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1 Introduction

Acoustic source localization has been a leading research topic in the audio and acoustics 
communities for quite a few decades. In the past two decades, however, this area of research 
has raised particular attention as applications to teleconferencing and hands-free commu-
nications, as well as distributed sensor networks have become to proliferate. Among the 
methodologies that are available in the literature, those based on measurements of Time 
Differences of Arrivals (TDOAs), taken with microphone arrays, have proved robust against 
reverberations and environmental noise. Relevant examples are Huang et al. (2000, 2001, 
2004), Gillette and Silverman (2008), Smith and Abel (1987a,b), Abel and Smith (1987), 
Schau and Robinson (1987), Huang and Benesty (2004). In this manuscript we focus on this 
class of solutions, and we propose a novel representation for the related acoustic constraints, 
which sheds new light on acoustic source localization problems, as it offers a unifying per-
spective and additional insight.

Two important categories of solutions are those based on Maximum Likelihood (ML) and 
least squares (LS) criteria. In ML-based methods TDOA measurements are assumed to be 
affected by gaussian i.i.d. error and a nonlinear cost function is defined, whose minimum 
corresponds to the searched source location. Due to its nonlinearity, minimizing the ML cost 
function turns out to be a difficult task, therefore several simplifications have been proposed 
based on the LS criterion. More specifically, LS techniques localize the source by finding 
the minimum of a cost function that depends on the source location itself and on the distance 
between the reference microphone and the source. As the range depends on the source location 
itself, techniques based on a Constrained Least-Squares (CLS) have been proposed in the 
literature, which constrain the range to be equal to the distance between source and reference 
microphone.

Other works in the literature have given an insight into state-of-the-art acoustic source 
localization techniques. A relevant example is Huang and Benesty (2004), where an useful 
and interesting categorization is given. In this manuscript we keep this categorization, but we 
enrich this description with a geometric interpretation in the space–range reference frame. 
Due to the role played by the range in the localization procedure, in this manuscript we propose 
to visualize microphones and measurements in a space–range reference frame, obtained by 
adding the range difference coordinate (i.e. the distance of the point from the reference 
microphone) to the spatial coordinates of the source. In this multidimensional reference 
frame the working principle behind different localization techniques takes on new intuitive 
interpretation. This reference frame, in fact, was already adopted in Compagnoni et al. (2012) 
for localization purposes. In this manuscript we show how that multidimensional coordinate 
system can be use for understanding a wide range of source localization algorithms and, in 
some cases, how to improve them.

The rest of this manuscript is structured as follows: in Sect. 2 the space–range reference 
frame is introduced. Sections 3 and 4 offer a visual re-interpretation of various localization 
techniques in the 3D space, and discusses their limitations. Section 5 describes how to select 
configurations of microphones that lead to good localization results. This discussion is backed 
with some simulations.

2 The space–range coordinate system

Let us consider a microphone array whose sensors are in mi = [xi , yi ]T , i = 0, . . . ,  N , 
as shown in Fig. 1. The 0th sensor is the reference microphone, which means that the Time



Fig. 1 Geometric setup of the
localization problem

Differences Of Arrival (TDOAs) are all computed with respect to it. Without loss of generality
we also assume that the origin of the reference frame is placed on the reference sensor, i. e.
m0 = [0, 0]T . The acoustic source is located at xS = [xS, yS]T . The Time Of Arrival (TOA)
of the i th sensor is the time of flight of the signal from the acoustic source to the sensor itself,
and is therefore given by τi = ||xS − mi ||/c, c being the sound speed. However, as there
is no synchronization between source and microphones, only TDOAs can be measured. In
particular, the TDOA τi0 is defined as the difference between the time of flights from the
source to the i th microphone and from the source to the reference microphone

τi0 = (||xS − mi || − ||xS ||)/c .

The range difference wi is defined as the difference between the distances from the source
to the ith sensor and from the source to the reference sensor, therefore range difference and
TDOA will be proportional to each other as

wi = cτi0 = ||xS − mi || − ||xS || . (1)

Because of the sampling and the noise in the acquisition chain the measurements of the TDOA
τ̂i0 will be affected by an error and will therefore produce noisy estimations ŵi = cτ̂i0 of
the range difference.

The goal of acoustic source localization from TDOA measurements is to produce an esti-
mate x̂S of the true source location xS through the analysis of the measured range differences
ŵi , i = 1, . . . , N .

As anticipated in the Introduction, we want to define a new reference frame based on
spatial coordinates and range difference, in order to visualize and re-interpret the problem
of source localization. Each point x = [x, y]T on the space plane is mapped onto the 3D
space–range [xT , w]T , where

w = ||xS − x|| − ||xS || . (2)

Using this definition, the w coordinate for the i th microphone is wi defined in Eq.(1), and
for the source is

wS = −||xS || . (3)

The work in Compagnoni et al. (2012) considers a similar reference frame, but in that case 
wS = 0. Even if not developed with this reference frame in mind, also state-of-the-art local-
ization methodologies have a clear and intuitive representation in the space–range reference 
frame. In the following sections we revisit the theory of some methodologies, at least one 
for each class of localization techniques, with the goal of deriving their interpretation in the 
space–range reference frame.



