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1. Introduction

In the development of the control systems, the preliminary
stage of modelling mainly concerns the correct evaluation of the
representative system time constants, and getting the fundamental
aspects related to the plant response to the outside perturbations.
For this reason, in control oriented simulators, the model is usually
based on non-linear systems of Differential–Algebraic Equations
(DAEs), expressed by _x ¼ fðt;x; zÞ. Indeed, the system of Ordinary
Differential Equations (ODEs) for xðtÞ depends on additional vari-
ables and the solution is forced to satisfy algebraic constraints
0 ¼ gðt;x; zÞ (Ascher and Petzold, 1997). In many cases, it is suffi-
cient to employ simplified lumped parameter models, which
neglect the spatial dependence of the variables, studying only the
average behavior of the system and its temporal evolution. In addi-
tion, these systems of differential equations can be easily linear-
ized in order to study the system behavior close to a given
operating condition. In this way, it is possible to use the tools of
linear analysis, which allow achieving effective solutions that can
be applied to the original non-linear models. For these reasons,
in the analysis of the nuclear reactor dynamics, the most diffused
approach is constituted by the Point-Kinetics (PK) equations
(Schultz, 1961). This description of the neutronics is based on a
set of coupled non-linear ODEs that describe both the time-depen-
dence of the neutron population in the reactor and the decay of the
delayed neutron precursors, allowing for the main feedback reac-
tivity effects. Among the several assumptions entered in the deri-
vation of these equations, the strongest approximation regards
the shape of the neutron flux, which is assumed to be represented
by a single, time-independent spatial mode. Indeed, it is common
to adopt a shape function characterizing a critical core configura-
tion if the reactor is close to the critical state or on a truly asymp-
totic period. When the changes in core composition are sufficiently
slow, an instantaneous steady-state criticality calculation of the
shape function can be performed, even though this shape will
slowly change with time. Such a scheme is known as the adiabatic
approximation (Duderstadt and Hamilton, 1976).

Otherwise, whether the reactors are characterized by complex
geometries and asymmetric core configurations, more accurate
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Nomenclature

Latin symbols
bg

i ith generic spatial basis function of the gth energy group
[m�2 s�1]

Cm concentration of the mth precursor group [m�3]
Dg neutron diffusion coefficient in the gth energy group

[m]
g refers to the considered energy group (g ¼ 1 for the fast

group, g ¼ 2 for the thermal group)
N number of the employed basis functions [–]
Ns number of the computed snapshots [–]
m subscript referring to the precursor groups

(m ¼ 1; . . . ;8)
P thermal power [W]
r spatial coordinate [m]
t time [s]
ug

i ith POD basis functions of the gth energy group [m�2 s�1]
vg neutron speed of the gth energy group [m s�1]
wðlÞf recoverable thermal energy per fission event for the l-

isotope [J]

Greek symbols
b total delayed neutron fraction [–]
bm delayed neutron fraction of the mth precursor group [–]
gi normalized concentration of the ith precursor group [–]
ki ith eigenvalue [–]
km decay constant of the mth precursor group [s�1]
K prompt neutron generation time [s]
m average number of neutrons emitted per fission [–]

q system reactivity [pcm]
R macroscopic cross-section [m�1]
Rg

a macroscopic absorption cross-section in the gth energy
group [m�1]

Rg
f macroscopic fission cross-section in the gth energy

group [m�1]
Rg!g0

s macroscopic group transfer cross-section from energy
group g to g0 [m�1]

Ug neutron flux in the gth energy group [m�2 s�1]
vg

d fraction of delayed neutrons generated in the gth energy
group [–]

vg
p fraction of prompt neutrons generated in the gth energy

group [–]
wg

i ith spatial eigenfunction of the neutron flux in the gth
energy group [m�2 s�1]

W normalized thermal power [–]
X spatial domain [m2]

Acronyms
BC Boundary Conditions
DAE Differential Algebraic Equation
MM Modal Method
MP Multi-Physics
MUMPS MUltifrontal Massively Parallel sparse direct Solver
ODE Ordinary Differential Equation
PK Point Kinetics
POD Proper Orthogonal Decomposition
SVD Singular Value Decomposition
modelling approaches may provide more detailed insights con-
cerning the reactor behavior during operational transients. It is
worth mentioning that innovative reactor concepts, for instance
Generation IV reactors (GIF, 2002), feature power density and tem-
perature ranges, experienced by structural materials, such that the
corresponding spatial dependence cannot be neglected. At the
state of the art, a more complete approach, which takes into
account the coupling among the neutronics with the other physics,
is given by the Multi-Physics (MP) approach (see e.g., Cammi et al.,
2011; Aufiero et al., 2013), where all the involved physics are sim-
ulated within the same computational environment. The main
drawback of the MP is that the computational burden is quite high,
and simulating the entire core turns out to be very demanding in
terms of computational costs. In addition, it is quite difficult to
get the system governing dynamics and then set up a simulation
tool that may assess and represent the dynamic response of the
overall system at different operating conditions.

