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Abstract

Decay patterns of matrix inverses have recently attracted considerable interest, due
to their relevance in numerical analysis, and in applications requiring matrix function
approximations. In this paper we analyze the decay pattern of the inverse of banded
matrices in the form S = M ® I, + I, ® M where M is tridiagonal, symmetric and
positive definite, I,, is the identity matrix, and ® stands for the Kronecker product. It is
well known that the inverses of banded matrices exhibit an exponential decay pattern away
from the main diagonal. However, the entries in S~! show a non-monotonic decay, which
is not caught by classical bounds. By using an alternative expression for S~!, we derive
computable upper bounds that closely capture the actual behavior of its entries. We also
show that similar estimates can be obtained when M has a larger bandwidth, or when
the sum of Kronecker products involves two different matrices. Numerical experiments
illustrating the new bounds are also reported.

1 Introduction
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We consider nonsingular matrices S of size n? x n? that can be written as

S=MeI,+1,2 M, (1)

where M is an n x n banded symmetric and positive definite matrix (SPD) and ® is the
Kronecker product; here I, is the identity matrix of size n. Matrices in this form may arise
for instance in the discretization of two-dimensional partial differential equations by means
of finite difference, spectral or finite element methods. We say that a symmetric matrix A is
b-banded if its entries A;; satisfy A;; = 0 for |¢ — j| > b. In the following, we shall mainly
focus on the case when M is tridiagonal, so that b = 1. As a consequence of M being banded,
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S will also be banded, although its bandwidth will be much larger: if b is the bandwidth of
M, then b - n will be the bandwidth of S.

We are interested in exploring the magnitude pattern of the entries (S_l)ij. It is well-
known that although the inverse of a banded matrix is full in general - and in particular it is
not banded - its entries exponentially decay as their location deviates from the main diagonal,
such a decay pattern was analyzed in detail in [12] for S a general symmetric positive definite
b-banded matrix. Indeed, it was shown in [12] that

(5™l < a7 2)
where & is the condition number of S, ¢ = (vk — 1)/(v/k + 1), 7 = max{A\nmin(S) 1,4}, and
4 = (1 + v/kK)?/(2Amax(S)); in this bound the diagonal elements of S are assumed not to be
greater than one. Here and in the following, Amin(-), Amax(:) denote the smallest and largest
eigenvalues of the given symmetric matrix.

Decay patterns have attracted considerable interest in the scientific computing community
in the last two decades, due to their relevance in the context of linear system preconditioning
[6], [2], low-rank approximation strategies such as hierarchical matrices, wavelets etc. [23],
[1], and in a large variety of applications requiring matrix function approximations, such as
electronic structure calculations, complex networks, robotics, etc.; see, e.g., [4], [7],[5],[3],[17],
and the references therein.

A large amount of literature has focused on the inverse entries of (irreducible) tridiagonal
matrices for which explicit formulas and recurrence relations are now available; see, e.g.,
[21], [19] and their references. Some of these results can be generalized to block tridiagonal
cases, of which () is a particular case for M tridiagonal, however accurate estimates for the
entries have only been obtained under more restrictive assumptions [20]. In [19], for instance,
the case of the discretization of the two-dimensional Poisson operator was considered, which
corresponds to () with M SPD, tridiagonal and with constant coefficients (see Example
below).

A key point of the matrices in the form () is that the decay of the entries of its inverse
is not monotonic away from the diagonal. In fact, the entries decay in a way that recalls a
sinusoidal behavior converging to zero. We report in Figure [l a typical such pattern, obtained
for M = —tridiag(1,—2,1) (here and later in the paper, the underlined number lies on the
matrix diagonal), corresponding to the finite difference discretization of the two-dimensional
negative Laplace operator —(ugzy + uyy) in the domain [0,1] x [0,1]. This non-monotonic
behavior has been observed in the literature ([19]), and explained in detail for the case of the
discrete Laplacian, for which precise estimates are available [9], [18], [22]; bounds stemming
from an algebraic analysis were also determined in [I9]. The situation is far less understood
when M is any tridiagonal SPD matrix, or more generally any banded SPD matrix. Clearly,
classical bounds such as the one in (2]) cannot catch this non-monotonic pattern, although its
detection can be crucial in sparsity-based approximation procedures. In this paper we derive
bounds that closely capture this non-monotonic behavior, which is typical of matrices in the
form (). In particular, we show that the decaying oscillation observed in practice in |(S™1); ;|
fori,j =1,...,n?%, strongly depends on, and can be bounded by, the “mesh” distance between
the two indices 4,7 when each of them is represented in a natural n x n grid. In section 2] we
provide sharp estimates, followed by easily computable more qualitative bounds; the latter can
be incorporated, for instance, in numerical thresholding strategies during a sparsity-oriented
approximation of the matrix inverse (see, e.g., section [3).




