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1. Introduction

The morphological coupling between the pelvic bone and

the femur, and the constraints induced by cartilages,

muscles and ligaments determine the hip joint kinematics

and the load transfer from the acetabulum to the

femoral head. Geometrically, the spherical-like aspect of

the femoral head and the hemi-spherical-like aspect of

acetabular cup support the assumption that the hip joint can

be modelled, from a kinematic perspective, as a pure ball-

and-socket joint. Nominally, this yields to consider three

independent rotations of the femoral head, with respect to
the acetabular cup, about a virtual pivot point, namely the

hip joint centre (HJC) located in the geometrical centre of

the femoral head.

In the domain of total hip arthroplasty (THA), accurate

and repeatable pre-operative assessments of the HJC, on

images and 3D models, and intra-operative, using either

predictive (Bell et al. 1990; Piazza et al. 2004; Cereatti et al.

2007) or functional (Camomilla et al. 2006; Siston and Delp

2006; De Momi et al. 2009; Lenaerts et al. 2009; Heller et al.

2011) approaches, were a matter of intensive investi-

gations. However, less interest was put on the validation of

the sphericity assumption taking into account the osseous

anatomy of the femoral head and the acetabulum.

The spherical coupling drove from the origin the

prosthetic design of the acetabular and the head femoral

components (Saikko and Calonius 2002; Pramanik et al.

2005). In the planning stage, the sphericity assumption

allowed to quantify the implant size by using planar

circular-shaped templates super imposed on the physical

X-ray or by adopting digital spherical shapes using either

CT images or 3D surface models. In the surgical phase, the

ball-and-socket joint model allowed to apply functional

methods based on pivoting movements of the leg to

determine the idealised HJC.

Early anthropometric studies (Blowers et al. 1972; Bell

et al. 1990; Menschik 1997; Shepherd and  Seedhom

1999) showed that both the femoral head and the acetabular

cup are rarely perfect spheres. The spherical coupling was

also reported to be insufficient for the aim of understanding

and taking care of different degenerative hip diseases (Ganz

et al. 2003; Beck et al.  2005; Imam and Khanduja 2011;

Urban et al. 2011). In addition, the intrinsic morphological

variability, the degenerative effects of ageing
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and the pathological conditions can make any single a

priori model insufficient in accurately describing the mor-

phologies of the two bony regions (Govsa et al. 2005;

Köhnlein et al. 2009; Anderson et al.

2010; Nakahara et al. 2011), thus claiming for subject-

specific shape analysis. A recent kinematic study, carried

out on small cadaveric samples (four specimens), reported

favourable results of ball-and-socket joint model whereas

the authors acknowl-edged that the acetabular shape could

be better modelled with geometries other than the sphere

(Cereatti et al. 2010). The low number of the evaluation

data-sets used in that study reduced the potential of the

outcome.

Different parameterisations of the acetabular shape and

the femoral head (rotational ellipsoids and conchoids) were

studied aiming at improving the accuracy of HJC location

for surgical planning purposes (Menschik 1997; Xi et al.

2003; Gu et al. 2008; Kang et al. 2011). In 1997, Menschik

carried out a study on a small cadaveric data-set (eight

specimens) and found that the conchoid shape was better

representative for the femoral head, claiming that the

conchoid-based joint could make the hip joint less likely to
sublux than a ball-and-socket joint. The elliptical shape, used

to represent acetabular cup, was hypothesised to reduce the

risk of subluxation (Xi et al. 2003). On a data-set of 25

cadaveric specimens (Chinese race), it was shown that the

rotational ellipsoid fitted the acetabular cup better than the

theoretical spherical shape (Gu et al. 2008), resulting in less

wear during bone motion. A more recent study, carried out

on a MRI data-set acquired from 14 young healthy subjects,

reinforced the value of the conchoid fitting with respect to
the sphere (Kang et al. 2011).