It is therefore necessary to develop a sufficiently accurate
description of the reactor core spatial dynamics, based on a set of
ODEs to be employed in a control-oriented simulator. To this
aim, in the present paper, the capabilities of two approaches –
the Modal Method (MM) (Stacey, 1969; Xia et al., 2012) and one
based on the Proper Orthogonal Decomposition (POD) (Holmes
et al., 1996; Chatterjee, 2000; Liang et al., 2002; Buchan et al.,
2013) technique – are compared on a 2D domain. The comparison
focuses on the capability of the two approaches of reproducing
both the reactivity and the neutron flux shape for different reactor
configuration, with reference to a TRIGA Mark II reactor (General
Atomic, 1964). Such reactor has been selected as case study
because it is a pool-type reactor, whose core features a non-sym-
metric configuration, beside being cooled with water in natural
convection. Moreover, the simulation outcomes will be assessed,
in a future work, by means of collected experimental data. How-
ever, the main focus of the present paper is the comparison of
the above mentioned MM and POD approaches to find out the right
track to be pursued in the future. Therefore, since this study is
more concerned on the modelling approaches, rather than the
reactor model itself, the geometry of the reactor has been taken
2D to speed up the computational time.

The MM approach was theorized in the sixties (Stacey, 1969)
but it was not systematically employed because of the high com-
putational burden for the determination of the higher order eigen-
functions of a reactor core. The MM, basically, approximates a
function by means of a linear combination of its eigenfunctions.
Nowadays, in literature it is possible to find many attempts in
developing non-zero dimensional reactor models for different
applications by means of modal synthesis method. For a review
of the works carried out in the nuclear engineering field, the reader
may refer to Xia et al. (2012).

Similarly to the MM, the POD was not recently theorized
(Pearson, 1901) but it was not widely exploited until the advent
of electronic computers. The POD is a reduction order technique
aimed at obtaining the most characteristic structure of the prob-
lem using a low-dimensional approximate descriptions of a high-
dimensional process (Quarteroni et al., 2011). Applications of
POD include image processing, data compression, signal analysis,
modelling and control of chemical reaction systems, turbulence
models, coherent structures in fluids, control of fluids and electri-
cal power grids. In the nuclear engineering field, POD has not been
extensively employed, even though its potentialities have been
underlined, e.g., (Merzari and Ninokata, 2011 and Prill and Class,
2014) to name a few. In literature, examples of the application of



POD to neutronics can be found in Wols (2010) and Buchan et al.
(2013). The former presents a POD-based reduced order model
for the mono-energetic generalized eigenvalue equation, which is
associated to the neutron diffusion equation in the steady state
condition. In the latter, the multi-group time-dependent neutron
flux is approximated as a linear combination of a-eigenfunctions,
while the POD is briefly addressed and not applied to the time-
dependent problem. The study reported in the present paper
shares some aspects with the work of Wols (2010) and such
approach has been further improved. Indeed, for the first time,
the POD capabilities are exploited for solving the multi-group
time-dependent neutron diffusion equation by training the POD
basis to handle localized perturbations, as it will be suitably
explained in Section 4. In particular, two opportunities of POD
approach have been exploited: the primal Galerkin projection onto
a low dimensional space, which is spanned by the so-called most
energetic basis (Merzari and Ninokata, 2011), and off-line/on-line
decomposition strategies, which allow achieving small calculation
cost for a high performance in real-time simulation. As a major
outcome, there is a great saving in on-line computation for each
input–output evaluation of the quantities of interest, while an
increase of preprocessing (off-line) calculation has to be dealt with
(Rozza et al., 2008).

The paper is organized as follows. Section 2 presents the reactor
chosen as case study and its modelling. The MM and the POD
approaches are described in Sections 3 and 4, respectively. In Sec-
tion 5, the Inverse Method used to compute the reactivity accord-
ing to the two approaches is presented. Subsequently, the
comparison between the MM and POD results is detailed in
Fig. 1. Map of the TRIGA
Section 6. Finally, the main conclusions and the next steps to be
taken are drawn in Section 7.
2. Modelling

The TRIGA Mark II reactor of the University of Pavia (Italy) has
been chosen as case study. The TRIGA is a research thermal reactor
cooled with water circulating in natural convection. Fig. 1 shows
the map of the core, which features three control rods (SHIM,
TRANSIENT, REGULATING), two irradiation channels (C.T., RABBIT),
and one channel where the source for the start-up of the reactor is
placed surrounded by two elements of graphite (DUMMY). All
other elements are fuel pins.

In order to describe the neutron kinetics the multi-group diffu-
sion theory (Duderstadt and Hamilton, 1976), with two energy
groups and eight group of precursors (Cm) has been employed. In
equations, it reads:

V�1 @U
@t
¼ r � DrU

� �
� RaU� RsUþ ð1� bÞvpFTUþ ð1Þ

þ
X

m

kmvdCm;

@Cm

@t
¼ �kmCm þ bmFTU for m ¼ 1; . . . ;8; ð2Þ

with a given initial condition

Uðt ¼ 0Þ ¼ U0 and Cmðt ¼ 0Þ ¼ C0
m; ð3Þ
Mark II reactor core.



Fig. 2. Geometry employed in SERPENT code for representing the system
configuration.

Fig. 3. Geometry of the pin employed in SERPENT code.

Table 1
Isotopic composition of the SERPENT input materials.