Figure 1: Pattern of the inverse of the 2D Laplace 100 x 100 matrix in the unit square.

In section Ml we shall extend our results to banded SPD matrices, and to the more general
case

Sg =M ®I,+ I, ® M, (3)

where M; and M are symmetric tridiagonal matrices stemming, for instance, from the dis-
cretization by finite differences of a self-adjoint separable second order differential operator on
a stretched rectangular domain, or of an operator with different coefficients in the two space
directions; see, e.g., [16].

2 Decay of the entries of the inverse of S for M tridiagonal

Let X = S~! and write X = [x1,...,2¢,...,2,2]. A simple but key observation is that each
column ¢t of the inverse X is the solution to the linear system

S:Et = €,

where e; is the t-th column of I,2. Let us define W to be the matrix such that w; = vec(W)
with w; € R™ and W, € R™" (the “vec” operation stacks the columns of W, one below the
other). With this notation, and using the Kronecker form of S, the system above is equivalent
to

MX, + XM = &.

Since e; = vec(&;), t = 1,...,n?%, the matrix & has a single nonzero element (&;);;, with
indices j = [(t —1)/n| +1,i =t —n|(t—1)/n], i,j € {1,...,n}. Therefore, we can write
5t = gi-i-n(j—l) = eie;r.

The derivation above shows that the n? entries of each column of S~!, properly reordered,
correspond to the n X n entries of the solution matrix to a Lyapunov equation. In Figure
we report the pattern of & (left) and of X, (right) for ¢ = 26 when S is the finite difference

discretization of the two-dimensional Laplace operator in the unit square. Note that because



of the isotropy property of the operator, the forcing term (the right-hand side) diffuses in a
similar way in both directions; see also a related discussion in [19] section 4.1].

We next exploit the closed form of the Lyapunov solution to derive bounds for the entries
of S:tl = vec(X;) for each t = 1,...,n2%. Let j = [(t —1)/n] +1,i =t —n[(t —1)/n]. Since
M is positive definite, the solution can be written as (see, e.g., [15])

1 o
X, = %/ (I + M) ™1 E (wol + M) *dw
_ L1 (wI 4+ M) Leje] (wI + M) *dw = L /OO zizidw
2 . v Tor ) TV

where z; = (wl + M) te;. We are interested in estimating the k-th entry of the ¢-th column
of the inverse S~!. Using

Figure 2: Left: Column 46 of the 100 x 100 identity matrix, represented on a 10 x 10 grid.
Right: Column 46 of the inverse Laplacian, represented on a 10 x 10 grid.

m=[(k—1)/n]+1, €=k—n|(k-1)/n], (4)
this corresponds to estimating the entry (X})g,, = e;Xtem of X;, that is
(S_l)kﬂf = (S_l)g—l-n(m—l),t = e;Xtemv 6,m € {17 ce 7n}'

By varying m, ¢ € {1,...,n} all the elements of the t-th column, (S71).; are obtained. We
have

1 [~ .
el Xyey = %/ e 2i(w)zj (W) emdw,
—00

so that

1 [ N
el Akl < o [ el i) |2y e o )

—00



Since e} z;(w) = e, (wI + M)~ Le;, the first term in the integrand above is the absolute value
of the (¢,4) entry of the inverse of tridiagonal matrix (wl + M). In the following we shall
bound each of the two integrand terms, and then we will estimate the obtained integral.

Let Amin, Amax be the extreme eigenvalues of M, and let Ay = Apin + W, A2 = Amax + w.
The matrix wl + M is a purely imaginary shifted version of the tridiagonal matrix M, and
its inverse shows a decreasing pattern, in spite of the complex shift. While estimates for
e} (wI + M)~te;| are well known for w = 0 (see, e.g., [I2} 20, [19]), upper bounds for w # 0
are less so. Upper bounds for |e/ (wl + M)~ 'e;|, w # 0 were given by Freund in [I3, Theorem
6], and we recall this result for future reference.