In light of these premises, the purpose of this study was

to analyse the morphology of the acetabular cup shape by

comparing three different parameterisations, namely the

sphere, the ellipsoid and the revolute conchoid shapes.

Three-dimensional surface models, reconstructed from CT

scans of cadavers and patients, were used to evaluate the

potential shape variability. We carried out two concurrent

analyses on:

(A) the overall cup shape including both the

acetabular fossa and the lunate surface (geometrically

consistent as the artificial cup would replace the

overall acetabulum);

(B) the cup represented by the lunate surface only

(physiologically consistent as the motion of the

femoral head performs about this surface).

2. Materials and methods

2.1 Data collection

Eleven embalmed cadavers (nine males and two females

of Caucasian race) with an average age of about 77 years

(61–95) went through CT axial acquisition. Siemens

Somatom Sensation 64 (Siemens AG, Erlangen, Germany)

scanner, with a field of view of 38 by 38 cm, set to 140 kV

and 48 mAs was used. About 650 contiguous axial slices

(512 by 512 pixels) were taken at 1 mm scan interval from

the upper pelvis to the proximal tibia. As two subjects

underwent a THA on left and right hip, respectively, just

10 left and 10 right image data-sets were processed. No

specimen showed sensible cartilage or bone defects in the

hip joint. For each specimen, the 3D model of the outer

surfaces of the two pelvic bones was created using Mimics

(Materialise NV, Leuven, Belgium) application. Image

segmentation was done through manual editing by

radiological experts who separated the femoral head part

and excluded the hip articular cartilage. In some cases,

extra manual editing was needed to close the undue holes.

In order to smooth the surface, 3D morphological opening

was applied. A total of 20 hemi-pelvic bone surfaces were

attained.

Eighteen additional hemi-pelvic bone surfaces were

reconstructed from the CT scans (Siemens AG) of nine

patients (six males and three females of Caucasian race),

with an average age of about 59 years (28–91). Contiguous

axial slices (512 by 512 pixels) were taken (scanning

interval: 3 mm) from the upper pelvis to the proximal

femur. The patients were investigated for potential cartilage

damage at the hip joints. They were all diagnosed with early

osteoarthritis. No bony damages were, however, detected in
the images. The management, the anonymisation and the

processing of the data-sets were approved by the Human

Subject Committee of the C.T.O. Hospital in Milano, Italy.

For each patient study, the outer surface of the pelvic bone

was reconstructed using Amira software package

(Visage Imaging GmbH, Berlin, Germany). The image

segmentation was done through manual editing by one

radiological expert who separated the femoral head part and

excluded the hip articular cartilage. Early osteoarthritis

conditions and lack of bone damages in all the patients

allowed us to join the two data-sets in a single study group.

2.2 Surface models and data fitting
The overall acetabular region was obtained by automatic

3D segmentation (Figure 1) of the hemi-pelvic bone

surfaces according to the methodology reported in Cerveri

et al. (2011). The mean-shifted curvatures are computed

on every vertex of the hemi-pelvic bone surface. Pit and

ridge regions are detected using automatic thresholding.

The vertices of the mesh are clustered into various regions

on the basis of the two curvature descriptors. After

processing the clusters in the pit region, one single cluster

for the internal shape of the acetabulum is obtained. The

clusters belonging to ridge regions are processed to obtain

one single consistent cluster for the acetabular rim. The

two regions are merged into a single surface representative

of the acetabular cup. The lunate surface was extracted



from each acetabular shape by a manual cutting of the

acetabular fossa in the Amira software.

Three different parameterisations, namely the sphere,

the ellipsoid and the revolute conchoid shapes, were taken

into account. Considering the sphere radius r and the

centre C(xo, yo, zo), the Cartesian sphere equation is

ðx2 xoÞ2 þ ðy2 yoÞ2 þ ðz2 zoÞ2 ¼ r 2: ð1Þ

A nonlinear least square fitting based on Levenberg–

Marquardt strategy with explicit Jacobian computation

was used to compute the optimal sphere parameters.