Fuel Cladding Water

Isotope wt% Isotope wt% Isotope atomic ratio

U-235 1.607 V-nat 0.10 O-16 1.0
U-238 6.531 Cr-nat 0.02 H-1 2.0
Zr-nat 90.836 Mn-nat 0.01
H-1 1.026 Fe-nat 0.10 Air

Al-27 99.57 Isotope wt%

Cu-nat 0.10 O-16 10.0
Ga-nat 0.10 N-14 90.0
where

U ¼ U1ðr; tÞ
U2ðr; tÞ

� �
;

V�1 ¼
1
v1
ðrÞ 0
0 1

v2
ðrÞ

" #
;

D ¼ D1ðrÞ 0
0 D2ðrÞ

� �
;

Ra ¼
R1

aðrÞ 0
0 R2

aðrÞ

" #
;

Rs ¼
R1!2

s ðrÞ �R2!1
s ðrÞ

�R1!2
s ðrÞ R2!1

s ðrÞ

" #
;

vp ¼
v1

p

v2
p

" #
;

FT ¼ mR1
f ðrÞ mR2

f ðrÞ
h i

;

vd ¼
v1

d
v2

d

� �
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð4Þ

2.1. Neutronic input generation with SERPENT

The neutronic parameters ðV�1;D;Ra;Rs;vp; F
T ;vdÞ have been

generated by means of the continuous energy Monte Carlo neutron
transport code SERPENT (SERPENT, 2011), which features group
constant generation capabilities, using the nuclear data library JEFF
3.1 (Koning et al., 2006). As far as the SERPENT model is concerned,
the core and the pin geometries are represented, respectively, in
Figs. 2 and 3. All the fuel pins have been taken into account with
the surrounding cladding, the two irradiation channels have been
considered empty (filled with air), whereas, for the sake of simplic-
ity, the control rods, the dummy elements and the source have
been ‘‘replaced’’ with water. The isotopic composition of the input
materials is provided in Table 1.

The group constants have been obtained after runs of 10 mil-
lions active neutron histories. Simulations consist of 500 active
cycles of 2 � 104 neutrons, leading to a standard deviation lower
than 3% for all the computed parameters.1 Fifty inactive cycles are
adopted to allow the convergence of the fission source distribution
employed for the active cycles. When the neutronic parameters for
the void have been generated, the air has been homogenized with
the surrounding water ensuring that the diffusion approximation
holds. In addition, for the sake of simplicity, the fuel pins have been
homogenized with the cladding and the coolant. The parameters
generated, which have been used as input for both the MM and
POD approaches, are reported in Table 2.

The homogeneous Dirichlet Boundary Conditions (BC) have
been set, which lead to a good approximation of flux shape and
reactivity value. Indeed, the core is surrounded by a ring of reflec-
tor of graphite, which improves the neutron thermalization. This
leads to a small increase of the thermal flux near the border that
cannot be taken into account with the employed BC. Therefore,
the flux shape is correctly evaluated throughout the core, except
near the external border. Since this work is more focused on the
comparison of the two approaches, rather than on the develop-
ment of an accurate model of the reactor, the adoption of such
BC may be still considered acceptable.

2.2. Deriving the system of ODEs

In order to derive the system of ODEs, which describes the reac-
tor kinetics, the flux has been approximated as follows:
1 Thanks to the reduced values of the obtained standard deviations, performing an
uncertainty propagation has not been considered necessary.
U ’
XN

i¼1

bi aiðtÞ; ð5Þ

where



Table 2
Neutronic parameters generated by the SERPENT code.

Parameter Fuel Water Void

D1 ½m� 8:77 � 10�3 8:51 � 10�3 3:82 � 10�2

D2 ½m� 1:92 � 10�3 1:39 � 10�3 7:13 � 10�3

R1
a ½m�1� 4:85 � 10�1 5:04 � 10�2 1:23 � 10�2

R2
a ½m�1� 7.53 1.70 4:18 � 10�1

R1
f ½m�1� 3:15 � 10�1 – –

R2
f ½m�1� 1:08 � 101 – –

R1!2
s ½m�1� 3.04 5.34 9:08 � 10�1

R2!1
s ½m�1� 3:21 � 10�2 2:49 � 10�2 1:18 � 10�2

1=v1 ½s=m� 5:87 � 10�6 7:58 � 10�6 6:58 � 10�6

1=v2 ½s=m� 3:00 � 10�4 3:47 � 10�4 3:30 � 10�4

v1
p ½—� 1.0 – –

v2
p ½—� 0.0 – –

v1
d ½—� 1.0 – –

v2
d ½—� 0.0 – –

Fig. 4. Mesh employed for the finite element calculations.

bi ¼

b1
i ðrÞ 0

0 b2
i ðrÞ

" #
;

aiðtÞ ¼
a1

i ðtÞ
a2

i ðtÞ

" #
:

8>>>>><
>>>>>:

ð6Þ

In Eq. (5), fbig is a spatial basis where the flux is projected, and aiðtÞ
are the time-dependent coefficients, which are the unknowns of the
obtained ODEs system. In this work, two spatial bases have been
considered, one generated by the eigenfunctions associated to Eq.
(1) (MM approach), and one generated by means of the POD
technique.

Once Eqs. (1) and (2) are projected onto the corresponding spa-
tial basis, the following equations for j ¼ 1; . . . ;N are obtained for
both approaches:

XN

i¼1

sji _aiðtÞ ¼
XN

i¼1

AjiaiðtÞ þ ð1� bÞFp;jiaiðtÞ
h i

þ ð7Þ

þ
X8

m¼1

kmCmjðtÞ;

_CmjðtÞ ¼ �kmCmjðtÞ þ bm

XN

i¼1

Fd;jiaiðtÞ for m ¼ 1; . . . ;8; ð8Þ

where the expressions for the parameters sji; Aji; Fp;ji; Cmj; Fd;ji will

be given in Sections 3 and 4 for the MM and POD approach, respec-
tively. The aiðtÞ coefficients can be computed integrating in time the
above system of ODEs starting from a given initial condition. In par-
ticular, the stiff solver ode15s provided by MATLAB� and
SIMULINK� software (2005) has been employed.