Proposition 2.1. Assume M is symmetric positive definite and b-banded. Let a = (A +
X2)/(A2 — A1), and R > 1 be defined as R = a+ va? — 1, with a = (|A1| + [A2])/|A2 — A1].
Then o
2R 1\ °
T -1 :
e; (wl + M) "e;| < ———B(a) | = , L£1,
e ol + 0 e < 2 ) (7) .

where, writing a = ag cos(y) + 18g sin(y),

R

Bryfo% — cos2(¥)(an + /o — cos2(¥))

with ap = 3(R+ ) and fr = 3(R - %).

B(a) :=

Clearly, R = R(w). We omit this explicit dependence in the following. FigureBlreports two
typical behaviors of the bound in Proposition 2.1], for the pentadiagonal matrix in Example
A1l The plots refer to w = 0.10 (left) and w = 10 (right): while the bound accurately captures
the slope for large w, this is in general less so for small w. This difference in accuracy in general
may affect the accuracy of our estimates, especially when a bandwidth b greater than one is
used (here b = 2).
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Figure 3: Typical estimate of Proposition 2] (column 10) for the inverse of the pentadiagonal
matrix of Example Il Left: w = 0.1. Right: w = 10.



Since in this section we assume that M is tridiagonal, we shall use the result above for
b = 1; the case b > 1 is explored in section 4l We prove our bound in two steps. In the
first step (Proposition [2.2]), we estimate the entries in terms of an integral, which can be
easily estimated numerically; the results appear to be quite accurate in our examples. In
the second step (Proposition 2.3]), we complete the upper bound by estimating the integrals,
thus incurring in additional inaccuracies. The final bound (Propositions 2.3H2.4]) should be
considered as a qualitative estimate for the entries pattern.

Proposition 2.2. For k,t € {1,...,n?}, let

j=t=1/n]+1, i=t—nl{-1)/n],

and ¢, m as in ({4)). With the notation above, the following holds.
i) If i # £ and j # m, then

1 64 o RO\ 1\ liHimmi=2
-1 < - = _— - 3
|(S )k’t| - 27 |)\max - )\min|2 /—oo <(R2 - 1)2> <R> dw’

i1) If either i =€ or j = m, then

) B2 ( . >|z'—e|+j—m—1
kil S — dw;
(8™ )l < 2 Amax — A mm\/ m +w2 (R2-12\R

i11) If both i = ¢ and j = m, then

5 <o [ 3 1
k = 2 0o mln + w2 2)\min ‘
Proof. To prove i), we recall that |(S™1)..| = |e/ Xtem\ so that (B) holds, and we notice that
a% —1=p% and ag + Br = R. Moreover, W < 1/(1/a% — 1). Therefore,

R R 1
BryJ ok — Lar +4/af — 1) - Piler+Pr) - B

so that, using Proposition 211
2R AR? 1\
T -1
I+ M) e < 1 '
|€£ (Zw + ) €z| = ’)\1—)\2‘(R2—1)2 <R>

Substituting the estimate for each of the two integrand terms in (fl), we obtain

1 64 o R R 1\ 1\ Imal
Xiem T ? R R
lef Xiem| < 27 M — A2 /_OOR (R?2—1)2(R?>-1) <R> <R> e

from which the result follows.
As of ii) we only need to notice that if, for instance, ¢ = i, then

1
|/\min + ZUJ| '

B(a) <

o] (ol + M)~es| < (6)
Substituting into the integral, the bound follows as in the previous case.

For the case iii), the bound () can be used for both pairs of indices, and the final bound
follows. O



We next report on a few examples showing the quality of the estimates in Proposition
As one might expect, the factor in front of the integral slightly deteriorates the estimate,
while qualitatively the decay of the entries in the inverse matrix is perfectly captured. We
observe that the bounds ii) and iii) can be very loose because of the estimate’s weakness in
(6). This can be clearly observed in the numerical experiments, below, where the inaccuracy
of our estimate is more pronounced in correspondence with the highest peaks, namely for
¢ =i and/or m = j. In all examples, the matrix M was scaled by its diagonal, so as to
have entries all not greater than one. Technically, the integral appearing in the bound was
estimated using the adaptive Gauss-Kronrod quadrature rule (Matlab function quadgk).
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Figure 4: Example Il Values of column ¢ = 55 of S~! (solid), estimates for that column as
in Prop[2.2] (dashed), and classical bound in [12] (dash-dotted).