Fig. 2 The hyperbola described
by a TDOA measurement. The
dots are the foci of the hyperbola,
where the microphones are. The
white dot is the reference
microphone. The source (marked
by an asterisk ∗) is bound to lie
on one of the two branches of the
hyperbola

3 Maximum-likelihood TDOA localization

The hyperbolic Least Squares (LS) error on the i th microphone is defined in Huang and 
Benesty (2004) as

eh,i (xS) = ŵi − wi (xS)

= ŵi − (‖xS − mi‖ − ‖xS‖), (4)

therefore the corresponding hyperbolic LS cost function is

Jh(xS) =
N∑

i=1

eh,i (xS)2 . (5)

If the measurements are affected by an additive white gaussian noise ŵi , the cost function
(5) is proportional to the Maximum Likelihood (ML) cost function

JM L(xS) =
N∑

i=1

[ŵi − wi (xS)]2

σ 2 = Jh(xS)

σ 2 ,

and the estimated source position is

x̂M L = arg min
xS

(Jh(xS)) .

A well-known geometric interpretation of the eh,i and Jh is in terms of hyperbolic curves in
the geometric space of source locations. If ŵi , i = 1, . . . , N are noiseless we have the set
of equations

eh,i (xS) = ŵi − wi = 0, i = 1, . . . , N (6)

in the variable xS , which define a branch of the hyperbola with foci (m0, mi ) and major axis 
length |ŵi | (see Fig. 2).

If the measurements were noiseless, the source xS would lie on the intersection of hyper-
bola. Because of measurement noise, however, the hyperbola of Eq. (6) will not simultane-
ously pass through a single point for i = 1, . . . ,  N . The cost function (5) measures how well 
all all such equations are satisfied for a single value of xS .



Fig. 3 The negative half-cone
related to the i th microphone

In the 3D space–range reference frame, we can derive a second geometric interpretation
of the hyperbolic errors and cost function. Using the coordinate wS , Eq. (6) becomes

wS − ŵi = −‖xS − mi‖. (7)

Equation (7) in (xS, wS) defines a negative right circular half-cone, with apex [mT
i , ŵi ]T and

vertex angle α = π/4, as shown in Fig. 3.
As for hyperbolas, with noiseless measurements the source xS should fall in the intersection

of all such half-cones, but because of the measurement noise this does not happen. Notice
that the distance between [xT

S , wS]T and the surface of the cone is

d =
√

2

2

∣∣∣ ‖xS − mi‖ − (ŵi − wS)

∣∣∣ =
√

2

2

∣∣∣ eh,i (xS)

∣∣∣ ,

therefore the cost function (5) turns out to be proportional to the sum of the squared distances
between the source and each cone and x̂M L is the point that minimizes the cost function.
However the ML method minimizes the cost function Jh(xS, wS) with respect to the variables
xS only, implicitly accounting for the fact that wS depends on the spatial coordinates. In fact
the ML minimization could also be rewritten as

x̂M L = arg min
xS ,wS

(Jh(xS, wS)) s.t. wS = −‖xS‖ ,

which is a constrained optimization problem in the space–range coordinate system. Let us
define the reference half-cone as

wS = −‖xS‖. (8)

This is the negative right circular half-cone with apex [m0
T , 0]T = [0, 0, 0]T and vertex angle 

π/4. The ML estimated source position x̂ M L  , as shown in Fig. 4, is therefore the point on 
the reference half-cone (8) that lies the closest to the remaining N half-cones (7).

The ML estimator is one of the most popular approaches to TDOA-based localization 
thanks to its well-established advantage of asymptotic efficiency for a wide sample space. 
However, the cost function (5) is highly nonlinear and in general its minimization is a difficult 
task. In order to overcome this problem, many methods based on different algebraic error 
definitions (statistically sub-optimal) have been developed Huang et al. (2000, 2001, 2004), 
Gillette and Silverman (2008), Smith and Abel (1987a,b), Abel and Smith (1987), Schau 
and Robinson (1987), Huang and Benesty (2004). In the next section we show the relation 
between the referenced techniques and ML, which becomes very easy to interpret in the 
space–range reference frame.



Fig. 4 ML localization technique. The reference microphone is marked by open circle, the other microphones
by filled circle, the source is marked by asterisk. A projection of the intersecting cones on the horizontal plane
is shown too. When the measurements are noisy, cones do not intersect and the ML optimization procedure
localizes the source as the point on the reference half-cone that minimizes the cost-function

Fig. 5 The reference half-cone
(dark) and reference double-cone
(dark and light)

4 Towards a closed-form solution

In the previous section we showed the geometric interpretation of the ML estimator of the
source position xS as the constrained least square estimation of the closest point x̂S to the
half-cone surfaces (7). In order to obtain algebraic cost functions, Eq. (7) is squared to obtain

(wS − ŵi )
2 = ‖xS − mi‖2 (9)

⇔ (xS − xi )
2 + (yS − yi )

2 − (wS − ŵi )
2 = 0,

which defines a double (positive and negative) cone with the apex in [mT
i , wi ]T .

In particular, the reference cone (8) becomes

w2
S = ‖xS‖2 ⇔ x2

S + y2
S − w2

S = 0, (10)

as shown in Fig. 5.
These equations are the starting point to obtain all the main known least squares localiza-

tion methods, as it offers a neat geometric interpretation of global validity.