The needed calculations for the definition of the two spatial
bases have been performed using the finite element method
(Quarteroni and Valli, 2008). The mesh employed (Fig. 4) features
a 2D geometry using tri-noded triangular elements, where, for
the sake of simplicity, all the fuel pins have been homogenized
and only the two irradiation channel regions have been taken
separated.

3. Modal Method approach

The essential feature of Modal Methods is spanning the expan-
sion of spatial modes generated from the reference configuration,
which is described by the non symmetric generalized eigenvalue
problem associated to Eq. (1), namely:

ð�r � Drþ Ra þ RsÞwi ¼ kivpFTwi; ð9Þ
where the eigenfunctions are listed in ascending order starting from
the minimum eigenvalue. The first eigenfunctions of each group w0

give the fundamental flux distribution. The core criticality condition
is determined by the inverse of k0.

The former equation can be rewritten in the operator theory
context as follows:

Lwi ¼ kiMwi; ð10Þ

where the operators denoted in (10) are the neutronic removal
operator L ¼ ð�r � Drþ Ra þ RsÞ and the production operator

M¼ vpFT . Because of the non-Hermitian nature of operator L, the

adjoint generalized problem associated to Eq. (9) has to be solved,
in order to obtain the bi-orthogonal adjoint eigenvectors wyi for

the former harmonic function. From finite element fashion, the
modal approach appears as a Petrov–Galerkin projection on high
dimensional space where the trial functions are the harmonic
modes and the test functions are the adjoint modes.

The steps necessary to derive the system of ODEs, which
describes the reactor spatial dynamics according to the MM
approach, are the following:

1. compute N eigenfunctions wi from Eq. (9);
2. compute N adjoint eigenfunctions wyi from the adjoint problem;
3. flux U is approximated as
U ’
XN

i¼1

wiaiðtÞ; ð11Þ
where
wi ¼
w1

i ðrÞ 0

0 w2
i ðrÞ

" #
;

aiðtÞ ¼
a1

i ðtÞ
a2

i ðtÞ

" #
;

8>>>>><
>>>>>:

ð12Þ
4. substitute the expression of Eq. (11) into Eqs. (1) and (2);
5. pre-multiply Eq. (1) by wyj and Eq. (2) by wyj vd;

6. integrate over the spatial domain X.

Finally, for Eqs. (7) and (8), the following parameters have been
obtained:



sji ¼
R

X wyj V
�1widX;

Aji ¼
R

X wyj r � Dr� Ra � Rs

h i
widX;

Fp;ji ¼
R

X wyj vpFTwidX;

Cmj ¼
R

X wyj vdCmdX;

Fd;ji ¼
R

X wyj vdFTwidX:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð13Þ

It is worth mentioning that for such approach, the number of
eigenfunctions needed to represent the quantities of interest with
a certain level of accuracy for a given perturbed reactor configura-
tion cannot be evaluated a priori (i.e., before the eigenfunctions are
computed) nor a posteriori (i.e., once the eigenfunctions have been
computed).

4. POD-based approach

As stated in the Introduction, the Proper Orthogonal Decompo-
sition (POD) is a reduction order technique aimed at obtaining the
most characteristic structure of the problem – the POD modes –
using a low-dimensional approximate description of a high-dimen-
sional process (Quarteroni et al., 2011). In this work, the POD
modes have been computed relying on the snapshots technique
(Sirovich, 1987). A snapshot is the solution of the high-order prob-
lem for a given combination of parameters, if any, and/or the solu-
tion at a determined integration time. Indeed, the POD builds the
best orthonormal basis functions, in the least square sense, for
the space spanned by the retained snapshots (Quarteroni et al.,
2011), which form the so-called vector of the snapshots. Therefore,
since the shape of the POD modes relies on the information present
in the vector of the snapshots, the POD basis can be trained to
reproduce specific configurations including their solution in the
vector of the snapshots. In this way, the computational burden
can be split into a demanding off-line phase, where the snapshots
and the POD modes are computed, and into an inexpensive on-line
phase where the reduced system is solved. The procedure for com-
puting the POD modes can be summarized in the following steps
(Volkwein, 1999):

1. compute Ns snapshots x1; . . . ;xNs ;
2. build the vector of the snapshots X ¼ ½x1; . . . ;xNs �;
3. perform the Singular Value Decomposition (SVD) on X, so as to

obtain:
X ¼ U S V :
Once the SVD is executed, the columns of the matrix U; ui, are the
POD orthonormal modes, while the singular values, si, associated to
each mode are sorted in descending order in the diagonal matrix S.
The singular value is proportional to the energy of each mode (i.e.,
to the information carried by the mode itself). In this work, the snap-
shots have been computed solving the generalized eigenvalue prob-
lem (9), and the number of retained snapshots is equal to one
hundred. The values of D;Ra, and Rs have been perturbed within

the spatial regions of the two irradiation channels (C.T. and RABBIT,
see Fig. 1), to train the POD basis to handle such kind of perturba-
tions, because, as reported in Section 6, they will be object of study.
The values of the perturbed neutronic parameters have been ran-
domly sampled in the range defined by their nominal values corre-
sponding to water and void. For example, the absorption cross
sections are sampled in the range defined as follows:

Ra 2 RaðvoidÞ;RaðwaterÞ
h i

: ð14Þ
Once Eqs. (1) and (2) are projected onto the POD basis, the same
functional forms of Eqs. (7) and (8) are obtained in which the fol-
lowing parameters have been employed:

sji ¼
R

X ujV
�1uidX;

