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Introduction

With the progressive increase in the safety, comfort,
and performance requirements of modern vehicles, the
automotive industry is considering brake-by-wire
(BBW) approaches as an attractive option to replace
the hydraulic-based brake systems. For example, in
contrast to the traditional brake systems based on sole-
noid valves that only admit discrete control actions
(e.g. increase, hold, decrease), BBW actuators allow an
accurate and continuous action over the braking tor-
que. This feature, together with the higher bandwidths
provided by the BBW, is a great asset for (1) improving
the effectiveness of braking assistance functionalities,
like anti-lock braking systems;1,2 (2) providing better
actuation capabilities for the vehicles’ lateral safety sys-
tems that may depend on differential braking;3 and (3)
facilitating the torque blending between friction brakes
and regenerative torque available in electric vehicles.4

Another significant feature of the BBW system is the
elimination of the mechanical link between the brake
pedal and the wheel brakes. This isolation is beneficial
from a comfort perspective because it enables the

implementation of haptic pedal feedback with custom
brake feel. On the contrary, it also introduces major
challenges to ensuring fail-safe operation.5

Generally, there are two main options for the BBW
implementation: electro-hydraulic braking (EHB)6,7

and electro-mechanical braking (EMB).8,9 The main
attractiveness of the former option is the possibility of
maintaining a significant portion of the components
used in the braking system of today’s vehicles, such as
calipers, hydraulic link, and accumulators.6,7,10 Given
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that most of these components have already reached a
mature state of development, this normally brings cost
and reliability advantages to the EHB solution. The
second option, EMB, relies on a pure mechanical link
between the actuator and the brake disc. Compared
with the EHB, it allows a significant decrease in the vol-
ume, weight, and component number, and also offers
faster response times.9,11 However, the EMB requires a
major redesign of today’s braking systems, and while
such actuators do not reach a mass-production stage,
the cost will remain an issue. Therefore, this factor,
together with the fail-safe concerns, still represents a
significant obstacle for the widespread use of pure
EMB designs.

Spurred by these challenges, the automotive industry
in recent years has dedicated considerable efforts
towards improving EHB and EMB designs. In this
work, we explore an emerging BBW prototype, under
development by an Italian brake manufacturer, which
intends to hybridize the EHB and EMB approaches.
The main idea behind this hybrid BBW, illustrated in
Figures 1 and 2, is, just like the EHB, to keep intact the
calipers and the braking lines of today’s vehicles.
However, instead of using electro-valves, accumulators,
and pumps to regulate the braking pressure (as is done
in EHB), an electro-mechanical actuator, that is, an
electric motor–gear–ball-screw, is directly connected to
the piston of the master cylinder to generate the brak-
ing pressure. With this approach, the cost and the num-
ber of components can be kept relatively low, as we
only need to fit one additional element, the electro-
mechanical actuator, in the braking system. This latter

feature is also very beneficial for vehicles subject to
strong space constraints, for example, motorbikes.12,13

Furthermore, given the high bandwidth of the electro-
mechanical actuator, the response times of the hybrid
configuration are expected to be faster than the ones
obtained with the EHB (but slower than the pure
EMB, due to the hydraulic link).

In this context, the main goal of this work is to
develop an electronic controller for the above-
mentioned hybrid BBW, capable of robustly regulating
the braking force. In the literature, there are several
studies on the design of braking (or clamping) force
control for pure EMB designs, ranging from linear pro-
portional–integral–derivative (PID) techniques,14

force–speed cascaded loops,15 model predictive control-
lers,9 or robust time-optimal approaches.16 Despite
being useful for pure EMB actuators, the controllers’
designs presented in these studies cannot be directly
applied to the hybrid BBW configuration under study
here. This is due to the existence of the hydraulic link
in the actuator, which introduces non-negligible
dynamics that must be taken into account at the con-
troller’s design stage. To overcome this limitation, in
this work, we propose a practical controller for the
hybrid BBW actuator that considers these non-
negligible dynamics.

Besides the hydraulic link, friction represents
another major source of disturbance in the BBW actua-
tor, which may lead to the appearance of limit cycles,
stick-slip, and steady-state tracking errors. From a con-
trol perspective, several approaches can be used to miti-
gate the friction effects, such as dither, position-error
dead band, and model-based compensation tech-
niques.17 Among these techniques, the model-based
compensation, that is, incorporation in the controller
of a feedforward component to cancel the friction dis-
turbance,17 has emerged in recent years as the most
promising technique. One of the main reasons for this
interest lies in the possibility to combine model-based
friction compensation with adaptive control methods.
This enables the controller to handle, online, para-
meter changes in the friction disturbance (which may
appear as a result of variations in temperature, wear,
etc.). Since the friction model is generally non-linear,
particularly the Stribeck effect, the construction of
the adaptation laws is also greatly simplified if
the (friction) disturbance can be represented with a
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Figure 1. Block diagram of the BBW actuator.

Figure 2. Brake-by-wire prototype.



linear-in-the-parameter (LP) structure,18 that is, linear
in the unknown parameters. The recent literature con-
tains several works that approximate the non-linear
friction map with LPs based on linearization
techniques,19,20 polynomials,21,22 Lorentzian,17,23 and
piecewise linear functions.24–26 Most of these
approaches, however, assume an accurate knowledge
of the so-called Stribeck velocity, a parameter that
characterizes the transition speed between the static
and kinetic (Coulomb) friction regimes. In practice,
due to parametric variation resulting from various
factors (temperature, humidity, etc.), this assumption
does not always hold.

An additional contribution of this work is to offer a
new LP, composed of a sum of normalized exponen-
tials, capable of approximating the non-linear friction
map with a significant uncertainty in the Stribeck velo-
city. This new LP, obtained through optimal function
approximation techniques, provides a higher accuracy
than the LPs previously proposed in the literature19–
21,26 and has a reduced number of basis functions (six).
In the second part of this work, the optimal LP is
employed in the development of an adaptive-robust
controller for the hybrid BBW actuator. It is shown
that, under some reasonable assumptions, the actuator
can be modelled as an uncertain second-order system,
affected by two types of disturbances: parametric and
non-parametric. The former, arising from the approxi-
mation of friction with an LP, is compensated using a
switching-s adaptation mechanism. The latter, result-
ing from modelling approximations, is attenuated with
a continuous sliding mode term. The robust stability
and ultimate boundedness of the proposed controller
are established analytically through the Lyapunov
method. A preliminary version of this work was pre-
sented in the Mechatronics 2012 conference27 and is
extended here with additional discussion on the
(reduced) model of the BBW and experimental valida-
tion of the control law.

Actuator model

As shown in Figure 1, the BBW actuator under con-
sideration is composed of different types of physical
sub-systems, involving electrical, mechanical, and
hydraulic domains. The main source of motion lies in
the electric motor (direct current (DC) motor, with
200 W), which is connected to a fixed reduction gear
to increase the output torque. This rotational motion
is then converted in linear displacement, for example,
by using a ball-screw device, pushing the master cylin-
der piston, and building up the necessary braking
pressure. The hydraulic pressure is conducted through
a small pipeline (i.e. the brake lines) to the pads,
which then presses the braking disc to generate the
clamping force.