4.1 Cone equation

As explained in Sect. 3, if the measurements ŵi are noiseless, the source coincides with the
intersection of all the cones. However, in a real-world scenario the measurements are noisy
and (9,10) are not simultaneously satisfied. Defining the cone LS errors as

ec,0(xS) = x2
S + y2

S − w2
S, (11)

ec,i (xS) = (xS − xi )
2 + (yS − yi )

2 − (wS − ŵi )
2, (12)

the cone-based LS cost function

Jc(xS, wS) =
N∑

i=0

e2
c,i (13)

measures how cone equations are simultaneously satisfied.
A source localization method based on the cost function (13), although with a different 

derivation and geometrical interpretation, is proposed in Compagnoni et al. (2012). Here 
the authors exchange the roles of (xS, yS, wS) and (xi , yi , ŵ i ) in eqs. (9,10), interpreting 
them as N + 1 conditions in the space–range reference frame on the points [xi , yi , ŵ i ]T to 
lie on a unique (propagation) cone with apex [xS, yS, wS]T . In the presence of noisy 
measurements the points do not perfectly fit this cone. In order to solve the localization 
problem, authors find the best fitting cone by minimizing the cost function (13), and 
estimate the source position
[x̂T

C , ŵ C ]T as the propagation cone vertex.

4.2 Plane equation

The cost function (13) is a polynomial of fourth degree in (xS, yS, wS), therefore the mini-
mization problem is again a non-trivial task. In order to simplify the problem we can 
manip-ulate the polynomial system that defines the cones. If we expand Eq. (9) and use Eq. 
(10), we obtain

xi xS + yi yS − ŵiwS − 1

2
(x2

i + y2
i − ŵ2

i ) = 0. (14)

These are linear equations in (xS, yS, wS) for i = 1, . . . , N , which define N planes �i in
the space–range reference frame, with normal vector ni = [xi , yi ,−ŵi ]T . Each plane �i

contains the curve (conic section whose projection on the space plane is the hyperbola of
Fig. 2) obtained as the intersection between the i th cone (9) and the reference cone (10).

As usual, with noiseless measurements the N planes intersect exactly in xS . In a real
scenario we define the errors

es,i (xS) = xi xS + yi yS − ŵiwS − 1

2

(
x2

i + y2
i − ŵ2

i

)
.

These are exactly the spherical LS errors given in Huang and Benesty (2004). The spherical 
LS cost function

Js(xS, wS) =
N∑

i=1

e2
s,i (15)

is a quadratic polynomial in (xS, yS, wS) and gives a measure of how well the plane equations
are satisfied. Notice that the spherical function (15) coincides with the cone function (13)
if one assumes that the error ec,0 on the reference microphones be equal to zero, i.e. if



Fig. 6 Intersecting planes. The
estimated location of the source
and its projection on the
horizontal plane are denoted by
asterisk. The solution given by SI
is the same

the reference cone equation (10) is satisfied. Geometrically speaking, this means that the
restriction on the reference cone of the two functions is the same,

Js(xS, wS)|w2
S=‖xS‖2 = Jc(xS, wS)|w2

S=‖xS‖2 .

Notice that the difference between the two functions grows as we move away from the
reference cone surface.

Because of its simplicity, many authors proposed localization methods based on the min-
imization of the spherical cost function. They differ exclusively on how the constraint (10)
is taken into account.

4.2.1 Unconstrained least squares (ULS)

In the simplest approach to source localization based on the cost function (15), one simply
discards the reference cone constraint. What remains to be solved is just the unconstrained
minimization problem for the quadratic function (15)

x̂U L S = arg min
(xS ,wS)

(Js(xS, wS)).

Looking at the problem in the space–range reference frame, the ULS method searches for 
the point that best fits the equations of the planes (Fig. 6).

A first method for solving the ULS problem is discussed in Huang et al. (2000), Gillette 
and Silverman (2008) and it is known simply as the LS algorithm. Let us rewrite the cost 
function (15) in matrix form as

Js (s) = ‖As − b‖2,

where

A =

⎡

⎢⎢⎢⎣

x1 y1 −ŵ1

x2 y2 −ŵ2
...

...
...

xN yN −ŵN

⎤

⎥⎥⎥⎦ , s =
⎡

⎣
xS

yS

wS

⎤

⎦ ,

b = 1
2

⎡

⎢⎢⎢⎣

x2
1 + y2

1 − ŵ2
1

x2
2 + y2

2 − ŵ2
2

...

x2
N + y2

N − ŵ2
N

⎤

⎥⎥⎥⎦ .

(16)



The gradient equation is

∂ Js(s)
∂s

= 2sT AT A − 2bT A = 0. (17)

The estimated source position is therefore

[x̂T
L S, ŵL S]T = ŝ = arg min

s
(Js(s)) = A† b. (18)

ŝ is the global minimum of the spherical cost function Js (s) in the space–range reference 
frame.

In Smith and Abel (1987a,b), Abel and Smith (1987) a different solution to the ULS 
prob-lem has been proposed: the Spherical Interpolation (SI) algorithm. It is a two-step 
method. First the SI method solves the gradient equation (17) with respect to the xS variable 
only, finding the estimated source position x̂ SI  as a linear function of wS ,

x̂SI (wS) = S† (b + wSŵ), (19)

where

S =

⎡

⎢⎢⎢⎣

x1 y1

x2 y2
...