Example 2.1. We consider the symmetric diagonally dominant matrix
M = tridiag(—0.5,2,—0.5) € R10x10

As a sample, we consider column ¢ = 55 (corresponding to the node at i =5 and j = 4 in
the reference grid), and we compute the upper estimate for (S _1):7t as the row index varies.
Figure M shows the accuracy of the estimates in Proposition (dashed curve), compared
with the actual values (solid curve) of column 55. The estimate is able to capture the highly
oscillating decay of the entries of S~! although, as already mentioned, the peaks are somewhat
overestimated. For completeness, the bound (2)) from [12] is also reported; for this bound, we
took into account that S has bandwidth b = n = 10. We observe that this classical bound
provides a good envelope of the actual decay, although, as expected, it misses the oscillation
pattern. We also note that the classical bound matches the peaks of our new bound, showing
that the classical predicted decay is obtained for either ¢ = ¢ or j = m, corresponding to the
rows and columns in the grid most slowing decaying (see also Figure [2).

In the following examples, similar plots are shown, where however all curves are scaled by
the value of the corresponding diagonal, so that the maximum value of the column in one.
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Figure 5: Example Left: Components of column ¢ = 35 of the inverse of the 2D Laplace
100 x 100 matrix in the unit square, and its estimate from Proposition (all curves are
scaled by the values of the corresponding diagonal). Right: upper bounds for all entries of
the inverse (cf. with Figure [I])

Example 2.2. We consider the two-dimensional Laplacian with Dirichlet boundary condi-

tions, discretized by centered finite differences with a 5-point stencil, so that M = tridiag(—1,2,—1) €
R19%10 and S is of size 100. In Figure [§ we report the values of (S71). 35 (solid blue line),

and those of the corresponding upper bound in Proposition The agreement with the
actual behavior of the column entries is very good. Similar plots can be observed for the

other columns of S,

Example 2.3. The second example stems from the discretization of the same operator as
in Example 2] but in terms of the tensorized Babuska-Shen basis, which uses Legendre
polynomials. The corresponding symmetric matrix (for even degrees) is given by (see, e.g.,
[10] and references therein) M = tridiag(dy, yx, dx), where

2

Ve = @h =3k 1) k=1,...,n, and

6 = ! ., k=1,....n—1.
(4k +1)/(4k — 1)(4k + 3)

The plot of Figure [6l reports the actual values of (S‘l):735 and their estimates according to
Proposition Once again, the bounds appear to be fully descriptive of the entry pattern.

The results of Proposition can be manipulated to provide, for each t, more explicit
estimates on the entries of (S _1):7,5; more precisely, they are expressed in terms of the “ index
distance” |[¢ —i| + |m — j|.

Proposition 2.3. For k,t € {1,...,n?} let j=|(t—1)/n| +1,i=t—n|(t—1)/n| and {,m

as in (4).
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Figure 6: Example 2.3l Components of column ¢ = 35 of the inverse of the Legendre stiffness
matrix of size 100 x 100, and its estimate from Proposition (all curves are scaled by the
values of the corresponding diagonal).

i) Letng := [0 —i|+|m—j| —2>0. If ¢ #1, m # j then

()\max - )\min)n2+2 )\l%'lax + )\lzﬂ’lin 1 219

1
[(S™ M)l < 5 > ]
2\/5 ()‘?nax + )\min)ﬂz/Q ()‘max)\min) /g ¥ ng + 4

i1) Letng := [{ —i| + |m —j| —1>0. If either { =i or m = j and ny > 0 then

2 2
’(S_l)k | < 1 (Amax = Amin)" ! Ainax + Ain 1 2n (8)
0V (AN + A2 )M/2 A A2y /A7 Vg + 2
Proof. The proof is postponed to the Appendix. O

We conclude this paragraph with a final qualitative bound for ny, ny large, that emphasizes
the asymptotic behavior.