Aji ¼
R

X uj r � Dr� Ra � Rs

h i
uidX;

Fp;ji ¼
R

X ujvpFT uidX;

Cmj ¼
R

X ujvdCmdX;

Fd;ji ¼
R

X ujvdFT uidX:

8>>>>>>>>>><
>>>>>>>>>>:

ð15Þ

Differently from the Modal Method, the POD approach ensures
an a posteriori estimate about the amount of information stored in
the POD basis, defined by the following criterion (Atwell and King,
2004):Pe

i¼1siPNs
i¼1si

> E; ð16Þ

where e provides an estimate of the number of basis functions nec-
essary for an approximation with a desired mean square error less
than ð1� EÞ

PNs
i¼1si. In this way, the e modes retain E � 100 percent of

the information stored in the vector of the snapshots X.

5. Reactivity evaluation by means of the Inverse Method

In Section 1, it has been stated that the developed approaches
allow getting the system spatial dynamics, in addition to the
time-dependent one, in order to monitor the evolution during
operational transients of quantities of interest. Conversely, the
most relevant output variable that allows the operator to effec-
tively programme the control rod motion is the system reactivity,
whose value determines the time-dependence of the externally
imposed reactivity to yield a certain power variation. Therefore,
from a control and safety oriented perspective, it is fundamental
to evaluate the contribution of the several reactivity feedbacks.

Indeed, the perturbation performed on the system will be local-
ized to a certain zone of the core. According to the position, the
reactivity variation will be different, and the model should get
these aspects and predict how the perturbation will extend to
other core regions, reproducing these spatial dynamics effects. In
the present work, the evaluation of the reactivity has been derived
by means of the Inverse Method (Duderstadt and Hamilton, 1976).
After a brief description of the classical formulation, it will be indi-
cated how the algorithm has been modified and related to the
time-dependent variables of the Modal-based and the POD-based
approaches.

The Inverse Method refers to the following system of non-linear
equations constituting the PK model:

dW
dt
¼ qðtÞ � b

K
Wþ

X8

m¼1

bm

K
gm; ð17Þ

dgm

dt
¼ kmW� kmgm: ð18Þ

The state of the system is represented by the following normal-
ized variables:

WðtÞ ¼ PðtÞ
Pð0Þ ; ð19Þ

gmðtÞ ¼
CmðtÞ
Cmð0Þ

; ð20Þ

whose initial conditions are defined as gmð0Þ ¼ 1 and Wð0Þ ¼ 1. By
substituting the analytical solution of precursor concentration into
Eq. (17), it is possible to write:



2 The eigenfunctions of the MM have been computed for this configuration.
dW
dt
¼ qðtÞ � b

K
Wþ

X8

m¼1

bm

K
e�kmt þ

Z t

0
kmWðt0Þekmðt0�tÞ� �

dt0
� �

: ð21Þ

Once defined the delay quantity s ¼ t � t0 and identified the
‘‘delayed neutron kernel’’ as:

DðsÞ ¼
X8

m¼1

kmbm

b

� 	
e�kms;

it is possible to rearrange Eq. (21), obtaining an integro-differential
form of the reactor point kinetics:

qðtÞ ¼ bþ K
WðtÞ

dW
dt
� 1

WðtÞ
X8

m¼1

bme�kmtþ

� b
WðtÞ

Z t

0
DðsÞWðt � sÞds:

ð22Þ

This expression indicates that by properly combining the PK
equations it is possible to get an expression of the overall system
reactivity, qðtÞ, as a function of the normalized power WðtÞ. Given
this result, the classical formulation of the Inverse Method has
been extended, starting from the outcomes provided by the Modal
and POD approaches. First of all, the expression of the thermal
power density can be expressed as:

q000ðr; tÞ ¼
X

l

wðlÞf NlðrÞ
Z 1

0
rðlÞf ðEÞUðr; E; tÞdE; ð23Þ

where l refers to the l-th fissile isotope, wðlÞf is the recoverable
energy for each isotope fission event, NlðrÞ is the isotope density,
rðlÞf ðEÞ is the microscopic fission cross section for the l-th isotope,
Uðr; E; tÞ is the neutron flux as function of position, energy and time.
In the developed model, two neutron energy groups have been
taken into account. Therefore, in Eq. (23) the integral is substituted
by the following expression:

q000ðr; tÞ ¼
X

l

wðlÞf NlðrÞ � rðlÞf1
ðEÞU1ðr; tÞ þ rðlÞf2

ðEÞU2ðr; tÞ
h i

: ð24Þ

After having obtained the fission macroscopic cross section for the
considered domain, by integrating the expression (24) on the fuel
pins volume, it possible to derive the value of the overall thermal
power produced as follows:

PðtÞ ¼ wf �
Z

V
R1

f ðEÞU1ðr; tÞ þ R2
f ðEÞU2ðr; tÞ

h i
dV : ð25Þ

According to the presented approaches, the thermal and fast neu-
tron fluxes have been expressed as a series of suitably defined func-
tions in the form:

U1ðr; tÞ ¼
XN

i¼1

b1
i ðrÞa1

i ðtÞ; U2ðr; tÞ ¼
XN

i¼1

b2
i ðrÞa2

i ðtÞ: ð26Þ

By substituting these expressions in Eq. (25), the instantaneous
value of the thermal power produced in the reactor core is
achieved:

