the greater the predictive capability of the response
of the vehicle). We compare the results with the behaviour of the vehicle alone.

6.1. Understeering vehicle

In the previous section, we already discussed the behaviour of the system in a simplified form,
namely for a few fixed values of the speed. Bifurcation analysis allows to portrait the vehicle
behaviour when the speed is increased continuously. For the understeering vehicle running
straight ahead at speed u, we obtain the bifurcation diagrams of Figure 11: «; and «; are the
front and rear lateral slips, respectively.

At straight running, the steady-state lateral slips are obviously o = ay = 0. The left panel
of Figure 11 points out that, without driver, there are two additional (unstable) equilibria
with o) # 0,5 # 0, i.e. the car is running into bends even with § = 0 rad (equilibria e; and
e3 of Figure 5a). Such additional equilibria define the border of the basin of attraction of
a1 = ap = 0 (Figure 5): no local bifurcations take place (actually there are global bifurca-
tions, as reported in [1]). At low speed, the stable equilibrium «; = a; = 0 is a node, and
it becomes a focus for u > 15m/s. The basin of attraction shrinks until about # = 40m/s,
then it remains almost unchanged. Thus, the vehicle without driver is stable up to very high
speeds, although the motion is underdamped, i.e. convergence to the equilibrium takes place
with damped oscillations.

In the right panel of Figure 11, the vehicle+driver model is considered. We see that the
two additional equilibria with «; # 0, o, # 0 no longer exist. Actually, the driver controls
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Figure 11. Bifurcation analysis of an understeering vehicle running at forward speed u. Left panel: vehicle without
driver (Equation (1), fixed steer, § = 0). Right panel: vehicle with driver (Equation (3), running straight ahead,
Snom = VR = rr = 0). Solid lines are stable equilibria (light if nodes, dark if foci) while dashed lines are unstable
equilibria. The surface in the right panel is a family of unstable limit cycles.



the motion along a straight line, and running into bend is not allowed. At low speed, the
driver makes the only equilibrium vy = «; = 0 a focus (the bare vehicle has a node). Notably,
the driver is unable to run straight ahead at (very) high speed. Indeed, an unstable equilib-
rium branch initiates at about u = 60m/s, where a subcritical Hopf bifurcation is found.
Even before, a sufficiently strong disturbance makes the vehicle4-driver quite uncontrollable,
because the basin of attraction of ; = ap = 0 shrinks approaching the Hopf point. This occur-
rence is extremely important for understanding what happens in actual cases after a wind gust
or an even mild collision. These findings might shed light on a number of apparently odd road
accidents.

6.2. Opversteering vehicle

In Figure 12, the bifurcation analysis in the oversteering case is reported. At straight running,
the steady-state lateral slips are ov; = o = 0. As noted before (Figure 7), the vehicle without
driver has two additional equilibria with o} # 0, ay # 0. They both collide with oy = ap = 0
in a subcritical pitchfork bifurcation at u = 27.6 m/s. Up to this bifurcation, the stable equi-
librium «; = o = 0 is a node, and its basin of attraction shrinks continuously and eventually
disappears at the bifurcation.

In the right panel of Figure 12, the vehicle+driver model is considered. The two additional
equilibria with «; # 0, @z # 0 no longer exist, as discussed in the previous section. Due to
the driver control, the low-speed equilibrium becomes a focus (the bare vehicle only has a
node). Notably, the driver is able to stabilise the vehicle up to larger values of the speed
(u = 41.1m/s), until a subcritical Hopf bifurcation takes place. As in the previous case, a
sufficiently strong disturbance makes the vehicle4-driver system quite uncontrollable.

6.3. Analyzing the role of driver’s parameters

The performance of the driver is mainly influenced by two parameters, namely the gain k¢
and the immediacy of the response (7p — 7). By means of bifurcation analysis, we want to
investigate how the stability border (which corresponds to the subcritical Hopf bifurcation,
see above) is influenced by these two parameters. The results are summarised in Figure 13: the
bifurcation curves have been obtained by standard continuation procedures [10,25,26] using

Figure 12. Bifurcation analysis of an OV running at forward speed u. Left panel: vehicle without driver
(Equation (1), fixed steer, § = 0). Right panel: vehicle with driver (Equation (3), running straight ahead,
Snom = VR = rr = 0). Solid lines are stable equilibria (light if nodes, dark if foci) while dashed lines are unstable
equilibria. The surface is an unstable limit cycle.
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Figure 13. Bifurcation analysis of the oversteering (left) and of the understeering (right) vehicle+driver with respect
to the forward speed u and to the driver’s gain kc, for different prediction times of vehicle response (7p — ), (the
larger the prediction time 7p — 7, the better the prediction of vehicle response). For parameter values in the leftmost
side of the plane (small u), the straight motion is asymptotically stable. By varying the parameter values, when
crossing a curve from left to right the equilibrium becomes unstable through subcritical Hopf bifurcation. Data in
Table 2 and Figure 4.

kmax, v and (Tp — 1) as free parameters. For the sake of clarity, in the figure the results are
displayed as functions of k¢, which is related to kyax as specified in Table 2.