...

xN yN

⎤

⎥⎥⎥⎦ , ŵ =

⎡

⎢⎢⎢⎣

ŵ1

ŵ2
...

ŵN

⎤

⎥⎥⎥⎦ .

In the second step the algorithm substitutes the function x̂SI (wS) into the linear system

As − b = 0 . (20)

If we define

P := I − SS†,

the system (20) takes on the simpler form

P(wSŵ + b) = 0 . (21)

This is an overdetermined linear system in the remaining variable wS , which can be solved
in a least-squares sense leading to

ŵSI = − ŵT Pb
ŵT Pŵ

⇒ x̂SI = S†
[

I − ŵŵT P
ŵT Pŵ

]
b. (22)

Theorem 4.1 LS and SI methods give the same solution to the ULS problem

[x̂T
L S, ŵ L S]T = [x̂T

SI  , ŵ SI  ]T .

Proof An algebraic proof of the theorem has been given in Huang and Benesty (2004). Here 
we offer an alternative interpretation by means of the space–range reference frame.

For each real value of w, the function x̂ SI  (w) is bound to give the point lying on the plane 
wS = w that minimizes the spherical cost function Js (xS, w)

x̂SI (w) = arg min
(xS ,wS)

(Js(xS, wS)) s.t. wS = w .

Geometrically speaking, x̂SI (w) is the point on the plane wS = w that best fits the plane
equations (14) and the function x̂SI (wS) is a parametric description of the line in the 3D



space–range coordinate system that contains all these points. Notice that the global minimum
ŝ of the spherical cost function is bound to lie on this line. As a consequence, searching for the
least square solution of the system (21) is completely equivalent to minimizing the spherical
cost function Js(xS, wS) along the line x̂SI (wS), i.e.

ŵSI = arg min
wS

(‖P(b + wSŵ)‖2) (23)

= arg min
(xS ,wS)

(Js(xS, wS)) s.t. xS = x̂SI (wS). (24)

As ŝ lies on the line, the solution of the constrained minimization in (23) is  ŵ L S  and x̂ SI  = 
x̂ SI  (ŵ L S) = x̂ L S . ��

As shown above, while the LS algorithm finds the global minimum ŝ of the spherical 
cost function solving directly the gradient equation (17), the SI algorithm first solves the two 
spatial components of the gradient equation (17) and then minimizes the cost function along 
the third direction x̂ SI  (wS).

Equations (18) and  (22) give equivalent closed-form solutions of the ULS problem. How-
ever, since the constraint (8) has been completely discarded, in many situations the ULS 
yields poor localization accuracy, to the point of often becoming physically meaningless.

4.2.2 Constrained LS (CLS)

Many authors (Schau and Robinson 1987; Huang et al. 2001; Beck et al. 2008) suggest 
the reintroduction of the reference cone constraint (8) in order to increase the localization 
accuracy. This way we study the constrained minimization of the spherical cost function (15)

x̂C L S = arg min
(xS ,wS)

(Js(xS, wS)) s.t. wS = −‖xS‖.

From the geometric standpoint, CLS searches for the point lying on the reference half-
cone (8) that best fits the equations of the planes (see Fig. 7). In the literature there is no 
closed-form and exact solution. However, both closed-form approximate methods (Schau and 
Robinson 1987) and iterative ones (Huang et al. 2001) and, more recently, the exact iterative 
algorithm (Beck et al. 2008) have been developed. In the following, due to its relation to the 
SI algorithm and its immediate geometric interpretation, we will offer an in-depth discussion 
on the Spherical Intersection algorithm (SX) (Schau and Robinson 1987).

The SX algorithm is a modified version of the SI and is organized in two steps. Similarly 
to the SI method, the SX algorithm first finds the line (19)

x̂ SI  (wS) = S† (b + wSŵ ) ,

then it estimates the range ŵ SX  by replacing x̂ SI  (wS) into the reference (double) cone con-
straint (10), and by taking the negative solution of the resulting degree-two polynomial 
equation in wS , i.e.

‖x̂SI (wS)‖2 = w2
S ,

which finally leads to

x̂ SX  = x̂ SI  (ŵ SX  ) .

Geometrically speaking, the SX method estimates the source position [x̂T
SX  , ŵ SX  ]T as the 

intersection point between the line (19) and the reference half-cone (8) (see Fig. 8).



Fig. 7 The solution to the CLS
problem is the point lying on the
cone surface, which best fits the
planes equations. A projection of
the cone and planes on the
horizontal plane is also shown

Fig. 8 The source location
estimate x̂SX is the intersection
between the line x̂SI (wS) and the
reference half-cone. The result is
an approximation of the CLS
solution x̂C L S

The SX method is a closed-form estimator, but it suffers from some limitations. First, it
fails if the line does not intersect the negative reference half–cone. Second, it only offers
an approximate solution to the CLS problem. In fact [x̂T

SX , ŵSX ]T is the minimum of the
spherical cost function (15) along the intersection of the reference cone with the plane wS =
ŵSX . There is no guarantee, however, that this is also the minimum of the cost function on
the whole reference half-cone.

5 Discussion

In Sects. 3 and 4 we have given a unified geometric interpretation of the main localization
methods. The 3D space–range reference frame is also a useful tool for understanding and
interpreting the behavior of localization techniques. However, a complete geometric analysis
of the source localization problem is beyond the scope of this manuscript. In order to show
the potential of our geometric approach, in this section we study the ULS problem for two
particular configurations of microphones in the case of noiseless measurements. Even in this
advantageous condition, in fact, there are situations in which the ULS is unable to localize
the source. Moreover, as we will see in the last section, this simplified analysis provides the
starting point to predict some of the critical configurations of ULS in more realistic scenarios.