For the ellipsoid, the following equation can be written

as

ðx2 xoÞ2

a2
þ

ðy2 yoÞ2

b2
þ

ðz2 zoÞ2

c2 ð2Þ

þ mxy þ nxz þ lyz þ k ¼ 0

which considers the ellipsoid form factors ða; b; cÞ and the
translation and the orientation. Similar to the sphere fitting

case, a nonlinear least square fitting based on Levenberg–

Marquardt strategy was used. The acetabular axis,

computed according to Cerveri et al. (2011), provided the

initial value of the major axis of the ellipsoid.

The conchoid curve is described in polar coordinates

by the following equation

r ¼ bþ a cosðvÞ; ð3Þ

where r is a curve with length measured from the centre of
the conchoid (O), a and b are the form factors and v is the
angle between curve r and the y-axis (Figure 2(a)).
Equation (3) represents actually the Limaçon of Pascal,
which is a conchoid of a circle with respect to the circle
origin, O. In order to preserve uniformity with former

studies (Menschik 1997; Xi et al. 2003; Kang 2011), this
curve is referred to as a conchoid herein.

Let ðx2 þ y2 2 axÞ2 ¼ b2ðx2 þ y2Þ be the Cartesian 
representation of conchoid curve; the corresponding

conchoid shape in the canonical form is obtained by

revoluting the curve about the X-axis as

ðx2 þ y2 þ z2 2 axÞ2 ¼ b2ðx 2 þ y2 þ z2Þ ð4Þ

which is a fourth-order surface like the torus. Dealing
explicitly with the translation and the rotation with respect
to the canonical form is not straightforward and can
increase the complexity of the fitting problem. Alterna-
tively, we adopted an indirect method, however automatic,

to the estimation of the translated and rotated revolute
conchoid based on an evolutionary approach, namely the
evolution strategy (1, l) with covariance matrix adaptation
(Cerveri et al. 2001). The idea was to rigidly transform the
acetabular cup surface and to estimate the form factors of
the revolute conchoid in its canonical form a posteriori
iteratively minimising the fitting error.

(a) Emi-pelvic bone surface

Curvature
computation

Pit region
identification

Ridge region
identification

Region clustering Region clustering

Acetabular
internal surface

Acetabular
margin

Acetabular
surface

(b)

Figure 1. (a) Morphological detail of the acetabulum in the pelvic bone: the acetabular surface is separated by the acetabular fossa and
lunate surface; (b) general schema of the acetabular cup segmentation (Cerveri et al. 2011).



The optimisation problem was therefore reframed into

the estimation of eight parameters, explicitly the two form

factors a and b of the conchoid (see Equation (4)), and the
three translation coordinates and the three orientation
angles which account for the rigid transform of the cup.
After aligning the main axis of the cup with the X-axis,
according to the estimated acetabular axis (Cerveri et al.
2011), and the cup posterior margin with the posterior
margin of the conchoid shape, the procedure generated an
initial random guess (new population: l ¼ 25) of the
parameters through the mutation function. According to
the value of the radius rs of the fitted sphere, the initial
values of a and b were randomly generated starting by rs 
and 0.5rs, respectively. The fitting error, the surface
distance between the cup and the conchoid, was then
computed by sampling the conchoid surface. At each
iteration step, the best element (lowest fitting error) in the
population was selected to be the father for the next epoch.
If the form factors are consistent with the Limaçon of
Pascal shape (jaj . jbj), the rigid transform was applied to
the acetabular cup surface. The mutation function, adapted
according to the results of the selection, drove the

generation of more and more reliable solutions. The
evolutionary optimisation stopped when the step size of
the mutation function was under a predefined (1e 2 5)
threshold t (Figure 3).