Mathematical model

Starting with the electro-mechanical part of the actua-
tor, we have

Jm€um =Tm � Tg � Tf(:) ð1aÞ
mc€xc =Fs � pcAc ð1bÞ

Tg =
Fs

G
, um =Gxc ð1cÞ

tm _im = � im + i�m, Tm = kmim ð1dÞ

The first equation represents the rotational dynamics
of the motor, where um is the motor position, Jm is the
sum of motor and reduction gear inertias, Tm is the tor-
que generated by the electric motor, Tg is the torque at
the gearbox input, and Tf is the equivalent friction tor-
que. To simplify the model, it is presumed that the
main friction forces that affect the actuator (e.g. the
friction in reduction gear, ball-screw, piston, pipeline)
can be referred to the electric motor side; we postpone
the mathematical definition of Tf to a later section. The
second equation models the linear displacement of the
cylinder, with mc representing the piston mass, xc rep-
resenting the position, Fs representing the linear force
applied by the ball-screw, pc representing the master
cylinder pressure, and Ac representing its area. The
third equation describes the relation between torque/
force and rotation/linear position present in the reduc-
tion gear and ball-screw mechanisms, having G (rad/m)
as the overall gain factor. Finally, equation (1d) repre-
sents the closed-loop response of the motor current
controller, where im is the motor current, i�m is the set-
point, tm is the dominant time constant, and km (Nm/
A) is the current/torque gain. For the sake of brevity,
this work omits the details regarding the design of the
inner current loop (the interested reader is referred to
Dardanelli et al.12 and Acquistapace and Mazzoleni28

for additional information on this inner loop).
After specifying the electro-mechanical model, we

move on to the modelling of the hydraulic section.
Following similar arguments as those exposed in
Dardanelli et al.,12 the pressure dynamics in the master
and pad cylinders can be established by the direct
application of the continuity equation29

�Qc ¼ _Vc +
Vc

b
_pc ð2aÞ

Qp = _Vp +
Vp

b
_pp ð2bÞ

Vc =(Lc � xc)Ac, Vp =Apxp ð2cÞ

where Qc is the volumetric flow rate getting out of the
master cylinder chamber; Qp is the volumetric flow
entering the pad’s cylinder; Vc and Vp are the volume
of the master and pad cylinders, respectively; Ap is the
area of the pad cylinder piston, and b is the bulk modu-
lus of the brake fluid. Neglecting the pipeline dynamics,



and assuming laminar flow, we can further derive the
pressure decrease in the pipeline as

pc � pp =KcpQ, Q=Qc =Qp ð3Þ

where Kcp is the laminar flow coefficient of the pipeline
(which depends on the conduct geometry and fluid
properties).29 Finally, the clamping force applied to the
brake disc can be described by the following dynamic
model

mp€xp = ppAp � Fc(xp) ð4aÞ

Fc(xp)=
0, ifxp \ xgap

kp(xp � xgap), ifxp5xgap

�
ð4bÞ

where mp is the pad mass, xp is the pad displacement,
xgap is the air gap between the brake disc and the pad,
kp is the stiffness of the pad, and Fc is the clamping
force. Table 1 contains a list of the known values of
some of the physical parameters of the actuator.

Development of a control-oriented model

This section aims to develop a practical mathematical
model that can be helpful in the design of feedback con-
trollers for the BBW actuator. To clarify the role of the
numerous variables introduced in the previous section
(i.e. define states, parameters, disturbances, etc.), it is
convenient to first rewrite the system models (1)–(4) in
a state space formulation. Accordingly, let us consider
the following state variables

x1 = um, x2 = _um =vm, x3 = pc ð5aÞ

x4 = pp, x5 = xp, x6 = _xp, x7 = im ð5bÞ

x= x1 x2 x3 x4 x5 x6 x7½ �T ð5cÞ

By replacing these variables in equations (1)–(4),
and considering the motor current setpoint as the con-
trol input for the system, that is, u= i�m, the system
dynamics is given as

_x1 = x2 ð6aÞ

Jeq _x2 = kmx7 �
Ac

G
x3 � Tf(:) ð6bÞ

_x3 =
b

Lc � x1
G Ac

Ac

G
x2 �

x3 � x4
Kcp

� �
ð6cÞ

_x4 =
b

Apx5

x3 � x4
Kcp

� Apx6

� �
ð6dÞ

_x5 = x6 ð6eÞ
mp _x6 = x4Ap � Fc(x5)

� �
ð6fÞ

tm _x7 = �x7 + uð Þ ð6gÞ

where Jeq= Jm +mc=G
2 is the equivalent inertia of the

motor, gear, ball-screw, and mass of master cylinder’s
piston.

Before presenting the development of the reduced
model, it is pertinent to discuss some of the possible
control variables that can be used by the BBW control-
ler. Ideally, the BBW controller should use the braking
torque (or, alternatively, the clamping force Fc) as the
controlled variable. However, due to the package and
cost constraints, it is not always desirable/possible to
have dedicated sensors to measure these variables.
Therefore, in practice, it is more convenient to exert an
indirect control over the braking torque using easily
measurable variables, such as hydraulic pressure. In the
BBW actuator employed in this work, and taking into
account our goal of keeping intact the calipers used in
today’s vehicles, the variable that is more easily mea-
surable and, simultaneously, has a strong connection
with the braking torque is the pressure in the master
cylinder, x3 = pc. Consequently, in the sequel, we will
regard x3 as the main output of the actuator’s reduced
model.

Simplification of the hydraulic and pad’s model

Starting with the pad’s model, it is noteworthy to verify
that equation (6f) is a hybrid/switching system, in the
sense that the model’s vector field is dependent on the
value of the binary condition

cg =(x55xgap) 2 f0, 1g ð7Þ

Generally, this condition will affect the control strategy
employed in the actuator. For example, in situations
where cg =0, an air gap management algorithm is nor-
mally used to overcome the clearance gap between the
pads and the braking disc. This operation, seen as an
initial procedure to prepare the actuator for the braking
manoeuvre, can be achieved with the help of prefilling
functionalities30 or by controlling the pad’s posi-
tion.13,14,16,31 On the contrary, after putting the pads in
direct contact with the braking disc (i.e. cg =1), the

Table 1. Physical parameters of the BBW actuator.

Variable Symbol Value

Inertia of motor + gear Jm 1:1310�5 kg m2

Mass of the master
cylinder piston

mc 1310�2 kg

Combined reduction
ratio

G 3:2943103 rad=m

Time constant of the
current loop

tm 15:9310�3 s

Current/torque gain km 16:8310�3 Nm=A
Area of the master
cylinder

Ac 1:13310�4 m2

Length of the master
cylinder

Lc 29310�3 m

Bulk modulus of the
brake fluida

b 1:63109 Pa

Area of the pad’s cylinder Ap 3:22310�3 m2

Stiffness of the pada kp 1:283108 N=m
Pipeline width – 8310�3 m
Pipeline length – 0:8 m

aNominal value.



control goal is to track the (hydraulic brake) pressure
setpoint. Throughout this work, the following assump-
tion will be considered.

Assumption 1. The pads are always in direct contact
with the braking disc, that is, xp = x55xgap. Thus, the
control-oriented model will be valid in the domain

X ¼ fxjx5 � xgapg ð8Þ

This assumption can be ensured by employing a suit-
able gap clearance management every time the BBW
controller is active, as mentioned above. Additionally,
to further simplify equation 6(f), we will consider the
following.

Assumption 2. After the pads encounter the braking
disc, the inertial force of the pads (mp _x6) can be
neglected.