Since measurements are noiseless, we have

ŵi = wi = ‖xS − mi‖ − ‖xS‖.
Preliminarly, we present some simple results, which turn out to be useful in the next para-
graphs.

Lemma 5.1 Let �i be the planes defined by Eq. (14) for i = 1, . . . , N. Then

N⋂

i=1

�i 	= ∅.

Proof In a noiseless measurements scenario, the source [xT
S , wS]T satisfies all the equations

(14), thus

[xT
S , wS]T ∈

N⋂

i=1

�i 	= ∅. ��
Corollary 5.2 The system As = b admits solutions, therefore

rank(A) = rank(A|b).

Corollary 5.3 The solution of the ULS minimization is given by the intersection of the planes
(14)

arg min
(xS ,wS)

(Js(xS, wS)) =
N⋂

i=1

�i .

The above results are used in the next paragraphs.

5.1 Aligned microphones

In this paragraph we consider the case of aligned microphones, i.e. exists a line r ⊂ R
2

containing all the microphones mi , i = 0, . . . , N (Fig. 9). Without loss of generality, we set

r : y = 0 ⇒ mi = [xi , 0]T , i = 1, . . . , N ,

therefore

A =

⎡

⎢⎢⎢⎣

x1 0 −w1

x2 0 −w2
...

...
...

xN 0 −wN

⎤

⎥⎥⎥⎦ .

We set r0 as the smallest segment that contains all the microphones and rc := r \ r0 as its
complement in r .

Theorem 5.4 In the aligned scenario, the ULS does not have an unique solution. More
specifically:

• if xS 	∈ rc, we have

N⋂

i=1

�i = l ⊂ R
3,

where l is a line with direction versor v = [0, 1, 0]T ;



Fig. 9 Linear microphone array.
Dots represent microphones, the
white one being the reference
one. In this example r0 is the
segment from m0 to mN

• if xS ∈ rc, we have

N⋂

i=1

�i = � ⊂ R
3,

where � is a plane containing the origin and with normal versor n = 1√
2
[±1, 0, 1]T .

Proof We have 1 ≤ rank(A) ≤ 2, thus, by Lemma 5.1, there are only two possible cases.

• If rank(A) = 2 the intersection of all the planes defines a linear subspace of dimension
1 in the space–range reference frame. In particular, planes �i determine a pencil of
planes all passing through the line l ⊂ R

3. Since the vector orthogonal to the i th plane
is ni = [xi , 0,−wi ]T , i = 1, . . . , N , the line l is parallel to the vector v = [0, 1, 0]T .

• If rank(A) = 1 ,the planes �i are coincident.

We need, therefore, to determine the loci of points where rank(A) = 2 and rank(A) = 1,
which depends on the configuration of sources and microphones in the acoustic scene. First,
notice that rank(A) = rank(A|b) = 1 if, and only if,

rank

[
xi −wi bi

x j −w j b j

]
= 1 for each 1 ≤ i < j ≤ N .

We consider here the case i = 1, j = 2. We should therefore study the equation system
⎧
⎨

⎩

x1w2 = x2w1

x1b2 = x2b1

w1b2 = w2b1

. (25)

Let us assume that xS 	∈ r . From Eq. (16), the second line of (25) is

x1(x2
2 − w2

2) = x2(x2
1 − w2

1).

By replacing the first line of (25) and simplifying, we get

w1w2 = x1x2.

In the case xS 	∈ r the triangular inequality implies that

|wi | = |‖xS − mi‖ − ‖xS‖| < |xi | ⇒ |w1w2| < |x1x2|,
which means that rank(A) = 2 for each xS 	∈ r . In this case, the intersection of the planes is
a line l passing through the source position [xT

S , wS]T .
Conversely, if xS = [xS, 0]T ∈ r we have

wi = |xS − xi | − |xS |.



It is then straightforward to verify that

det

[
xi −wi

x j −w j

]
= −xiw j + x jwi = 0, 1 ≤ i < j ≤ N , (26)

are satisfied if, and only if, xS ∈ rc. Moreover, in this case we have bi = 0 and ni =
1√
2
[±1, 0, 1]T , for each i = 1, . . . , N . ��

The above theorem confirms that both LS and SI algorithms fail to localize the source,
because do not carry any information on the coordinate yS of the source, no matter what
the noise level of the measurements is. However, the situation changes if we consider the
reference half-cone constraint (8). In the aligned scenario the above analysis suggests us the
way to obtain the closed-form and exact resolution of the CLS problem, working even in the
presence of noisy ŵi . However, we observe that, in the general noisy case, the planes �i

could have trivial intersection. Anyway, with the exception of the special situations where
rank(A) = 1, the solution of the ULS minimization is still a line l ⊂ R

3 with direction versor
v = [0, 1, 0]T , because the spherical cost function does not depend on yS . The ULS solution
for (xS, wS) is given by

[x̂U L S, ŵU L S]T = A†
R b,

where

AR =

⎡

⎢⎢⎢⎣

x1 −ŵ1

x2 −ŵ2
...