2.3 Data analysis
The fitting errors of the cadaveric and patient data-sets

were compared across the three parameterisations in terms

of median value (lower and upper quartiles). Both the

overall acetabulum (case A) and the lunate surface only

(case B) were considered. For each case, the statistical

analysis of the results was carried out using a one-way

analysis of variance done through the non-parametric

Kruskall–Wallis test (Matlab, Matworks, Inc., Natick,

MA, USA). A multiple comparison (post hoc) procedure

was used to strictly determine which pairs of mean ranks

were significantly different and which were not.

A statistically significant result was given a p value

,0.05. The statistical difference between the two cases A

and B was also analysed.

The consistency of the fitted ellipsoid and conchoid

shapes to the acetabular geometry was determined by
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Figure 3. The flowchart of the algorithm (1, l)-ES for
estimating the parameters of the revolute conchoid shape.
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Figure 2. (a) A conchoid curve with general equation r ¼ bþ a cosðvÞ. (b) The corresponding 3D rotational shape.



comparing the principal axis of the shapes with the

acetabular axis obtained by manual detection. One expert

in radiological orthopaedic imaging, with advanced skills

in 3D computer-aided surgical planning, performed the

axis identification in the Amira software package directly

on the bone models locating a set of 12 landmarks,

approximately uniformly spaced, on the acetabular rim.

Such landmarks defined the acetabular plane, the normal

direction of which is just the acetabular axis, and therefore

the normal direction of the cup (Figure 4). The operator

manually scaled and arranged the position of the virtual

cup model to fit the acetabular surface. The operator was

free to cross-check the axis on the original CT axial images

and interact with the artificial cup model to further refine

it. The angular error between the manual acetabular axis

and the main axis of the ellipsoid and conchoid shapes was

computed for each surface model. The root mean squared

error of the overall angular error distribution was obtained.

3. Results

The boxplot of the error distributions for case A showed

that the median fitting errors of both the ellipsoid (1.14

mm) and the conchoid (1.28 mm) fitting are lower than the

fitting errors obtained through the sphere (1.95 mm)

fitting (Figure 5). The statistical comparison provided a

very low global significance ( p , 1e 2 10). The post hoc
comparison yielded to a significance of the difference
between ellipsoid and sphere ( p , 2.50e 2 10) and
between conchoid and sphere ( p , 1.07e 2 09).

No significant difference was found for the comparison

between ellipsoid and conchoid ( p . 0.08).
Analogously, the boxplot of the error distributions for

case B showed that the median fitting errors of both the

ellipsoid (0.99 mm) and the conchoid (1.18 mm) fitting are

lower than the fitting errors obtained through the sphere

(1.89 mm) fitting (Figure 6). Similar to the previous case,

significance of the difference between ellipsoid and sphere

Figure 4. Template (artificial acetabular cup along with a stick orthogonal to the cup plane) utilised in AMIRA package to manually
determine the acetabular axis.
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Figure 5. Boxplots of the results for case A (overall acetabular
surface). On each box, the central mark is the median, the edges
of the box are the 25th and 75th percentiles and the whiskers
extend to the most extreme data points excluding outliers that are
plotted individually as red crosses. Asterisk represents significant
difference.



two distributions ( p . 0.10). The between-cases statistical
difference was found to be not significant (Ellipsoid – case
A vs. case B: p . 0.13; Conchoid – case A vs. case B: p .
0.40).

4. Discussion and conclusion
The human acetabular shape is commonly represented as a
hemisphere, but there have been no extensive quantitative

assessments of this assumption in the literature. Our aim

was to contribute to the ongoing debate and to test the

limits and validity of this hypothesis by comparing three

different parameterisations, namely the sphere, the

ellipsoid and the rotational conchoid. Similar to the

conchoid shape (Menschik 1997), the ellipsoid shape was

considered as it can constrain the movement of the hip

joint in the coronal plane but does not influence the

movement of a joint in the sagittal plane, thus improving

the joint stability and decreasing the subluxation

compared with a ball-and-socket joint. The rim of the

acetabulum on the opening plan has been reported as

ellipsoid with reduced anterior–posterior and increased

inferior–superior axes (Eckstein et al. 1997). The fitted

ellipsoid of the acetabulum is consistent with this

conclusion, because the intersection of the ellipsoid and

the plane on the acetabular rim is approximately an ellipse.