This simplification allows us to find an (approximate)
algebraic relation between the pad’s pressure and posi-
tion, as well as its time derivative

kp(xp � xgap)’ppAp, kp _xp’ _ppAp, 8xp5xgap ð9Þ

By replacing the above relations in equations (6c)–
(6f), the equations associated with the pad position (x5)
and speed (x6) can be dropped, and the dynamics of
the master cylinder pressure (x3) and the pad’s pressure
(x4) posed with the following representation

_x3 =G(x1) x2 � a1(x3 � x4)ð Þ ð10aÞ
_x4 =a2X(x4)(x3 � x4) ð10bÞ

x 2 X , which depends on two parameters

a1 =
G

AcKcp
, a2 =

kp
KcpA2

p
ð11Þ

and two non-linear functions

G(x1)=
b

LcG�x1 , X(x4)= 1+
x4 +xgap

kp
Ap

b

� ��1
Inspecting more closely the last function, X(x4), one

can find that the pad’s pressure (x4) and the bulk modu-
lus of the braking fluid b are the most relevant variables
in the function. Since, in practice, b takes very high val-
ues (see, for example, the nominal value of b presented
in Table 1), we can use the following result.

Assumption 3. (high value of the bulk modulus).

b� x4 + xgap
kp

Ap
ð12Þ

to approximate the function X(x4) with a constant, uni-
tary value that is X(x4)’1. Consequently, equation (10)
can be further simplified as

_x3 =G(x1) x2 � a1(x3 � x4)ð Þ, _x4 =a2(x3 � x4) ð13Þ

From these relations, it is worth emphasizing that the
main driving forces behind x3 dynamics are the motor
speed (x2) and the pressure difference x3 � x4 in the
pipeline. Since this last quantity also plays an impor-
tant role in the dynamics of the pad’s pressure x4, it
seems reasonable to consider the pressure difference

Dp = x3 � x4 ð14Þ

as an alternative state variable to x4. In particular, by
introducing Dp in equation (13), we obtain

_x3 =G(x1)(x2 � a1Dp) ð15aÞ
_Dp =G(x1)x2 � G(x1)a1 +a2ð ÞDp ð15bÞ

By joining these last two equations, the master cylinder
dynamics can be expressed as

_x3 =
a2

a1 +
a2

G(x1)

x2 +
a1

a1 +
a2

G(x1)

_Dp ð16aÞ

=
a2

a1
x2 +

1

1+ a2

a1G(x1)

_Dp �
a2
2

a2
1G(x1)

x2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

d x1, x2, _Dpð Þ

ð16bÞ

=
a2

a1
x2 + d(x1, x2, _Dp) ð16cÞ

Assumption 4. For control purposes, we will regard the
term d(x1, x2, _Dp) as a bounded disturbance that the
BBW controller should attenuate. It is also convenient
to consider that this disturbance has a bounded time
derivative, which means that, from now on, we will
work under the premise that

jd(:)j4�d0, j _d(:)j4�d1, 8x 2 X ð17Þ

where �d0 and �d1 are upper bounds.

Assumption 5. In light of the fast response of the inner
current loop, the dynamics of this loop will be
neglected, thus x7 = im’i�m = u.

Using these last assumptions, together with equa-
tions (16c) and (6b), the control-oriented model that we
propose for the actuator is described by the following
uncertain second-order system

Jeq _x2 = kmu�
Ac

G
x3 � Tf(:) ð18aÞ

_x3 =
a2

a1
x2 + d(:) ð18bÞ

which is valid for x 2 X . In comparison with equation
(6), the above reduced representation, albeit less accu-
rate, is a much more tractable model for control design
purposes.

Validation of the reduced hydraulic model

The structure proposed in equation (18) is composed of
two parts: (1) the x2 dynamics, associated with the



electro-mechanical part, and (2) the x3 dynamics,
related to the hydraulic pressure in the master cylinder.
With regard to the electro-mechanical part, and given
that we did not make any special simplifications to
equation (18a), this relation is expected to be sufficient
to characterize the response of the motor speed. On the
contrary, the cylinder’s reduced model, equation (18b),
was subjected to a series of strong simplifications in the
hydraulic and pad dynamics, and there are legitimate
concerns about the validity of such approximations. To
dissipate such concerns, we will demonstrate, through
experimental tests, that equation (18b) can capture the
fundamental dynamics of the actuator, and that the
assumptions employed in the model’s derivation are
valid.

Recall that equation (18b) builds on the hypothesis
that the fundamental relation between the motor speed
x2 and the pressure x3 is described by an integral rela-
tion (assuming the undisturbed situation d’0)

_x3’
a2

a1
x2, x 2 X ð19Þ

To validate this hypothesis, it is helpful to regard
the motor speed x2 =vm as a ‘pseudo-input’ for the
hydraulic model, while the pressure x3 = pc is the out-
put. Of course, in practice, the true control input for
the BBW controller will be the motor current setpoint,
and we will also have to take into consideration the
motor dynamics, that is, equation (18a). Nonetheless,
for validating the candidate model (19), it is much more
interesting to decouple the hydraulics from the electro-
mechanical part, as this latter sub-block is subject to
difficult-to-model non-linearities, like friction (topic to
be addressed in the next section), which brings unneces-
sary complications to the identification process.

Since equation (19) only depends on one parameter,
that is, the ratio q=a2=a1, the identification process
of this model is relatively straightforward. In fact, con-
sidering a continuous-time identification approach, the
parameter q can be estimated by solving the following
least-squares problem

min
q̂

ðT
0

pc(t)� q̂

ðt
0

vm(t)dt + pc(0)ð Þ

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
p̂c(t)

0
BBBBB@

1
CCCCCA

2

dt ð20Þ

where T is the duration of the test, vm(t) is the mea-
sured motor speed (model input), pc(t) is the measured
pressure in the master cylinder (model output), and
p̂c(t) is the estimated pressure. To experimentally vali-
date the simplified hydraulic model, the BBW actuator
was installed in a test bench, the details of which are
provided in section ‘Experimental validation’.

A pseudo-random binary signal was applied to the
motor current, having a significant power spectrum up
to 10 Hz (see Figure 3(a)), which represents the
intended working range for the actuator. After

collecting the measurements pc and vm, the fitting
problem (20) was discretized and then numerically
solved, producing the estimative q̂=2:99 bar=rad. As
illustrated in Figure 3(b), the overall performance of
the simplified hydraulic model is very reasonable, and
the estimate p̂c is able to follow the general trend of the
measured pressure pc. These results demonstrate that
the proposed control-oriented model is, indeed, a good
candidate for capturing the fundamental dynamics of
the hydraulic part of the BBW actuator.

Friction characterization and modelling

After establishing a practical model for the BBW
actuator, we will now characterize in more detail the
friction disturbance Tf. From a physical point of view,
friction is an ubiquitous phenomenon that is present in
almost every part of the BBW actuator, being particu-
larly intense in the reduction gear–ball-screw system
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(due to the high reduction ratio) and in the master
cylinder (as a result of tight sealing used in the cylin-
der). In order to gain some insight on how this issue
affects our application, a series of open-loop experi-
ences in the BBW actuator were prepared. The idea
was to apply a relatively slow ramp (2.4 A/s) to the
motor current and observe the response of the system
states, such as motor speed and hydraulic pressure. As
can be seen in Figure 4(a), the BBW actuator exhibits
the typical stick-slip motion, which can be qualitatively
described as follows: (1) the increasing motor torque

eventually overcomes the static friction load (see the
circles in Figure 4(a)) and starts moving the master
cylinder’s piston (slip phase); (2) by pushing the piston,
the pressure in the master cylinder increases, which in
turn raises the motor load, and more importantly, the
friction levels (as we will see shortly, friction displays a
load-dependent behaviour); and (3) this increment in
the total load will, at some point, surpass the motor
torque, which will decelerate the piston and, ultimately,
stop it (stick phase). This stick-slip pattern then repeats
periodically throughout the test.
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For convenience, the torque variables are translated to current using the current/torque motor gain km and the circles represent the time instances

where the breakaway occurs. a), c): characterization of the breakaway torque during positive torque steps ðdim=dt . 0Þ: b), d): characterization of the

breakaway torque during negative torque steps ðdim=dt \ 0Þ.