Proposition 2.4. Let kK = Apax/Amin = cond(M).
i) Assume £,i,m,j are such that £ # i, m # j and ng = [{ —i|+ |m — j| —2 > 0. With the
previous notation, it holds
VeZ+1 1
2>\min \/ﬁg‘

ii) Assume £,i,m,j are such that { =i orm =7 andny = [{ —i|+ |m —j| —1> 0. With
the previous notation, it holds

(S 1)kl <

N
(S~ Yl < rVES+1 1

2 Vg



Proof. 1) The constant involving the extreme eigenvalues of M satisfies

()\max - )\mln)n+2 /\I2nax + /\?nm K2 +1
(/\r2nax + /\?mn)n/2 (/\max)\min)2 = Amin

where kK = Apax/Amin > 1. Indeed,

Omax — Aumin)™2 YV Aax + Ain A2 (1 - 1/)2 1 1+
()‘?nax + )‘121—1111)“/2 ()‘max)\min)2 )‘?nax (1 + 1/,‘432)“/2 )\I2nm)‘max K2’

with % < 1. Inserting (@) into (@) and noticing that /2 7 < 2 yield the result.

The proof of ii) goes along the same lines of i) after observing that it holds

)\max — )\min 2 )\I%'lax + )\121’1111 )\max \ 2 1
( ) 3 < AL KV K2 + 1.
()\2 + )\Izl’lin)n/2 )‘max)\ i )\min

max min

O

We remark that a result in a similar direction was reported in [19, Theorem 4.5] for the
Laplacian matrix, although in there, an explicit dependence on the problem dimension arises,
together with a more involved dependence on the discretization grid.

In terms of the indices of S~!, our bound shows that

(S kel = 1S Desnm—1)i+ni-1)|
1

< . ‘
VIE—=il +m—j] =2

Y0 . :
Ik =t —n( 0] — Gl 4 0oy 0y
2

For instance, for all the elements on the secondary diagonal, satisfying k + ¢t = n®, we
obtain

1
(1n2 = 2t = (5= = |G|+ (125 - 5] - 2)8

In the qualitative bound of Proposition 2.4] the asymptotic term does not depend on
the actual entries of S™', but only on the position in the underlying grid. This property
reflects similar considerations obtained for point-wise estimates in the context of the discrete
Laplacian. Indeed, for the discrete Green function Gy, on the discrete N-dimensional grid Ry,
it was shown in [9] that there exist constants hg and C such that for h < hg, x,y € Rp,

1(S™ kel < 0

C .
Clogw lfN =2

N > 3. (10)

Gu(z,y) < {

(le—yl+h)N =2

Our computable bound in Proposition 2.4]shows that the entries depend on the inverse square
root of the distance, whereas in (I0) an asymptotic (slower) logarithmic dependence on the
distance is reported for the two-dimensional case.

10



We also notice that other bounds are available that use different distance concepts; for
instance, in [7, Theorem 3.4] the decay pattern of certain matrix functions is described by
means of graph theory, in terms of distancdl] between nodes of a digraph, where the nodes are
the entry indices in the matrix inverse.

3 On the decay of the Cholesky factor

When preconditioning a large algebraic linear system, a-priori information on the decay prop-
erties of the inverse of the Cholesky factor of S may be important to guide the computation
of incomplete factorizations. Indeed, assuming that S = LLT is the Cholesky factorization
of S, if the entries of S~ decay away from the main diagonal with a certain pattern, we
expect that also the factor inverse L™ will show a similar pattern. This fact was proved in
[8] for banded matrices S by using the decay rate in (2)). With the same technical tools, we
generalize this result to our decay pattern, under the assumption that S has a bandwidth b.

Proposition 3.1. Assume S is b-banded, with diagonal elements not greater than one, and
let S = LLT. With the previous notation, forn=mn; >0, i = 1,2,

LT < vg———.
|( )k,t|—’70 n(k;,t)

Proof. We have

t+b—1 t+b—1

(L™ Mkl < Z| kr||LM|<voz m

where we used the inequality n(k,t) < n(k,r) for k <t <r <t+b-1. O

We notice that a slightly sharper upper bound could be obtained by first using the bound
of Proposition 2.2 however the final asymptotic dependence with respect to n would still be
the same.

The estimate for the entries of L™! could be used in the design of linear system precon-
ditioners by means of approximate inverses [§],[2]. Indeed, not only a decay pattern occurs
away from the diagonal, but many tiny values appear within the bandwidth. Therefore, a
threshold-based dropping strategy could be used in conjunction with a band-based procedure,
to a-priori increase the sparsity of the explicit approximate inverse. Similar considerations can
guide the design of quasi-orthogonal polynomial bases, as those developed in, e.g., [10],[11].