The two panels of Figure 13, referring to the oversteering and to the understeering vehicle
respectively, show analogies but also important differences. In both cases, and for all (7Tp — 1),
the straight ahead motion of the vehicle+driver is stable if u is sufficiently small (i.e. for
parameters close to the vertical axis). Moving the parameters rightward in the (u, kc) plane,
the stability is lost (via subcritical Hopf bifurcation) when the relevant curve is crossed. But, as
testified by Figures 11 and 12, the control of the vehicle becomes more and more problematic
even before the bifurcation takes place, since the basin of attraction progressively shrinks until
it annihilates at the bifurcation point.

For the OV (left panel), the positive slope of the curves implies that a more reactive driver
(larger gain) is able to keep the system stable up to larger speed values u. This result, somehow
counterintuitive, is a consequence of the idealisation of the driver, who is actually equipped
with a perfect predictor. Consistently, the stability range increases not only with k. but also
with (Tp — 7). Indeed, the more effective the predictive capabilities are (i.e. larger (Tp — 1)),
the more extended can be the range of stable speeds manageable by a reactive driver (i.e. large
gain values k¢). This confirms that the ideal skills of the driver of an OV are a blend of good
predicting capability and strong reaction to trajectory mismatching.

For the understeering vehicle (right panel) we first notice that, for a driver with very limited
predictive capabilities (i.e. small (7p — 7)), the behaviour is analogous to the oversteering
case (compare the curves with (7p — ) = 0.1). The main difference, however, is that now a
driver with very small reactivity (small kc) may completely avoid the loss of stability: this is
a consequence of the fact that, contrary to the oversteering case, the uncontrolled vehicle is
stable even at large speeds (Figure 11). For medium-large k¢ values, on the other hand, the
bifurcation portrait is qualitatively the same as in the oversteering case, although there are
quantitative differences that could be usefully exploited at design stage.

Overall, comparing the two diagrams, it turns out that an OV vehicle is more challenging
to be controlled, ceteris paribus, than an understeering one. As a matter of fact, given a driver



identified by the pair (kc, (Tp — 7)), the range of speeds u that she/he is able to stabilise is
systematically smaller in the oversteering case.

7. Conclusions

In the first section of the paper, a nonlinear vehicle+driver model has been developed. The
model has been taken from the literature, and fairly represents the state-of-the art knowledge
available to date on vehicle—driver interaction. The vehicle model is the well-known 2 d.o.f.
model. The driver model is one of the simplest but still more effective presently available.
The vehicle model has been validated, showing that, at least for a racing car with very stiff
suspensions, the considered vehicle model, although very simple, is able to correctly predict
the behaviour of the vehicle at high acceleration levels and at high speeds.

Two case studies are addressed in the paper, referring either to an understeering or to an over-
steering vehicle. In Sections 4 and 5, a preliminary bifurcation analysis of the vehicle+driver
model has been carried out. The first result is that equilibria of the vehicle+driver model are
strictly related to the ones of the vehicle without driver. More precisely, the steady-state lateral
slips (a1, a) of the vehicle+driver model are equal to the corresponding steady-state lateral
slips (a1, «p) of the vehicle without driver. This occurrence allows one to exploit the analysis
of equilibria already presented in a previous paper.[1] In the cases that have been proposed
and analysed, the driver is able to widen the basin of attraction and, in some cases, to make
stable the unstable equilibria pertaining to the bare vehicle. In some cases, however, the driver
is not able to stabilise the vehicle.

In Section 6 of the paper, a complete bifurcation analysis has been performed referring
to straight ahead motion. At first a bifurcation analysis has been performed by varying the
forward speed of the vehicle. It appears that for the vehicle+driver model both the UN and the
OV cases have a limit forward speed at which a subcritical Hopf bifurcation occurs. The bare
understeering vehicle (without driver) would not have such a limit speed, so it is the driver
who introduces a negative effect. On the other hand, a skilled driver is able to make stable an
OV vehicle and run at a faster speed than an uncontrolled vehicle.

Then a three-parameter bifurcation analysis is performed, referring to driver’s gain, driver’s
prediction time and vehicle forward speed. The OV is more challenging to be controlled than
the UN one.

The results of the paper fully agree with practice. Actually it is well known that the driver
may make unstable a vehicle that is inherently stable. Also, it is well known from practice
that a skilled driver may make stable an unstable vehicle. The novelty of the paper is having
formalised such conjectures and having proved the existence, at least for straight ahead motion,
of a subcritical Hopf bifurcation. Being aware of such a bifurcation can help the designers of
vehicle controls in enhancing active safety.
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