We analysed both the overall acetabulum, composed

by the lunate surface and the acetabular fossa, and the

acetabular part effectively devoted to the motion interface

with the femoral head (lunate surface). This was motivated

by the consideration that the potential prediction of the

spatial distribution of the joint load should take into account

just the contact interface between the two bony parts,

namely the lunate surface of the acetabulum and the head of

the femur.

The analysis was carried out on a data-set of hemi-pelvic

bone surfaces reconstructed from CT imaging taken from
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Figure 6. Boxplots of the results for case B (lunate surface).
On each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles and the whiskers extend to the most
extreme data points excluding outliers that are plotted individually
as red crosses. Asterisk represents significant difference.

( p , 4.55e 2 12) and between conchoid and sphere

( p , 1.93e 2 11) was found. Interestingly and differently
from case A, case B provided significant difference in the
fitting between ellipsoid and conchoid ( p , 0.01).

The between-group comparison (A vs. B) showed that

significance of the difference ( p , 0.02) was detected for
the ellipsoid fitting whereas no significance was found for
both sphere and conchoid.

The median angular errors (Figure 7) between the

principal shape axes of the ellipsoid and conchoid with

respect to the manually measured acetabular axis were ,88

with maximal range (quartiles) lower than 3.58. Specifi-

cally, for the case A they were 7.578 and 6.338, respectively.

The statistical difference was not significant ( p . 0.16).
For case B, the median errors decreased to 6.428 and 5.668,
respectively, with no statistical difference in between the

Figure 7. Angular errors between the principal shape axis (circle is for ellipsoid, cross is for conchoid) and the acetabular axis manually
detected. (a) The median (case A) errors of the two distributions were 7.578 and 6.338 for the ellipsoid and the conchoid, respectively.
The statistical difference was not significant ( p . 0.16). (b) The median (case B) errors of the two distributions were 6.428 and 5.668 for
the ellipsoid and the conchoid, respectively. The statistical difference was not significant (p . 0.10).



cadavers and patients. The diagnostic analysis, carried

out on the patient group, evinced very little

decrease of inter-osseous spaces, corresponding to

reduced cartilage damages, and no bone defects at the hip

joint. This condition was similar for the cadaver data-

set, which allowed us to consider a single

homogeneous group from the two data-sets.

Minor differences from the three idealised geometries

were found (median range ,1 mm). Nonetheless, the
ellipsoid fitting was detected to be statistically different

from the sphere fitting in agreement with Gu et al. (2008).