4 More general settings

The results of the previous sections can be generalized in a number of ways. For instance,
we can allow the symmetric and positive matrix M in (1)) to be generally b-banded, so that
Proposition 2.I] can be used in its full generality. The resulting estimate is reported below.
Its proof is omitted as it is analogous to that of Proposition 2.2l

!Defined as the length of the shortest directed path connecting the two nodes.

11



Proposition 4.1. Let M be a real symmetric and positive definite matriz of size n and
bandwidth b. For k,t € {1,...,n%}, let

j=1t=1)/n]+1, i=t—n|(t—1)/n]

and ¢, m as in ([{)). With the notation above, the following holds.
i) If i # £ and j # m, then

R N RN sy
1 < - = —_— = )
|(S )k7t| = 27T|)\max_)\min|2 /—oo <(R2_1)2> <R> d(Ua

i1) If either i =€ or j = m, then

00 2 |i—£|/b+|j—m|/b—1
il < grr— s [ B (L o
’ 2m ’)\max - )\min‘ —00 )\2 4 w2 (R2 — 1)2 R

i11) If both i = ¢ and j = m, then

i -1
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Figure 7: Example [l Components of column ¢ = 55 of the inverse of the Laplace stiffness
matrix of size 100 x 100 with a 9-point stencil discretization, and its estimate from Proposition
M1l (all curves are scaled by the values of the corresponding diagonal.)

Example 4.1. We consider the 100 x 100 matrix S stemming from the discretization of the
two-dimensional Laplace operator by means of a more accurate discretization (9-point stencil)
of the one-dimensional derivative than in Example This gives

1 415 41
M—pentadlag<l2 §’E’_§’ﬁ>
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which has bandwidth b = 2. The plot in Figure[7 (for column ¢ = 55 of the inverse S~!) shows
that the estimate of Proposition d.1]is able to capture the oscillating behavior, but somewhat
fails to follow the asymptotic pattern of the inverse, predicting a slower decay. (We recall
here that all values were scaled to be one at the t-th component.) As already mentioned,
this seems to be due to the weakness of the exponential bound in Proposition 2] for a larger
bandwidth. We explicitly observe that also the monotonic classical bound (2]) does not seem
to closely match the actual asymptotic decay pattern; we should keep in mind that in this
case, S has bandwidth b - n = 20, which seems to also significantly deteriorate the classical
estimate.

Another generalization is obtained by assuming that S = S, can be written as in (3], with
My, My symmetric and positive definite square matrices, of size ny and ne, respectively, so
that Sy is of size niny x niny. Following the derivation in Section 2] the elements of each
column ¢ of the inverse can be derived as the elements of the solution matrix X" to the Sylvester
equation

M X + XMy, =E. (11)
The following result generalizes one of the cases of Proposition The other case can be
derived analogously.

Proposition 4.2. Assume My, Ms are symmetric positive definite and tridiagonal matrices.
Let 51,2 = (/\max(Ml) — >\m1n(M1))(>\max(M2) — )\min(MQ)). For k’,t € {1, e ,nlng} let ] =
[t—=1)/n1|+1, i=t—m|(t—1)/n1), 0=|(k—1)/n1]+1, m=t—ny|(k—1)/n1], be
such that £ # i and m # j. Then it holds that

0 2 2 li—¢|—1 lj—m|-1
|(Sy kil < i6—4/ i Fp x = J dw
g T 21 51,2 o (R% — 1)2 (R% — 1)2 R, Ry ’

with Ry and Rs are defined as in Proposition [21] for each of the spectra of My and Mo,
respectively.

Proof. We can write the solution to the Sylvester equation in closed form as (see, e.g., [15])
1 o0
X, = —/ (zwI—I—Ml)_leiejT(zwI+Mg)_*dw.
2 J_ o

To evaluate |(X})¢ | we can then apply again Proposition[2Zlto each of the inner term, namely
to le, (wl + M) e, \ejT(qu + M) *ep|. The final result thus follows as in Proposition
2.2 O

Finally, we observe that the two generalizations above could be combined, giving estimates
for the entries of the inverse when M; and M5 have different bandwidth.