Besides the qualitative analysis of the actuator
motion, this open-loop test can also be explored to
infer the values of breakaway friction torque, that is,
the minimum value that will overcome the static fric-
tion. Towards that goal, it is necessary to estimate the
friction torque and the time instants where the break-
away happens. The first estimative can be performed
with the help of the relation (18a), while the break-
away’s time instants are defined as

O= ftjvm(t� i)=0, vm(t+ i). 0, 8i 2 (0, �T�g

where �T is the length of a time window where the piston
motion is evaluated. For illustration purposes, the O set
is highlighted by circles in Figure 4. Assuming that the
motor acceleration ( _vm) is relatively low in the domain
O, thus the term Jeq _vm can be neglected in equation
(18a), the breakaway torque TS can be approximated
by

TS(t)’kmim(t)� Ac

G pc(t), t 2 O ð21Þ

Figure 4(c) shows the experimental results obtained
with this estimator, plotted against the pressure pc, dur-
ing the rising part of the current ramp (i.e. dim=dt. 0).
These results suggest that TS increases with the pres-
sure in the master cylinder pc. To some extent, this is a
reasonable behaviour since the type of actuator under
study is expected to display ‘load-dependent’ friction,
as explained in Mare.32 Furthermore, taking into
account the (almost) linear increase in Ts with the pc,
as shown by the experimental data, it is appropriate to
consider an affine model for the breakaway torque Ts,
which is

T̂S(pc)=TS0 +TSppc ð22Þ

where TS0,TSp are parameters. As shown in Figure
4(c), there is a reasonable agreement between the mea-
surements and this affine model. Another point worth
stressing is related to the control effort that the motor
needs to develop to overcome the (static) friction. To
better explain this point, recall that, in steady-state con-
ditions ( _vm =0), and in light of equation (18a), we will
have the following condition

kmim =
Ac

G
pc +Tf ð23Þ

This means that the torque developed by the motor
(kmim) will be used to generate the braking pressure
((Ac=G)pc) and overcome the friction disturbance Tf.
Now, looking again at Figure 4(c), we can observe that
the (breakaway) friction disturbance is significantly
higher (2–3 times) than the expected load torque associ-
ated with the braking pressure. This result clearly
emphasizes the dominant role that friction disturbance
has in the BBW actuator.

It is also useful to analyse the results of the open-
loop test when the motor current is decreasing
(dim=dt\ 0), as shown in Figure 4(b). The most striking

result to emerge from the data is that, for t 2 ½45, 48:3�s,
the motor current diminishes from 10 (equivalent to
100% of the nominal torque) to 2 A, but the motor
position and the pressure remain unchanged. This loss
of control authority can be explained, again, by the
strong effect of friction. Interestingly, the breakaway
torque for this situation (vm \ 0) shows much lower
friction levels than the situation where the piston is
being pushed (see Figure 4(d)), which puts in evidence
the large friction asymmetries in the actuator.

Friction map

The analysis carried out thus far has focused on the
characterization of the breakaway friction torque. We
will now move our attention to the friction study when
the actuator is moving, that is, jvmj. 0. In this opera-
tion mode, the most relevant factors that need to be
considered are the well-known Coulomb friction, vis-
cous friction, and Stribeck effects.17 Classically, these
factors can be modelled through a static map, having
as main input the speed difference between the contact
bodies in the actuator (vm). In addition, given the load-
dependent friction that affects the actuation, illustrated
in Figure 4, it seems appropriate to also conjecture the
possibility of having some terms in the friction map
that increase linearly with hydraulic pressure pc.
Accordingly, the friction map under consideration for
the BBW actuator is given by

Tf(vm, pc)= (TC0 +TCppc)sgn(vm)+s2vm

+DTe�
vm
vsð Þ

2

sgn(vm)
ð24Þ

where TC0 is the (no-load) Coulomb friction torque,
TCp is the Coulomb friction increase due to pressure in
the master cylinder, DT is a torque difference between
the breakaway and the Coulomb torque, vs is the
Stribeck speed, and s2 is the viscous friction coefficient.

Notice that, in practice, the hydraulic pressure
affects not only the Coulomb term but also the viscous
and Stribeck terms, that is, the parameters s2 and DT
may change with pc. However, we verified that the load
dependence is more pronounced in the Coulomb term,
and to avoid over-complicating the friction model, the
load effects in the viscous and Stribeck terms were
neglected. Another aspect needing special attention is
the friction asymmetries with respect to the direction of
movement. To address this issue, the model’s para-
meters in equation (24) must be switched in accordance
with the direction of movement, that is

8=
8+ , ifvm . 0

8�, otherwise

�
ð25Þ

where ‘8’ represents one of the parameters
TC0,TCp,s2,DT, andvs.

Towards the experimental validation of equation
(24), we arranged another series of open-loop experi-
ments with the BBW actuator, which follows a similar



pattern to those employed in the breakaway test. More
specifically, after imposing in the motor current a ramp
setpoint (2.4 A/s), the pressure and speed measure-
ments were used to estimate the friction torque through
the relation (18a). The experimental results depicted in
Figure 5 show two features that were already noticed in
the breakaway torque tests, namely, (1) the friction tor-
que increases with the hydraulic pressure pc and (2) the
direction of motion plays a major role in the friction
levels (in particular, the friction disturbance is much
more severe in the domain vm . 0). Moreover, by fit-
ting the experimental data with equation (24), we can
also observe a very satisfactory agreement between the
measures and the friction model (the parameters of the
model, obtained with non-linear fitting techniques, are
shown in Table 2).

Remark 1. It is a well-known fact that the friction map
(24) will not be able to capture some features of the
friction disturbance, such as presliding displacement,
frictional lag, or the variable breakaway force.17 To
represent these features, we would need to use a more
complicated friction model, such as the LuGre
model.32,33 Nonetheless, our main focus here is to
employ practical control-oriented models, which, albeit
providing only an approximation of the reality, are eas-
ier to treat at the control design stage. As a result, we
will assume that the friction can be modelled by a static
map and endow the BBW controller with robust
mechanisms to cope with modelling errors.

A practical LP for friction compensation

The friction torque model (24), in addition to the non-
linearities, also depends on a set of parameters
(TC0,TCp,s2,DT,vs) that are subject to uncertainty. In
order to facilitate the effective handling of this uncer-
tainty by the BBW controller, we will present in this
section an LP model, suitable for (model-based) fric-
tion compensation with adaptive methods. With this
objective in mind, it is worth highlighting the fact that
the parameters (TC0,TCp,s2) have a linear effect in
equation (24), and as a result, they are already in a
proper format to be incorporated in the LP. However,
the exponential fe(vm,vs)= e

� vm=vsð Þ2
, related to the

Stribeck effect, is nonlinear in the parameter vs. In
order to derive an LP to this term, in the sequel, we will
consider that the Stribeck speed is constrained to the
domain: vs4vs4vs.