PðtÞ ¼ wf �
XN

i¼1

a1
i ðtÞ � hR

1
f jb

1
i iV þ a2

i ðtÞ � hR
2
f jb

2
i iV

h i
: ð27Þ

The terms hR1
f jb

1
i iV and hR2

f jb
2
i iV of the summation are evaluated off-

line, while the a1
i ðtÞ and a2

i ðtÞ coefficients are computed by solving
the developed ODE system defined by Eqs. (7) and (8). In order to
derive the normalized power WðtÞ, represented by Eq. (19), it is nec-
essary to refer PðtÞ to the power at nominal conditions Pð0Þ. In this
work, it has been assumed Pð0Þ ¼ 1 �wf . Therefore, WðtÞ is simply
given by:
WðtÞ ¼ PðtÞ
Pð0Þ ¼

XN

i¼1

a1
i ðtÞ � hR

1
f jb

1
i iV þ a2

i ðtÞ � hR
2
f jb

2
i iV

h i
: ð28Þ

By substituting WðtÞ into Eq. (22), the system reactivity q can be
derived.
6. Results and discussion

The comparison of the outcomes provided by the MM and the
POD approaches focuses on the capability of evaluating the reactiv-
ity and the neutron flux shape. The different considered reactor
configurations are the following:

(i) both the irradiation channels are empty (nominal configura-
tion,2 unperturbed);

(ii) water in the central channel, the RABBIT is empty;
(iii) water in the RABBIT, the central one is empty;
(iv) absorption cross sections have been homogeneously

reduced by 3‰.

The above mentioned configurations, which are shown in Fig. 5,
have been chosen in order to test the reliability and accuracy of the
two approaches on the basis of both localized perturbations (Cases
ii and iii) and homogeneous perturbation (Case iv). The POD basis
has been trained with localized perturbations on the two irradia-
tion channels, hence it is expected that the POD approach leads
to high-fidelity results for Cases (ii and iii). On the other hand,
the MM approach is likely to give good results for a homogeneous
perturbation. The Cases (ii and iii) have been selected in order to
asses if the two approaches manage to take into account spatial
effects. Indeed, the same perturbation (i.e., void is replaced by
water) is applied to different positions of the core where the neu-
tron flux importance is different. Hence, the reactivity values are
expected to be different in these two cases.
6.1. Methodology

For each configuration, an eigenvalue calculation – see Eq. (9) –
has been performed by means of the open source finite element
code freeFEM++ (Pironneau et al., 2012) relying on the ARPACK
packages (Lehoucq et al., 1998), which implement an efficient
implicit Arnoldi procedure, and on the MUltifrontal Massively Par-
allel sparse direct Solver (MUMPS) (Amestoy et al., 2000). The
obtained reactivity value and flux shape will be referred to as ref-
erence solution.

Subsequently, using the MATLAB/Simulink environment
(MATLAB� and SIMULINK� software, 2005), the evolution of the
system described by Eqs. (7) and (8), within the first 60 s, has been
simulated according to the MM and POD approaches. The reactivity
has been estimated by means of the described procedure of the
Inverse Method (Section 5) after infinite time elapsed subsequent
the step reactivity insertion. In order to compare the computed flux
shapes with the reference one, which is time-independent, the for-
mer, at the end of the simulation, are normalized as follows:Z

X
ðU1 þU2ÞdX ¼ 1: ð29Þ

A sensitivity analysis for the outcomes provided by the MM and
POD approaches has been carried out varying the number of basis
functions up to 100. For the sake of completeness, the trivial case
with only one basis function has been considered as well, showing
the necessity of allowing for an increased number of modes.



(a) Case i (b) Case ii (c) Case iii (d) Case iv

Fig. 5. The four reactor configurations simulated. The perturbed areas, with respect to nominal configuration (Case i), are highlighted in red. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
In the following, the outcomes of the two approaches, for each
reactor configuration, will be presented and discussed.
6.2. Case i: unperturbed configuration

This case is the nominal configuration (unperturbed) of the
reactor. According to the two approaches, the estimated values of
reactivity, varying the number of basis functions, are reported in
Table 3, and they are graphically compared in Fig. 6. The POD pre-
diction, if the basis is made of only the first function, is very far
from the reference value but it gets closer when two and three
functions are used. If four or more functions are employed, the
value of the reactivity does not change anymore. Even increasing
the number of functions employed, the reactivity values estimated
by means of the MM approach does not change, since the reference
flux shape is precisely the first eigenfunction of each group. The
Table 3
Reactivity calculations for the configuration corresponding to Case i.

# Of functions Reactivity (pcm)

Reference POD MM

1 0 �765.3 4.5
2 0 �14.7 4.5
3 0 �0.7 4.5
4 0 0.8 4.5
5 0 0.8 4.5
6 0 0.8 4.5
7 0 0.8 4.5
8 0 0.8 4.5
9 0 0.8 4.5

10 0 0.8 4.5
50 0 0.8 4.5

100 0 0.8 4.5

Fig. 6. Reactivity calculations for the configuration corresponding to Case i.
flux shape of the energy group 2 (from now on referred to as ther-
mal group) given by the two approaches is compared to the refer-
ence one in Fig. 7. In particular, the reference flux shape (a), POD
(b) using 4 functions, and MM (c) employing 10 eigenfunctions
are depicted. The MM flux shape is coincident with the reference
one, while the POD flux shape is very close.
6.3. Case ii: water in the central channel

This kind of perturbation may be considered as the worst case,
since the perturbation is quite localized in a position where the
neutron importance is higher. The reactivity values provided by
the two approaches, employing different number of basis func-
tions, are reported in Table 4, and the chart shown in Fig. 8 com-
pares the results. The POD prediction, if the basis is made of only
the first function, is very far from the reference value but it gets
Fig. 7. Thermal flux shape for Case i: reference (a), POD (b), and MM (c). Data are
reported in arbitrary units.