...

xN −ŵN

⎤

⎥⎥⎥⎦ .

Before stating the theorem 5.6 on the CLS, we give some preliminary properties about ULS
and the plane �xw defined by yS = 0. If rank(A) = 2, the restriction Js |�xw is a positive
quadratic form, with the unique global minimum [x̂U L S, 0, ŵU L S]T , which is the projection
of l on �xw . Moreover, let us define the open region

U := {[xS, 0, wS]T | xS < −wS, xS > wS} ⊂ �xw. (27)

Its closure Ū is a convex closed set and it is the projection of the negative reference half-
cone (8) on �xw. In fact, we observe that the generatrices xS = ±wS divide �xw into four
regions and it is straightforward to verify that any point on the negative half-cone region (e.g.
[0, 0,−1]T ) satisfies the inequalities (27) (see Fig. 10).

Fig. 10 The U region
highlighted in gray



Fig. 11 Reference cone
intersected by l. The open
neighborhood ω and its
projection into the Ū region are
shown

Finaly, the boundary of U is

∂U := {[xS, 0, wS]T | xS = ±wS, wS ≤ 0}.

Lemma 5.5 The point [x̂T
C L S, ŵC L S]T on the reference cone is a local minimum of CLS if,

and only if, its projection [x̂C L S, 0, ŵC L S]T ∈ �xw is a local minimum of Js |�xw on Ū .

Proof Let us assume that [x̂T
C L S, ŵC L S]T be a CLS minimum point, then there exists an open

neighborhood ω of the point on the reference cone surface, such that

Js(xS, wS) ≥ Js(x̂C L S, ŵC L S), (28)

for each [xT
S , wS]T ∈ ω. Let us define ω′ ⊂ Ū as the projection on �xw of the set ω. It is an

open neighborhood of [x̂C L S, 0, ŵC L S]T in Ū (Fig. 11).
Since Js does not depend on yS , we have Js(xS, 0, wS) ≡ Js(xS, wS), hence inequality

(28) implies

Js(xS, 0, wS) ≥ Js(x̂C L S, 0, ŵC L S), (29)

for each [xS, 0, wS]T ∈ ω′. This proves one direction of the lemma. The converse is similar.
��

Theorem 5.6 Assume that the microphones be aligned and rank(A) = 2. Then:

• if [x̂U L S, 0, ŵU L S]T ∈ U, the solutions of the CLS are two points

x̂±
C L S =

[
x̂U L S,±

√
−x̂2

U L S + ŵ2
U L S

]T

; (30)

• if [x̂U L S, 0, ŵU L S]T 	∈ U, the solution of the CLS is exactly one of the following three
points:

x̂+
C L S =

[∑
(xi − ŵi )

2(xi + ŵi )∑
(xi − ŵi )2 , 0

]T

, (31)

x̂−
C L S =

[∑
(xi + ŵi )

2(xi − ŵi )∑
(xi + ŵi )2 , 0

]T

, (32)

x̂0
C L S = [0, 0]T . (33)

Proof First, we study the minimization problem of Js |�xw on Ū . Since the restriction Js |�xw

is a positive quadratic form and Ū is a convex closed set, there exists one, and only one,
global minimum [x̂C L S, 0, ŵC L S]T . By Lemma 5.5, this point is the projection on the plane
�xw of the solutions [x̂T

C L S, ŵC L S]T of CLS.
If [x̂U L S, 0, ŵU L S]T ∈ U , then it has to match with [x̂C L S, 0, ŵC L S]T . In this case the line l
passes through [x̂C L S, 0, ŵC L S]T and intersects the negative reference half-cone (8). Hence,



the solutions x̂±
C L S of the CLS are the projections of the intersection points on the horizontal

plane wS = 0. If we replace the equation of l into Eq. (10) we get the solution in (30).
If [x̂U L S, 0, ŵU L S]T 	∈ U , the constrained minimum of Js |�xw is located on ∂U , which

means that Js , in turn, can have the constrained minimum only at

x̂±
C L S = arg min

(xS ,wS)

(Js(xS, wS)) s.t. ys = 0, wS = ±xS (34)

or at x̂0
C L S , that is the unique irregular point of ∂U . If we keep into account of the constraint

in (34), we get the result in (31)–(33). ��
Summarizing, Theorem (5.6) gives us the prescription to obtain the exact solution of the

CLS minimization problem, which, by Lemma 5.5, is essentially equivalent to the constrained
minimization problem of Js |�xw on Ū . Notice that

• if [x̂U L S, 0, ŵU L S]T ∈ U we have two solutions x̂±
C L S , which correspond to the two

intersections of l with the reference half-cone and it is not possible to discriminate
between them;

• if [x̂U L S, 0, ŵU L S]T 	∈ U , it is first necessary to verify if x̂±
C L S lies on the negative

reference half-cone. The estimated source position is then the admissible point where the
spherical function Js assumes the minimum value.

5.2 Microphones at the vertices of a square

A necessary condition for the ULS methods to be able to localize the source is that the
microphones are not collinear. On the other hand, one might wonder if this is also a sufficient
condition. In this Subsection we prove that other configurations could cause problems in the
localization. Let us assume a four microphones setup, one at each vertex of a unit square.
Without loss of generality, we set

m0 = [0, 0]T , m1 = [1, 0]T , m2 = [1, 1]T , m3 = [0, 1]T .