Normalization of the Stribeck effect. In general, the
Stribeck speed is a parameter that varies from applica-
tion to application and is subject to a wide range of
variation, for example, Armstrong et al.34 argue that vs

can vary between 0.00001 and 0.1 m/s (equivalent lin-
ear motion). To keep our approach general, it is useful
to introduce a normalization factor in the parameter
vs. With this goal in mind, let us re-parameterize the vs

range as

vs 2 ½av̂s, �av̂s�= ½vs,vs� ð26Þ

where v̂s 2 ½vs,vs� is the (nominal) estimative for the
Stribeck speed and a 2 (0, 1�, �a 2 (1,‘) are selected in
order to keep the original range intact. Introducing this
normalization in the exponential term

fen(vm,a)= fe(vm,av̂s)= e�
1
að Þ

2 vm
v̂sð Þ

2 ð27Þ

where a 2 ½a, �a�, and defining the additional normaliza-
tion variables

X= vm

v̂s

� 	2
, h= 1

a

� �2 ð28Þ

the non-linear Stribeck effect can be represented with
the equivalent function

f(X,h)= e�hX ð29Þ

where h 2 ½h, �h�= 1=(a)2, 1=(a)2

 �

is an unknown
parameter, which models the uncertainty in the estima-
tion v̂s, and X the normalized input.
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Figure 5. Comparison between the experimental friction map
and the model (24).

Table 2. Nominal values of the friction model.

Mode TC0 (A) TCp (A/bar) s2 (A/rad/s) DT (A) vs (rad/s)

vm . 0 1.28 0.23 0.0065 1.12 6.9
vm \ 0 0.16 0.05 0.0023 0.97 5.6



Remark 2. Normally, the Stribeck effect is represented
by the generic expression e� vm=v̂sj jx , with typical values
of x =1 (Tustin model), x =2 (Gaussian model), and
in general x 2 ½0:5, 1� [ f2g.34,35 In this work, it was
assumed that x =2, but the described method to derive
the optimal LP can easily be adapted to other values of
x, by changing the normalized variables as
X= jvm=v̂sjx,h=1=ax.

Formulation of the optimal LP problem. To approximate
equation (29) with an LP, we will consider functions
with the following format

fLP(X, u,w)= h1(X,w)� . . . hd(X,w)½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hT(X,w)

u
ð30Þ

where hi(X,w), i=1, . . . , d are the basis functions,
u 2 R

d are the linear parameters, and w 2 R
m are the

weights that characterize the (possible) non-linear basis
functions. The selection of these weights will be carried
out through the following procedure.

Proposition 1. The weight w� that minimizes the fitting
error between the LP fLP(X, u,w

�) and f(X,h) over the
parametric range of interest (X,h) 2 ½0,X�3 ½h,h� is
defined as the solution of the following optimization
problem

min
w2Rd

eT(w)

s:t: eT(w)=
Ðh
h

e(h,w)dhð Þ

e(h,w)=
ÐX
0

(f(X,h)� hT(X,w)G�1(w)c(h,w))
2
dX

½G(w)�ij =
ÐX
0

hi(X,w)hj(X,w)dX

½c(h,w)�i =
ÐX
0

hi(X,w)f(X,h)dX, i, j=1, . . . , d

where eT(w) is defined as the total fitting error. The
motivation and proof of the previous result were
derived in De Castro et al.36

Numerical evaluation. In the remainder of this article, we
will consider that the nominal/estimated Stribeck speed,
v̂s, has an uncertainty of 650%, which is equivalent to
a=0:5, �a=1:5, and h=0:444, �h=4. Furthermore,
we fixed �X=5 since this is generally enough to cover
the range where the Stribeck effect is pronounced. Due
to the exponential nature of the Stribeck curve, the
basis functions employed in this work also rely on
exponentials

hE(X,w)= e�w1X e�w2X . . . e�wdX

 �T ð31Þ

Next, the problem described in Proposition 1 was
discretized and then tackled with a numerical solver,37

which enabled us to obtain the optimal weights w�.

To investigate the performance of the optimal LP,
Table 3 represents the total fitting error metric, eT(w),
evaluated for different types (and number) of basis
functions. It is interesting to note that, from the LPs
previously proposed in the literature, the mixed expo-
nentials (MEs)19 provide a respectable fitting result
when compared with the Lorentzian function23 and the
polynomial approach.21,22 Nevertheless, by employing
the fixed exponentials (hE), with the optimal selection
of weights, a significant improvement is observed:
incorporating two fixed exponentials contributes to a
reduction of almost 60% in the total fitting error, while
three exponential produces an almost negligible error.

To further investigate the performance of these LPs,
Figure 6 shows the evolution of the fitting error,
e(h,w�), for different values of h. An examination of
the ME basis functions shows that the fitting error is
almost zero when h approaches 1 (i.e. a is near to 1),
implying a small error in v̂s. These results are in accor-
dance with the theoretical expectations for this approx-
imation: the MEs were derived based on linearization
techniques, thus it should present good results when v̂s

is close to the nominal point. These good results, how-
ever, do not extend to situations when h departs from
1, and the ME ends up introducing significant fitting
errors. On the contrary, it can be observed that when
fixed exponentials (d=3) are employed, the fitting
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Figure 6. Fitting error e(h, w�) evaluated for polynomials,
exponentials, and mixed exponentials (see Table 3).

Table 3. Total error eT for fitting equation (29) with different
LPs.

Basis function Number of basis (d)

1 2 3

Lorentzian23 0.2833 – –
Mixed exponentials19 – 0.0224 –
Polynomial21,22 – 0.197 0.0256
Exponentials 0.0976 0.0087 0.0004



error is almost zero everywhere, which highlights the
robustness of this LP against uncertainty in h (or in v̂s

estimation).
In summary, the optimal LP for approximating the

normalized Stribeck effect (29) was found to be expo-
nential based, with d=3

hE3(X)= e�0:538X e�1:289X e�3:043X

 �T ð32Þ

This enables us to approximate the original non-
linear friction map (24) with the following LP

Tf(vm, pc)= uTu(vm, pc)sgn(vm)

u(vm, pc)= 1 pc vmj j hTE3
vm

v̂s

� 	2� �� 
T ð33Þ

where u 2 R
n, n=6, and u(vm)sgn(vm) is the regressor.

Two important factors should be taken into consid-
eration when implementing the above LP. First, the
regressor function depends on the discontinuous func-
tion sgn(vm), which makes the numerical calculation of
this regressor sensitive to measurement errors and may
excite high-frequency modes neglected during the mod-
elling phase.38 To mitigate this issue, the term sgn(vm)
will be approximated by a continuous function, based
on a logistic sigmoid c(vm)= � 1+2=(1+ e�kcvm ),
kc . 0. This allows us to approximate the LP through
the following continuous map

Tf(vm, pc)’uTF(vm, pc) ð34aÞ
F(vm, pc)=u(vm, pc)c(vm) ð34bÞ

The second factor that deserves special attention is
related to the asymmetric levels of friction present in
the actuator. These asymmetries make it convenient to
switch the parameters of the LP according to the direc-
tion of motion, that is

u=
u+ , ifvm . 0
u�, otherwise

�
ð35Þ

where u+ and u� are the friction parameters associated
with positive and negative speeds, respectively.

Controller design

In this section, a control strategy for the BBW braking
actuator will be developed. The control objective is a
tracking one: design a control law for the motor cur-
rent u such that the hydraulic pressure x3 = pc follows,
as fast as possible, the reference x�3.