Table 4
Reactivity calculations for the configuration corresponding to Case ii.

# Of functions Reactivity (pcm)

Reference POD MM

1 166.4 650.4 365.2
2 166.4 155.6 365.2
3 166.4 167.5 365.2
4 166.4 167.2 365.2
5 166.4 167.2 365.1
6 166.4 167.2 345.5
7 166.4 167.2 345.5
8 166.4 167.2 345.5
9 166.4 167.2 345.4

10 166.4 167.2 345.4
50 166.4 167.2 300.4

100 166.4 167.2 266.9

Fig. 8. Reactivity calculations for the configuration corresponding to Case ii.

Fig. 9. Thermal flux shape for Case ii: reference (a), POD (b), and MM (c). Data are
reported in arbitrary units.

Table 5
Reactivity calculations for the configuration corresponding to Case iii.

# Of functions Reactivity (pcm)

Reference POD MM

1 3.4 �745.0 1.510
2 3.4 7.5 1.505
3 3.4 3.6 1.505
4 3.4 4.2 1.504
5 3.4 4.2 1.490
6 3.4 4.2 1.502
7 3.4 4.2 1.490
8 3.4 4.2 1.485
9 3.4 4.2 1.485

10 3.4 4.2 1.468
50 3.4 4.2 0.985

100 3.4 4.2 0.577
closer when two and three functions are used. If four or more func-
tions are employed, the value of the reactivity does not change
anymore. The reactivity values estimated by means of the MM
approach slightly converges to the reference value as the number
of functions employed increases. This slight change is due to the
fact that for such perturbation, only the odd eigenfunctions man-
age to reflect a change in the middle of the core, but the series of
all eigenfunction does not inherit this property. As a result, even
employing 100 eigenfunctions, the reactivity is overestimated by
a factor of 1.6. Conversely, by employing only four POD functions,
the reactivity differs from the reference value by 0.8 pcm, which is
the offset when compared to the unperturbed configuration (Case
i, see Table 3). In Fig. 9, the reference (a) flux shape, the one com-
puted according to the POD approach (b) employing 4 functions,
and according to the MM approach (c) using 10 functions, are rep-
resented. The MM approach cannot represent any flux shape vari-
ation if compared to the nominal configuration (see Fig. 7) – even
though the estimated reactivity is more than twice the reference
one. On the other hand, the flux shape computed by the POD
approach fits very well the reference one.

6.4. Case iii: water in the RABBIT channel

In this test case, the same perturbation as in the previous Case
(ii) is applied, but localized in a different position. In fact, the water
is placed in the peripheral RABBIT channel, where the neutron
importance is much lower compared to the middle of the reactor
core. This leads to a lower reactivity change, in comparison with
the previous case. The estimated reactivity, according to the two
approaches, varying the number of functions employed, is reported
in Table 5, and the corresponding chart is shown in Fig. 10. The
POD prediction behaves as discussed in the previous cases. Indeed,
if the basis is made of only the first function, the outcome is quite
different from the reference value, while with four or more basis
functions employed the value of the reactivity does not change
anymore. The difference between the prediction of the POD
approach differs by 0.8 pcm with respect to the reference value,
which is the offset when compared to the unperturbed configura-
tion (Case i, see Table 3). The reactivity values estimated by means
of the MM approach barely change by increasing the number of
functions employed, but the trend seems to be divergent in com-
parison with the reference value. If the entity of this perturbation,



Fig. 10. Reactivity calculations for the configuration corresponding to Case iii. Fig. 11. Reactivity calculations for the configuration corresponding to Case iv.
in terms of reactivity, is compared to the previous one, it can be
deduced that both the two approaches effectively reproduce the
system spatial effects. Indeed, both the methods have provided a
bigger reactivity change, with respect to the unperturbed configu-
ration, when the perturbation is applied in the center of the core.
Otherwise, a smaller effect has been seen when the same perturba-
tion is applied where the importance of the neutron flux is much
lower.

In this case, the flux shape variation is small, hence it is not wor-
thy to show the neutron fluxes provided by the two approaches.
6.5. Case iv: homogeneous perturbation

In this case, a homogeneous perturbation throughout the core is
simulated by reducing the absorption cross sections by 3‰.
According to the two approaches, the computed reactivity values,
varying the number of basis functions, are given in Table 6, and
they are graphically compared in Fig. 11. Also for this kind of per-
turbation, the outcomes provided by the POD approach are not
accurate when only one basis function is employed. If four or more
modes are adopted, the reactivity value is closer to the reference
one and it does not change anymore by increasing the number of
functions. The estimation of the reactivity provided by the MM
does not change sensitively by increasing the number of functions
employed. However, the outcomes of both approaches are in fair
agreement with the reference value.
Table 6
Reactivity calculations for the configuration corresponding to Case iv.