Therefore, we have

A =
⎡

⎣
1 0 −w1

1 1 −w2

0 1 −w3

⎤

⎦ ,

where

w1 =
√

(xS − 1)2 + y2
S −

√
x2

S + y2
S,

w2 = √
(xS − 1)2 + (yS − 1)2 −

√
x2

S + y2
S,

w3 =
√

x2
S + (yS − 1)2 −

√
x2

S + y2
S .

(35)

Theorem 5.7 In the above scenario, ULS does not have a unique solution if, and only if, the
source xS lies on one of the two straight lines

r ⊂ R
2 : x = 1

2
and r ′ ⊂ R

2 : y = 1

2
.

In these cases, in fact, we have

N⋂

i=1

�i = l,



Fig. 12 The curve |A| = 0 when
microphones (dots) are located at
m0 = [0, 0]T , m1 = [1, 0]T ,
m2 = [1, 1]T , m3 = [1.1, 1.1]T

which is a line in R
3 contained, respectively, in the planes x = 1

2 or y = 1
2 . In particular, if

xS 	= [ 1
2 , 1

2 ]T , the projection of l on the horizontal plane wS = 0 is, respectively, the line r
or r ′.

Proof We have rank(A) ≥ 2. Using Lemma 5.1, the planes �i , i = 1, 2, 3 intersect along
a straight line l ⊂ R

3 if, and only if, rank(A) = 2. Let us study

|A| = −w1 + w2 − w3 = 0,

with respect to xS . Using (35) and simplifying, the determinant equation becomes

√
(xS − 1)2 + (yS − 1)2 +

√
x2

S + y2
S =

√
(xS − 1)2 + y2

S +
√

x2
S + (yS − 1)2.

Squaring both sides of the equation and simplifying, we obtain

√
((xS − 1)2 + (yS − 1)2)(x2

S + y2
S) =

√
((xS − 1)2 + y2

S)(x2
S + (yS − 1)2),

then, squaring once more, yields

(−2xS + 1)(−2yS + 1) = 0.

If xS ∈ r , we have w1 = 0 and w2 = w3. Hence, the vectors orthogonal to the planes �i

are, respectively, n1 = [1, 0, 0]T , n2 = [1, 1, −w2]T and n3 = [0, 1, −w2]T , which implies
that the vector parallel to the line l is v = [0, w2, 1]T . If xS 	= [ 1

2 , 1
2 ]T , we have w2 	= 0,

thus the projection of l on the plane wS = 0 is exactly r . The case xS ∈ r ′ is analogous. ��

In the configurations of Theorem (5.7), the ULS fails to localize the source. In the special
case xS = [ 1

2 , 1
2 ]T , the line l is perpendicular to the plane wS = 0, therefore x̂U L S = [ 1

2 , 1
2 ]T .

Anyway, also in this situation both the LS and the SI algorithms fail. In fact, since w = 0,
one cannot define A† and Eqs. (22) become meaningless.

Notice also that even in irregular configurations of microphones it could happen that
|A| = 0 and, in this case, the ULS still retains non-isolated minima for xS lying on some
non-trivial curve. Figure 12 shows a possible configuration of microphones that can cause
problems. In particular, |A| = 0 when the source lies on the depicted curve.



(a) (b)

(c) (d)

(e) (f)

Fig. 13 Bias on x and y using the linear setup expressed in [m]. Open circle represents the reference micro-
phone, filled circle the other ones

5.3 Experimental results

So far we have presented a theoretical analysis considering only noiseless measurements. We 
now consider what happens in the more common scenario where measurements are, in fact, 
affected by noise. In order to answer this question, in this Section we verify the theoretical 
results and that they hold even in the case of noisy measurements.

For every simulation, localization algorithms have been tested for every source posi-
tion on a regular grid of 51 × 51 points spaced by 18mm. For every source position, 
100 realizations of range differences corrupted with a zero-mean and 1cm standard devi-
ation gaussian noise have been considered. The metric used for comparison is the aver-
age bias on the x and y coordinates of the localized source. For the x coordinate it is 
computed as



(a) (b)

(c) (d)

Fig. 14 Bias on x and y using the square setup expressed in [m]. Open circle represents the reference
microphone, filled circle the other ones

(a) (b)

Fig. 15 Bias on x and y expressed in [m] with a microphone on the square diagonal. Open circle represents
the reference microphone, filled circle the other ones

bx =
∣∣∣∣∣
1

n

n∑

i=1

(xS − x̂S,i )

∣∣∣∣∣ ,

where n is the number of noisy measurements tested for each source location, xS is the x 
coordinate of the source, and x̂S,i is the estimation based on the i th realization. The definition 
of the bias by on the y coordinate is straightforward.

Let us first consider the case of a linear array. We have simulated an array of four micro-
phones spaced by 10cm and sources are placed in front of the array. Fig. 13 shows bx and 
by for the CLS algorithm presented in Sect. 5.1, SX, and one of the methods presented in 
Compagnoni et al. (2012) (EQCONE). As the localization suffers of ambiguities for sources 
that are placed in front and behind the array, we preliminarily informed the algorithm that



�i

sources are placed in the half-space y > 0. Notice that, for this configuration, the pro-
posed CLS algorithm outperforms SX and its accuracy is at least comparable with that of 
EQCONE. It is worth noticing that the choice of these algorithms is due to the fact that, 
as explained before, LS and SI do not work with this configuration. Moreover, notice that 
also the algorithm in Beck et al. (2008) cannot be applied, since it requires a full rank 
matrix A.