This pressure setpoint, normally defined by the
driver or by an auxiliary safety system (like the antilock
braking system (ABS)), is supposed to have known first
( _x�3) and second (€x�3) time derivatives. In accordance
with the discussion presented in the previous sections,
the design of this controller will rely on the reduced
model (18) and on the optimal LP (34), that is

_x2 =
1

Jeq
kmu� a3x3 � uTF(x2, x3)
� �

ð36aÞ

_x3 =
a2

a1
x2 + d(t) ð36bÞ

y= x3 � x�3 ð36cÞ

where y is the model output and a3 =Ac=G.

Input–output linearization and normal form

To gain additional insight regarding the model (36), it
is helpful to determine its relative degree. Recall that,
generally, the relative degree of a single-input-single-
output system is equal to the number of times the out-
put y needs to be differentiated until the control input u
appears, for the first time, in the derivatives of y.39 By
considering the first and second time derivatives of the
output

_y= _x3 � _x�3 =
a2

a1
x2 + d(t)� _x�3

€y=
a2

a1Jeq|fflffl{zfflffl}
w�1

kmu� a3x3 � uTF(:)+
a1Jeq

a2

_d(t)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
g(t)

0
BBB@

1
CCCA� €x�3

= 1
w kmu� a3x3 � uTF(x2, x3)+ g(t)
� �

� €x�3

ð37Þ

it can be concluded that the actuator has relative degree
2. Furthermore, according to the input–output (IO) lin-
earization technique, the non-linear terms in the previ-
ous relation can be cancelled by selecting the control
input as

kmu=a3x3 + uTF(x2, x3)� g(t)+w(v+ €x�3) ð38Þ

where v is a new control term. Replacing this law in
equation (37) produces a second-order linear dynamic,
that is, €y= v, which can straightforwardly be stabilized
by a suitable selection of v. Moreover, given that equa-
tion (36) has relative degree 2 (equal to the number of
states), this control-oriented model does not have zero
dynamics. This result is also evident from the normal
form associated with the reduced model (36)

_e1 = e2
_e2 =

1
w kmu� a3x3 � uTF(x2, x3)+ g(t)� w€x�3
� � ð39Þ

where e1 = y= x3 � x�3 and e2 = _y.

Adaptive-robust controller

The control law (38), although effective in handling the
model non-linearities, is dependent on the exact knowl-
edge of the friction parameters (u) and it needs the value
of the function g(t). In practice, both u and g(t) may
change throughout the actuator’s operation conditions
(e.g. with temperature, mechanical wear) and are also
subject to uncertainty. To cope with these uncertainties,
the ideal controller will be modified in two directions.
First, adaptive mechanisms will be included in the con-
troller to deal with the parametric uncertainty in u, and
second, g(t) will be treated as a disturbance that the
controller should robustly attenuate.



Taking into account the normal form (39), the design
of this adaptive-robust controller can be simplified by
using a ‘sliding-like’ variable s

s= e2 +L1e1 ð40Þ

where L1 is a positive constant. It is easy to see that if s
is maintained at zero, then the pressure error will
decrease to zero with a first-order dynamic, that is,
e1 = � L1e1. Consequently, the controller design can
be based on the s variable, which is a common practice
in servo control applications.18,26,38 For control design
purposes, it is also convenient to determine the sliding
variable dynamics

_s=
1

w
kmu� a3x3 � uTF(x2, x3)+ g(t)� w(€x�3 � L1e2)
� �

ð41Þ

In order to stabilize this s dynamic, we propose the
following control law

kmu=a3x3 + ûTF(x2, x3)+ ŵ(€x�3 � Le2)

� r tanh
s

e

� 	
� L2s

ð42Þ

where L2 is a positive tuning constant, and û and ŵ are
estimates of u and w, which will be defined by an adap-
tive mechanism (to be introduced shortly). From an
engineering standpoint, the structure of the proposed
controller can be explained as follows. The first two
terms attempt to cancel the load torque resulting from
the friction and the generation of the hydraulic braking
pressure. The third term appears due to tracking formu-
lation of the problem and the sliding variable definition.
The fourth term employs a continuous sliding mode
action to attenuate the effect of the disturbance g(t),
where e . 0 is the width of the boundary layer. Finally,
the last term is incorporated to improve the transient
response.

At this stage, it is worth pointing out that, besides
the friction parameters û, the proposed controller will
also perform an online adaptation of the w parameter.
From a practical perspective, this adaptation is also rel-
evant because w constitutes another source of para-
metric uncertainty (e.g. w depends on the pad’s stiffness
kp, which, as already discussed, varies in time). With
regard to the other two parameters in the control law
(km, a3), we treat them as known constants. In our
view, this approach is justified by the fact that both
variables are known with a reasonable accuracy, for
example, a3 =Ac=G depends only on the geometric
properties of the actuator, whereas the current/torque
gain km is generally a well-known quantity.

Stability and adaptive laws

As commonly done in the construction of robust con-
trollers, we will work under the premise that the distur-
bance g(t) and the parameters u andw are upper
bounded

g(t)j j= a1Jeq

a2

_d(t)

����
����4a1Jeq

a2

�d14r ð43Þ

0\w4Mw, uk k4Mu ð44Þ

where r, Mw, and Mu are constants. To investigate the
stability of the proposed adaptive-robust controller, as
well as to find the adaptive laws for the parameters’
estimates û and ŵ, consider the following candidate
Lyapunov function

V(s, ~u, ~w)=
w

2
s2 +

1

2
~uTG�1u

~u+
1

2Gw
~w2 ð45Þ

where ~u= û� u and ~w= ŵ� w represent the para-
metric estimation errors, and Gu and Gw are positive-
definite gains. Calculating the time derivative of V, it
can be shown that

_V= � L2s
2 + ~u

T
F(x2, x3)s+G�1u

_~u
h i

+ ~w (€x�3 � Le2)+G�1w
_~w


 �
+ s g(t)� r tanh

s

e

� 	h i ð46Þ

The adaptation law adopted in this work is based on
the switching-s method40

_̂
u= � Gu F(x2, x3)s+su(û)û

� �
,

su =
0, if û

�� ��4Mu

s0, otherwise

(
_̂w= � Gw s(€x�3 � Le2)+sw(ŵ)ŵ

� �
,

sw =
0, if ŵj j4Mw

s0, otherwise

�
ð47Þ

where s0 . 0 is a tuning parameter. The idea behind the
switching terms is to introduce leakage in the integra-
tion process of the adaptation law, whenever excessive
estimates are present. This leakage ends up attenuating
the parameter-drift issues, which is one of the main con-
cerns in this approach. Replacing equation (47) in _V
and by noticing that jsg(t)j4rjsj, one has

_V4� L2s
2 � suð:Þ~u

T
û� swð:Þ~wŵþ r jsj � tanh s

e

� �
s

� �
Now, consider the following auxiliary results

ðaÞ �su(:)~u
T

û4� s0
~uû+2s0M

2
u4�

s0

2
~u
�� ��2

+
s0

2
uk k2 +2s0M

2
u

ð48Þ

ðbÞ � sw(:)~wŵ4� s0 ~wŵ+2s0M
2
w4�

s0

2
~w2

+
s0

2
w2 +2s0M

2
w

ð49Þ

ðcÞ 04 sj j � s tanh
s

e

� 	
40:2785e= ~ke ð50Þ

The first inequality of equations (48) and (49) is a
well-known result for the switching-s method (Ioannou
and Sun,40 p.561), whereas the second inequality



follows from the completion of squares; inequalities
(50) are demonstrated in Farrell and Polycarpou41

(Lemma A.5.1). Using these three auxiliary results, _V
can be further bounded by

_V4� L2s
2 � s0

2
~u
�� ��2 � s0

2
~w2 +

5s0

2
M2

w +M2
u

� �
+ r ~ke|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

l2

where ~k50:2785. Selecting l1 = min (2L2=w,
s0=lmin(G

�1
u ),s0Gw), where lmin(G

�1
u ) is the smallest

eigenvalue of G�1u , we finally get

_V4� l1V+ l2 ð51Þ

This inequality paves the way for the main result of
this section.