# Of functions Reactivity (pcm)

Reference POD MM

1 309.0 �462.6 297.936
2 309.0 287.8 297.936
3 309.0 301.8 297.936
4 309.0 303.3 297.936
5 309.0 303.3 297.936
6 309.0 303.3 297.936
7 309.0 303.3 297.935
8 309.0 303.3 297.935
9 309.0 303.3 297.935

10 309.0 303.3 297.935
50 309.0 303.3 297.935

100 309.0 303.3 297.935
As in the previous test case (Case iii), the homogeneous pertur-
bation does not change significantly the flux shape, hence the neu-
tron fluxes provided by the two approaches are not worthy of
remarks.
6.6. Discussion

The comparison between the presented control-oriented
approaches for the nuclear reactor kinetics has been performed
on different reactor configurations.3 Whether a homogeneous per-
turbation is evaluated (Case iv), both the approaches exhibit good
capabilities to approximate the flux shape. On the other hand, if
the perturbation is localized, the MM requires a considerable num-
ber of eigenfunctions to correctly predict the reactivity. Moreover,
the flux shape predicted according to the MM does not reflect the
localized perturbation. Conversely, the outcomes provided by the
POD approach, employing only four basis functions, are high-fidelity
with respect to the reference ones, in terms of reactivity and flux
shape, independently on the kind of applied perturbation.

The motivation of the better results obtained by POD are due to
the difference between the shape of the corresponding POD
(Fig. 12) and MM (Fig. 13) basis functions, where for brevity only
the first four modes for the thermal group are shown. The first
POD function (starting from the left) provides the overall flux
shape, while the higher order functions give contributions only
where the perturbations can be applied. Such shape reflects the
training that has been performed to compute the POD basis. On
the other hand, the shape of the MM functions depends on the
operators L and M of the generalized eigenvalue Eq. (10) and on
the geometry of the unperturbed core. Therefore, the MM basis
has no information where the perturbations may occur.

For each case considered, the outcomes provided by the POD
approach behave in the same way. In particular, if a single basis
function is employed, the reactivity value is quite far from the ref-
erence one, whereas it gets closer when two and three functions
are used. If four or more functions are employed, the value is in
good agreement with the reference one and does not change any-
more. Indeed, the importance of contribution given by each POD
function is decreasing, meaning that the next function carries less
information (or energy) than the previous one. The energy associ-
ated to each POD function is shown in Fig. 14. The difference
3 The considered reactor core configurations have been achieved starting from an
unperturbed configuration, to which either localized or homogeneous perturbations
have been applied.



Fig. 12. The first four POD basis functions for the thermal group.

Fig. 13. The first four MM basis functions for the thermal group.
between the first and the fourth value is equal to several orders of
magnitude. This means that the information stored in the vector of
the snapshots can be reproduced by only few functions. Relying on
the a posteriori criterion, Eq. (16), the retained information,
expressed in percent, with respect to the number of functions
employed, is reported in Fig. 15. It can be seen that with two basis
functions more than the 99% of the information stored in the vector
of the snapshots is allowed for, and with four functions all the
information is reproduced. Hence, the contribution of the functions
beyond the fourth one is negligible. For this reason, the outcomes,
obtained employing more than four functions, do not change
considerably.

Conversely, the outcomes provided by the MM approach behave
differently in the considered cases. In particular, for the unper-
turbed configuration, the quantities of interest do not change by
increasing the number of functions. For Case (ii), as the number
of modes is increased, the reactivity value slightly converges to
the reference value. In Case (iii), although the reactivity value is
close to the reference one, there is a divergent trend. Finally, when
a homogeneous perturbation is applied (Case iv), the reactivity



Fig. 14. Energy of POD functions for the thermal group.

Fig. 15. Relative information taken into account with respect to the number of
functions employed for the POD spatial basis.
value does not change by increasing the number of functions. The
importance of each eigenfunction depends on the kind of perturba-
tion, and it cannot be provided neither a priori nor a posteriori esti-
mation. For example, in the Case (ii), only the odd eigenfunctions
can contribute to reveal a change in the middle of the core.
7. Conclusions

In this paper, two control-oriented modelling approaches, based
on a Modal Method (MM) and on the Proper Orthogonal Decompo-
sition (POD) technique, for the nuclear reactor kinetics have been
presented and compared. Both are able to simulate the spatial
dynamics of the reactor, while the usually adopted point-wise
kinetics is not sensible to spatial effects. In order to asses the reli-
ability of these two approaches, different reactor core perturbations
have been simulated, with reference to the TRIGA Mark II reactor of
the University of Pavia. In particular, either localized or homoge-
neous perturbations have been investigated. The system reactivity
and the neutron flux shape predicted by the MM and POD
approaches have been the main focus for the comparison. The out-
comes provided by the POD approach, employing as few as four
basis functions, are high-fidelity, with respect to the reference ones,
for all the cases considered. Conversely, the MM approach leads to
good results when the perturbation is homogeneous. On the other
hand, if the perturbation is localized, a considerable number of
eigenfunctions may be required to correctly predict the reactivity.

The presented work is meant to be a preliminary investigation
on the adoption of these two approaches in order to find the right
track to be pursued in the future. The TRIGA reactor modelling will
be improved in order to provide results that can be assessed with
collected experimental data. In this perspective, a more detailed
core geometry (e.g., 3D modelling) along with a neutronic descrip-
tion using four energy groups will be developed. In addition, the
modelling of the thermal-hydraulics phenomena is foreseen.
Finally, in order to avoid the presence of redundant information,
which may occur whether the adopted random sampling is carried
out, a more efficient sampling of the snapshots will be investigated.
The possibility of employing different reduced order methods, such
as reduced basis (see e.g., Manzoni et al., 2012), in a many-query
framework (e.g., multi-physics and multi-scale modelling) is envis-
aged as well.
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