We consider now the scenario of four microphones located at the vertices of a unit square. 
Sources are bound to lie inside this square. Figure 14 shows bx and by for LS and SX. Notice 
that LS fails to estimate the x or y coordinate of the source when it lies respectively on 
r ′ : y = 1/2 or r : x = 1/2. On the other hand, SX works properly, confirming that the 
localization problems are related to the LS algorithm, as from theorem (5.7) for the noiseless 
case. However in a noisy case, planes �i will be perturbed into ˆ = �i + εi , where  εi is a 
noise term. We have therefore

3⋂

i=1

�̂i = p,

which is a point in R
3, such that the distance from the line l is small for small values of

εi . This means that a source placed near r ′ or r will be estimated by ULS at a point not far
from l (e.g. sources with yS � 1

2 are localized close to the line y = 1
2 , leading to a correct

yS estimation, and a wrong xS one). This explains why there are areas surrounding r and r ′ 
where the source is not well localized in a noisy case.

In the same way for other setups, if we find positions where the source cannot be localized 
in a noiseless scenario, we expect to find areas around those positions where the localization 
accuracy is poor when noise is present. Indeed Fig. 15 shows bx and by for LS, when three 
microphones are on the vertices of a square, and the fourth one lies on the square diagonal. 
As mentioned at the end of par. 5.2, in fact, there could exists positions of the sources such 
that |A| = 0, also for irregular configurations of the microphones. In the noiseless case the 
source LS algorithm cannot localize the source when it lies on the curve in Fig. 12, while in 
the noisy case we can clearly see two areas of low accuracy around this curve.

6 Conclusions

In this manuscript we have presented a framework that provides a unifying perspective on 
TDOA-based techniques for acoustic source localization. More specifically, we defined a 
space–range reference frame and used it to visualize and visually interpret numerous source 
localization techniques. In particular, localizing a source corresponds to minimizing a cost 
function, possibly constrained, in the space–range reference frame. This theory, however, goes 
beyond the mere tutorial intent. In fact, the space–range reference frame can also be used for 
predicting configurations of microphones and sources that could cause localization problems. 
We also presented a closed-form solution of the constrained least squares technique for the 
case of aligned microphones, which is derived from analysis in the space–range reference 
frame.

Acknowledgments The authors thank Roberto Notari for his useful suggestions during the writing of the 
paper. Marco Compagnoni and Paolo Bestagini equally contributed to the work presented in this manuscript 
and should be considered as first co-authors.



References

Abel, J. & Smith, J. (1987). The spherical interpolation method for closed-form passive source localization
using range difference measurements. In Acoustics, speech, and signal processing, IEEE international
conference on ICASSP ’87 (vol. 12, apr pp. 471–474).

Beck, A., Stoica, P., & Li, J. (2008). Exact and approximate solutions of source localization problems. IEEE
Transactions on Signal Processing, 56(5), 1770–1778.

Compagnoni, M., Bestagini, P., Antonacci, F., Sarti, A., & Tubaro, S. (2012). Localization of acoustic sources
through the fitting of propagation cones using multiple independent arrays. IEEE Transactions on Audio,
Speech, and Language Processing, 20(7), 1964–1975.

Gillette, M., & Silverman, H. (2008). A linear closed-form algorithm for source localization from time-
differences of arrival. IEEE Signal Processing Letters, 15, 1–4.

Huang, Y., Benesty, J., & Elko, G. (2000). Passive acoustic source localization for video camera steering.
In Acoustics, speech, and signal processing, 2000. ICASSP ’00. Proceedings. 2000 IEEE international
conference on (vol. 2, pp. II909–II912).

Huang, Y., Benesty, J., Elko, G., & Mersereati, R. (2001). Real-time passive source localization: a practical
linear-correction least-squares approach. IEEE Transactions on Speech and Audio Processing, 9(8), 943–
956.

Huang, Y., & Benesty, J. (2004). Audio signal processing for next generation multimedia communication
systems. Dordrecht: Kluwer Academic Publishers.

Huang, Y., Benesty, J., & Elko, G. (2004). Source localization ch. 9. Dordrecht: Kluwer Academic Publishers.
Schau, H., & Robinson, A. (1987). Passive source localization employing intersecting spherical surfaces

from time-of-arrival differences. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(8),
1223–1225.

Smith, J., & Abel, J. S. (1987a). Closed-form least-squares source location estimation from range-difference
measurements. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35, 1661–1669.

Smith, J., & Abel, J. (1987b). The spherical interpolation method of source localization. IEEE Journal of
Oceanic Engineering, 12, 246–252.


	TDOA-based acoustic source localization in the space--range reference frame
	Abstract
	1 Introduction
	2 The space--range coordinate system
	3 Maximum-likelihood TDOA localization
	4 Towards a closed-form solution
	4.1 Cone equation
	4.2 Plane equation
	4.2.1 Unconstrained least squares (ULS)
	4.2.2 Constrained LS (CLS)


	5 Discussion
	5.1 Aligned microphones
	5.2 Microphones at the vertices of a square
	5.3 Experimental results

	6 Conclusions
	Acknowledgments
	References