Proposition 2. Consider the system (41) controlled by
equations (42) and (47). The following holds.

1. The signals s, û, and ŵ are bounded; in particular

s(t)j j4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

w
max V(0),

l2

l1

� �s
ð52Þ

2. The signal s is ultimately bounded by

lim
t!‘

s(t)j j4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5s0(M2

w +2M2
u)+2r ~ke

w3 min 2L2

w , s0

lmin(G
�1
u )

,s0Gw

� 	
vuut ð53Þ

Proof. By the comparison Lemma,39 the differential
inequality (51) implies that V(t) is upper bounded by

V(t)4
l2

l1
+ e�l1t V(0)� l2

l1

� �
4max V(0),

l2

l1

� �
ð54Þ

Since V(t) is also lower bounded

w

2
s2 +

lmin(G
�1
u )

2
~u
�� ��2 + 1

2Gw
~w24V(t) ð55Þ

we can conclude that s(t)j j4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2=w)V(t)

p
, yielding

equation (47). The boundedness of the estimates û and
ŵ is evident from the ‘leaky’ integrator adopted in the
adaptation law (47). As for the ultimate boundedness
of s, it follows from the fact that
limt!‘ s(t)j j4 limt!‘

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2=w)V(t)

p
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2=w)(l2=l1)

p
.

Experimental validation

The adaptive-robust controller was validated through a
series of experimental tests carried out in a test bench.
The results are presented and discussed in this section.
Throughout these tests, the BBW actuator, already
introduced in section ‘Actuator model’, was controlled
through a low-cost digital signal processor (DSP),

Freescale MC9S12XE. This controller samples the
measurements from the master cylinder’s pressure and
motor position (through an encoder with 100 pulses
per revolution) at a rate of 200 Hz, which is also the
execution rate of the pressure controller. The DSP also
contains a fast current loop, based on a proportional
+ integral (PI) control law running at 1000 Hz, which
is responsible for regulating the motor current.12,28

Given that the BBW actuator is a safety critical system,
additional measures were considered to detect faults.
Accordingly, the DSP unit implements several checks
and redundancies: two pressure sensors are available as
well as hardware checks on the supply voltage and pro-
tection against over-current and short circuit. These
solutions, together with a current-loop and pressure-
loop observers, are capable of detecting faults in the
actuator and to avoid unwanted application of pressure.

In what follows, the presentation and discussion of
the experimental tests are divided into four parts. In the
first two, we investigate how the proposed adaptive-
robust controller performs in comparison with other
friction-compensation techniques, namely, (1) propor-
tional + derivative (PD) control law + nominal fric-
tion and (2) dither-based friction compensation. The
final two experimental tests will show the response of
the proposed controller to general setpoints (steps and
ramps), as well as real-life braking setpoints.

Nominal versus adaptive friction compensation

As an initial attempt to comply with the control specifi-
cations, we start by implementing a simple PD control,
with nominal friction compensation. This is a reason-
able approach to start with because, in practice, some
preliminary experiments can be performed to construct
an estimative for the steady-state friction map (as dis-
cussed in section ‘Friction map’). The PD control law
was built from equation (42), with the adaptive
mechanism disabled, that is, Gu = 0, Gw =0, gains
L1 =L2 =38 and fixed estimates ŵ=w, r=0. The
(fixed) estimative of the friction parameters û was
obtained by fitting the nominal friction map as shown
in Figure 5 with the LP (34). From the sinusoidal track-
ing results presented in Figure 7(a), one can observe
that as long as the friction levels are close to the nom-
inal ones (t 2 ½0, 1:5�s), this control law ensures a satis-
factory tracking performance, with pressure error
inferior to 1 bar. At t51:5 s, however, the operation
window to which the nominal friction model is valid
changes (the sine amplitude of the pressure setpoint
increases). This introduces a parametric disturbance
that the PD controller is unable to handle, generating
significant errors in the pressure control (see the time
period t51:5 s).

Next, the adaptive-robust controller was evaluated
using the parameter configuration specified in Table 4.
Just like the PD control, the adaptive law offers good
tracking capabilities for the nominal friction situation
(see Figure 7(b) for t 2 ½0, 1:5�s). This time, however,



the proposed controller is able to successfully cope with
the parametric disturbance (t51:5 s), showing a quick
transient response and low tracking error in steady state.
The evolution of the parameter estimation during this test
is also represented in Figure 8. For the sake of brevity,
we only show the parameter adaptation of the friction
parameter û+ (positive speeds), as these are the ones that
have higher uncertainty. Interestingly, these data reveal
that, after introducing the setpoint disturbance at
t=1:5 s, there is a significant change in the parameter
estimation, particularly in u+

2 , in an effort to track the
new friction conditions. Notice that the main objective of
the controller is just the pressure tracking, not parametric

estimation (which will only be met if the reference signal
has the persistence of excitation property).18

Dither versus adaptive friction compensation

Dither is another common approach to mitigate fric-
tion disturbances17 and was used in previous research
on the development of BBW control systems.12,13 The
idea behind this technique is to inject in the motor tor-
que a high-frequency auxiliary signal, for example,
sinusoidal, such that the actuator is always on the move
(or on the verge of movement), in an effort to attenuate
the effects of the static friction phenomenon, which is
one of the most difficult disturbances with which the
controller has to cope. In the scope of the BBW con-
troller development, it is useful to investigate how the
model-based friction compensation, employed in our
controller, performs in comparison with the dither fric-
tion compensation used in previous research.
Accordingly, in this section, we compare the perfor-
mance of the adaptive-robust controller against a PD
controller endowed with dither friction compensation.
The latter controller is constructed by disabling the fric-
tion parameters (û=0, Gu = 0, Gw =0) and adding a
sinusoidal dither term idsin(vt) to the control law (42).
The parameters of the dither signal, v=2p71:5 rad=s
and id = min (7, 4+ pc), were selected based on the
previous studies.12,28
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Figure 7. Experimental comparison between two control strategies for tracking the braking pressure: (a) PD with nominal friction
compensation and (b) adaptive-robust controller.

Table 4. Controller’s parameters.

Variable Symbol Value

Controller gain L1 38
Controller gain L2 38
Upper bound for g(t)j j r 0.014
Width of boundary layer e 150
Leakage factor s0 0.1
Adaptive gains
G +

u = diag 220:11:41:41:4½ �ð Þ310�3

G�u = diag 220:11:41:41:4½ �ð Þ310�4

Gw = 10�9

G +
u represents the adaptation gains employed during positive velocity

range and G�u contains the gains for the negative velocities.