Similarly, we found that the conchoid fitting was

statistically different from the sphere fitting in agreement

with Menschik (1997) and Kang et al. (2011). This was

true for both case A and case B. The fitting comparison

between ellipsoid and conchoid provided interesting

results, showing that when considering the acetabular cup

as composed by the lunate surface only (case B), the fitting

quality of the ellipsoid is statistically better than that of the

conchoid. From this result, we argue that the part of the

acetabular fossa somewhat disrupts the fitting process on

the overall acetabular cup and suggests that only the lunate

surface should be considered for the parameterisation of

the acetabular shape. Technically, this paper introduced

some interesting innovations with respect to the literature

about the same topic. Firstly, it exploited the algorithmic

framework presented by the same author’s group

(Cerveri et al. 2011) to automatically extract the acetabular

shape from the hemi-pelvic bone. This approach, which

moves along the ongoing development of automatic

methodologies for orthopaedic surgical planning (Otomaru

et al. 2009; Weaver et al. 2009; Urban et al. 2011), was

demonstrated to reduce the effect of the operator

variability during the manual 3D segmentation. Secondly,

the study was carried out on a significant number of

acetabular shapes (38) taken from CT data-sets. Past

studies on the same topic used less than 15 data-sets

(Cereatti et al. 2010; Kang et al. 2011). Thirdly, the

implemented fitting was fully automatic without any

additional operator interaction overcoming the approach

done by Kang et al. (2011), which was based on a manual-

driven method to adjust the conchoid shape and location

parameters on MRI images following the boundary curve

of the acetabular rim profile. Fourthly, the comparison

between the ellipsoid and the conchoid shapes was not

previously reported. The advantage of considering both

idealised geometries was that they can be used to obtain an

estimation of the HJC, different from that of the sphere

fitting centre, and from that of the acetabular axis, as well.

This last quantity is known to be fundamental for the

surgical planning and treatment of the THA. For instance,

the ellipsoid and the conchoid can be used to predict the

HJC in pre-operative planning of hip joint resurfacing

operations, such as resections of non-spherical regions of

the femoral head and neck junction in the treatment of

early-stage degenerative hip disease to reduce impinge-

ment, and of hip joint prosthesis to decrease potential

placement errors. Equivalently, such models can be an

alternative to the classical sphere model in determining the

mechanical axis of the lower limb, which is a critical

landmark for total knee arthroplasty, both prior and

following the surgery.

Finally, it evaluated the fitting quality of the two

idealised geometries by comparing the alignment of the

principal axis of the shapes to the acetabular axis manually

identified on original CT images by a radiological expert.

This was done to check that the increased fitting,

potentially supported by more degrees of freedom in both

models compared with the sphere, would be not

corresponding to undue shape positioning incoherent with

the principal direction of the acetabulum. The results

showed that no statistical difference was found between

the methods of determining axis alignments, supporting

the conclusion that both model-based acetabular axes were

consistent with the acetabular shape and mostly in

accordance with expert knowledge (Figure 7). However, a
bias and an absolute difference with regard to the manual

measures of about 58–78 and up to 168, respectively, were
found. Although the margin of the acetabulum was

considered a valid reference (Viceconti et al. 2003; Wong

et al. 2010) for determining the acetabular axis (this was

the method adopted in this work for the manual

identification), the morphological variability and even

little pathological conditions can modify the shape of the

acetabular margin, thus disturbing the axis determination.

The model-based method, adopted in this paper, can in

principle reduce such effects as the axis determination is

not just function of the margin but it depends on the overall

shape. More extensive analyses would be needed, but are

out of scope of this study.

A couple of potential drawbacks of this work can be

summarised herewith. First, we neglected the role of the

cartilage in determining the geometry of the acetabular

shape differently from other previous studies (Kang et al.

2011). Although this simplification can lose the effect of

the soft tissue interface between the femoral head and the

acetabulum, it is reasonable assuming that the cartilage

shape deforms in function of the loading condition, and its
role in determining the geometry of the interface is less

relevant (Anderson et al. 2010). Therefore, it appears that

computing the HJC as the centre of the fitting conchoid to
the hip joint cartilage could bias the estimation and lose

the generality of the results. Second, we did not exploit the

estimated geometries to predict the cartilage stress during

dynamic conditions of loading as described in Anderson et

al. (2010). We acknowledge that this could be a further

validation of the approach, but, however, this was out of

scope of this paper. Future developments, aiming at

addressing this topic, will move towards the comparison

among idealised and patient-specific morphologies.

In conclusion, we can synthesise that the osseous

morphology of the acetabular cup can be parameterised



both with an ellipsoid shape and with a conchoid shape as

well with superior quality than the simple sphere.

Differently, if one considers just the lunate surface, better

fitting results are expected when using the ellipsoid.

In terms of HJC, pre-operative approaches to its estimation

using either images or surface models should take into

account that the spherical model can be inferior to other

geometries as shown in this study.
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