5 Conclusions

We have characterized the decay pattern of the inverse of banded matrices that can be written
as the sum of two Kronecker products, in which each of the matrices is symmetric positive
definite and banded. Our results explain the non-monotonic (oscillating) pattern commonly
observed in these inverses, while providing upper bounds that can be sharp, especially for
low bandwidth. We also showed that corresponding results can be obtained for more general
Kronecker-type matrices with different banded matrices M7 and Ms.
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Appendix

In this appendix we prove Proposition 2.3

Proof. 1) We set Xy, := e;Xtem = (S_l);m. From the result of Proposition 2.2] we need to
bound the integrand in a way that the integral still converges.
We observe that

i < l _ /\max - )\min
R~ «a |A1] + A2
< )\max - )\min _ )\max - )\min 1
B ()\121’121)( + )‘12min + 20‘)2)1/2 ()\121’121)( + )\Izl’lin)l/2 (1 + L. )1/2 .
Arax T Amin

Moreover, after some algebraic calculation, it follows that R — 1/R = 2v/a? — 1, and since
042 -1> (2W2 + 2>\max/\min)/()\max - /\min)2a
R? 1

(W12 a2 —-1) =

1 |/\max - /\min|2
8w? + AmaxAmin '

(12)
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Therefore, letting ny = |i — 4| + [j — m| — 2,

2
1 64 & 1
Xpm| € —r
| < 27 | Amax — Aminl? /—oo< > ( >
1 64’)\max _)\min’4 < max mln /OO 1
(A2

27 64’)\max - )\min’2 Sax T /\I2nm 00 w2 + )\max)\mln)z 1+ %ﬁ

max+ min
n2

2

1 ()\max - )\min)n2+2 /OO 1 1 d
— w.
27 ()‘rznax + )\r2n1n)T2 —00 ((A)Z + )\max)\min)2 1+ #;mm
Since
1 B 1 1 < 1 1
w? + /\max/\min /\max)\min %mzn% +1 o >\max/\min m + 1
we bound the entry further as
ng/2+2
1 (Amax — Amin)"2 "2 1 > 1
Ay < o Lo = Amin) ™ h 2/ PO dw.
27 ()‘max + )‘min) 2 (/\max)\min) —oo \ 1+ PV v
We next estimate the integral. Let 7 = mw, so that dr = e + )\?mn . Then
242
0 1 na/2F 5 00 ng /242
/_OO —1 n 202 dw = \/_ max + )\m1n/ <1 + ’7'2> dr.

A

maXJ’_ min

The integral above is half the Beta function B(%, 22t2) ([14] formula 8.38.2]). It is known that
for ny large, B(3 "2;3) I'(1/2)((n2+3)/2)~ 1/2. However, we can provide an explicit bound
for the integral. We recall that (1 4+ 7)¥ > 1 + k7, for all 7 > —1. Then, using the change of

variable 7 = s/,/ny, we can write

o Az’ = T g2+ 22

1

= ds

\/@ 0 1—1—(1‘12/2—1—2)82/112

1 9 . ny/2 + 2 o w1 g

- atan | sS4/ ——mm = —

\/E n2/2+2 115} 0 2\/@ n2/2+2

thus yielding
()‘max - )\min)n2+2 >‘12T1ax + )\r2n1n 1 n2

1
Xom .
¥em] < 2v2 (A2 + A2 )%2/2 (ApaxAmin)? /N2 | n2/2 42
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ii) If ¢ = £ or j = m, then Proposition 2.2[(ii) applies. We set ny = |i — | + |j —m| — 1.
Using again (I2)) and the bound on 1/R, the following bound holds

[ = (5)
A2 +w2 21

1

( max mln)

1
1 ~ ‘/ dw
< _1 max mln 7
8 (A?nax N A?nln) ¥ mw + )\max min (1 + — 2:,;—2)\2 > 2
_ S\ +1
- 1 (Amax /\mzm) . / 2wzl 1 - dw
8 (A2iax +A2;) 2 AmaxAmin M + 02 32 (1 + Tziﬁi) 2
1 (Amax — Amin)™ T !
:g( o et / ; T
()‘max + )‘mln) 2 max min \/)\74—(,‘)2 (1 + Afﬂjj_iiﬂﬂ)
S l (/\max - AIrlin)ﬂln—li_l 1 5 / n 1dw
8 ()\1%1&)( + )‘121-1111)7 /\max)\min - <1 + XQ%F) ’ ’

min min

w? > Amin-
Finally, estimating the integral in the above inequality in the same way as in the proof of
i), we get

where in the last inequality we used )\?mn

()\max - )\min)nl+1 )\I%'lax + )\121’1111 1 n

Xom .
Xl < B e T W e v\ 2
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