From the experimental results shown in Figure 9(a),
it can be verified that the pressure responses of the con-
trollers under consideration are very similar. In both
cases, the tracking error reaches the 61 bar range in
approximately 50 ms and the steady state is close to
zero. The major differences lie in the control action,
that is, the motor current. To keep the motor always on
the move, the high-frequency signal injected by the
dither generates chattering in the current, which then
causes vibrations, audible noise, and, given that the
actuator is always moving, that is, vm 6¼ 0, an increase
in mechanical wear of the system. On the contrary, the
model-based friction compensation does not suffer
from such hurdles and produces a much smoother con-
trol action. These differences in control action also have
an important consequence for the energy consumption
in the actuator. As shown in Figure 9(b), the dither
controller consumes 13 Ws of electrical energy during
the test, whereas the model-based friction compensa-
tion (incorporated in the adaptive-robust controller)
uses only 7.5 Ws. Hence, these results demonstrate that
the model-based friction compensation can reduce the
energy consumption of the BBW actuator up to 42.3%.
Although energy consumption is not the main priority
in the BBW system, the higher energy efficiency offered
by the model-based friction compensation is an attrac-
tive feature for energy-sensitive applications, as is the
case of the automotive field in which the actuator will
be employed.

Transient response

After demonstrating the energy and performance
advantages of the adaptive-robust pressure controller
against other strategies, we investigated more closely
the transient response of this controller. Towards that
goal, additional experiments with square and triangular
waveform setpoints were carried out. It can be seen
from the results shown in Figure 10(a) that the transi-
ent response to the positive (2! 10 bar) and negative

(10! 2 bar) steps is very good. The time to reach the
setpoint is less than 50 ms, and the steady-state pres-
sure error is close to zero. There is also a small over-
shoot during the positive step (0.5 bar), but it still lies
within reasonable range.

The response of the controller to ramp setpoints,
illustrated in Figure 10(b), also displays a satisfactory
performance, with tracking errors below 0.6 bar. From
these results, we also can observe that the peak tracking
error occurs when the ramp switches from decrease to
increase mode (see, for example, t=0:26 s or
t=1:02 s). During these time instants, it becomes nec-
essary to reverse the direction of the motor speed vm,
which is one of the most challenging operation points
for the controller, as it will have to cope with the static/
breakaway force disturbances.
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Figure 9. Experimental comparison between the dither
technique and the model-based friction compensation
(employed in the adaptive-robust controller): (a) transient
response and (b) energy consumption of the actuator.
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Validation with realistic setpoints

For the final evaluation of the BBW controller, we
employed a pressure setpoint generated by a profes-
sional racing pilot, which was acquired during an
experimental test session carried out on an instrumen-
ted motorbike. Figure 11 shows a typical example of a
pressure braking setpoint produced by the racing pilot.
This signal can be decomposed into three phases: (1)
from t 2 ½0, 0:35�s, we have a strong, and fast, brake
increase in the pressure setpoint (35 bar/s); (2) during
the modulation phase, t 2 ½0:35, 4�s, the average pres-
sure is kept approximately constant (8 bar in this exam-
ple), and the driver introduces small oscillations in the
braking pressure setpoint in order to seek the maximi-
zation of the tyre–road friction force; and (3) finally,
for t54 s, the driver starts releasing the brakes to allow
the vehicle to negotiate the corner.

From an examination of the results presented in
Figure 11, it can be concluded that the proposed BBW
presents a good tracking performance, with the pres-
sure setpoint being imposed with an accuracy of 60.5
bar. As for the control action generated by the control-
ler, one can observe the existence of some current
spikes, with amplitude varying between 4 and 6 A.
These spikes are a consequence of the high-level (and
asymmetric) friction present in the BBW system. For
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Figure 10. Experimental response of the adaptive-robust controller for step and ramp pressure setpoints: (a) response to steps in
the pressure setpoint and (b) response to triangular setpoints.
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example, given that the friction disturbance is smaller
for negative speeds (see the discussion in section
‘Friction characterization and modelling’), it is no sur-
prise that during the periods where the pressure set-
point decreases slowly, for example,
t 2 ½0:72, 1:25� [ ½1:8, 2:5�s, thus with negative speeds,
the motor current is low and relatively smooth (notice
that, this behaviour is also present in the tracking of
the ramp setpoints, illustrated in Figure 10(b)).
However, for the periods of time when the pressure set-
point increases (e.g. t 2 ½1:62, 1:82� [ ½2:54, 2:68�s), and
since the friction disturbance for positive speeds is very
significant, the controller needs to apply a large control
effort, making unavoidable the presence of the current
spikes shown in the bottom plot of Figure 11. Despite
these difficulties, the experimental tests shown in this
section demonstrate that the proposed controller can
cope well with the friction disturbances.

Concluding remarks and outlook

In this work, an adaptive-robust controller for tracking
the braking pressure of a BBW actuator was proposed.
To facilitate the design of this controller, we started by
deriving a practical model for the actuator, putting par-
ticular focus on the simplification of the hydraulic
dynamics. By exploring pragmatic assumptions, we
were able to reduce the original actuator model, based
on a seven-state representation, to a (uncertain) second-
order system. Experimental tests provided strong evi-
dence that this reduced model is able to capture the fun-
damental dynamics of the actuator, making it very
attractive for control purposes. In order to cope with
friction disturbance, results from the theory of optimal
approximation of functions were used to approximate
the non-linear friction map with a simpler and more
practical LP. It was shown that compared with the
parameterizations previously proposed in the literature,
the optimal LP reduces the total fitting error and toler-
ates a significant uncertainty in all friction parameters,
most notably the Stribeck speed. Furthermore, given
that the friction (and the LP) is subject to parametric
uncertainty, adaptive mechanisms based on switching-s
were incorporated in the BBW controller, while robust-
ness to non-parametric disturbances, arising from mod-
elling simplifications, was handled by a continuous
sliding mode action. The stability and ultimate bound-
edness of the proposed adaptive-robust controller were
demonstrated with the help of the Lyapunov method.

The experimental results show that in comparison
with the nominal friction-compensation technique, the
proposed BBW controller can offer superior robustness
to parametric variations. It was also shown that com-
pared with the classical dither-based friction compensa-
tion, the proposed controller enables a reduction in the
energy consumption of the actuator by more than
40%. Finally, the effectiveness and performance of the

adaptive-robust controller were confirmed using realis-
tic pressure setpoints.

It is our intention in future work to address the
always important fail-safe operation of the BBW actua-
tor. Towards that goal, we are considering motorcycles’
architectures having brake assemblies with two discs/
calipers. Our idea is to connect the BBW actuator to
one caliper, while the second caliper is manually oper-
ated by the rider. In case of a fault, the BBW actuator
is shut down and the rider will be still able to operate
the brake with one caliper (although with a loss of per-
formance). We also plan to experimentally validate the
BBW actuator, and the proposed controller, in a drive-
by-wire vehicle.
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36. De Castro R, Araújo RE and Freitas D. Optimal linear

parameterization for on-line estimation of tire-road fric-

tion. In: 18th world congress of the international federation

of automatic control (IFAC), Milano, 28 August–2 Sep-

tember 2011, pp.8409–8414. International Federation of

Automatic Control (IFAC).
37. Ziena Optimization Inc. KNITRO 6.0 user manual,

March 2009.
38. Bin Y and Chang J. Advanced motion control: from clas-

sical PID to nonlinear adaptive robust control. In: 11th

IEEE international workshop on advanced motion control,

Nagaoka, Japan, 21–24 March 2010, pp.815–829. New

York: IEEE.
39. Khalil H. Nonlinear systems. 3rd ed.Upper Saddle River,

NJ: Prentice Hall, 2002.
40. Ioannou PA and Sun J. Robust adaptive control. Upper

Saddle River, NJ: Prentice Hall, 1996.
41. Farrell J and Polycarpou M. Adaptive approximation

based control: unifying neural, fuzzy and traditional adap-

tive approximation approaches. Hoboken, New Jersey:

John Wiley & Sons, 2006.

http://www.freescale.com/files/dsp/doc/app_note/AN1999.pdf



