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I. INTRODUCTION

T HE widespread adoption of wireless technologies in sev-
eral contexts and environments has fostered the interest in

radio localization systems to support new location-aware appli-
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cations. Most of the research in wireless positioning has focused
on device-based active localization, where a wireless device is
attached to the tracked entity and actively participates in the lo-
calization process [1]. In contrast to active solutions, device-free
passive localization [2] is an emerging approach for tracking ob-
jects or people moving in areas covered by a wireless communi-
cation network. In device-free localization, the tracked entity –
a person, an object, or an aggregate of persons/objects – is nei-
ther required to carry devices nor to take an active part in the
positioning process. The system relies on the fact that the sig-
nals received by the radio devices are affected by the presence
of a moving entity obstructing the radio propagation in the sur-
rounding area, so it is possible to locate the target by using radio
imaging techniques [3].
As depicted in Fig. 1, a moving target traversing a link causes

perturbations of the received signal strength (RSS). Measuring
the induced RSS fluctuations at multiple points over the space
allows to reconstruct an image of the area and locate the moving
object. Device-free localization is promising for a wide number
of applications ranging from context awareness in mobile com-
puting, ambient assisted living in smart spaces, intrusion de-
tection, emergency and rescue operations in hazardous areas,
access control and counting, pedestrian traffic monitoring in
public spaces.
In contrast to well-known mm-wave [3] and ultra-wide band

[4] imaging techniques, the device-free localization approach
herein considered is capable of using commercial radios op-
erating at 2.4 GHz over a small bandwidth (i.e., 5–20 MHz)
measuring the signal strengths rather than delays of reflections
or scattering as for usual monostatic radars. This enables the
implementation of the localization methodology in dense coop-
erative wireless cloud networks, used e.g., for monitoring and
control of industrial sites or critical infrastructures (adding pas-
sive surveillance functionalities to the pre-existing communi-
cation systems), tracking of machines/operators or other secu-
rity/safety related services. Targets in the radio coverage modify
the RSS field in a way that depends on their location relative
to the wireless devices so that it is possible to track the target
movements from the measured RSS perturbations.
A tomographic method has been proposed in [5] allowing to

visually inspect the perturbations of the RSS field and providing
an accurate radio imaging of the area of interest. The work high-
lights a number of open scientific and technical challenges that
need to be addressed. These include the definition of a reliable
statistical model – and related calibration procedure – to de-
scribe the impact of the attenuating/diffracting/scattering target



Fig. 1. Wireless infrastructure for device-free localization (top). Received
signal power over the th link due to the moving target (bottom figure).

on the RSS measurements and the potential location accuracy
that can be drawn from such measurements, in order to support
an efficient design of the wireless sensor deployment and the
positioning algorithm.
In this paper, the device-free localization problem is cast into

a new Bayesian framework based on a stochastic model that al-
lows to describe the target-induced RSS perturbations and op-
timally exploit all the location information coming from atten-
uation, random fading and mobility model. A new stochastic
model is proposed for relating the RSS measurements over each
link to the object position. Since the presence of the target is
shown to affect both the attenuation and the random fluctuations
of the received power, a log-normal model is defined where
the RSS mean and variance are expressed as functions of the
target location. The increase of path-loss and power fluctuation
induced by the moving target are described by exploiting the
theory of diffraction: a closed-form analytical model is derived,
tailored for the specific localization problem and validated on
experimental data. The model is able to describe the variations
of the responsiveness of the radio link – herein acting as de-
tector of moving objects – with the target position along the LOS
path, highlighting the increased sensitivity close to the trans-
mitting/receiving devices. The model is also used to evaluate
fundamental performance limits and to tailor Bayesian tracking
algorithms for localization.

The positioning system has been validated by several indoor
and outdoor experimental studies. A regular square layout of
IEEE 802.15.4 wireless devices has been considered for most
of the analysis; nevertheless the RSS model and the positioning
method are general enough to be applied to non-regular network
topologies and to different classes of wireless networks, such as
WiFi or other short-range device-to-device radio technologies
deployed in home or public environments. Preliminary results
in non-LOS (NLOS) environments with non-regular network
deployments are discussed as well. For the implementation
of the localization system, the medium access control (MAC)
sub-layer protocol has been designed to allow the nodes to
cooperatively exchange RSS measurements on a peer-to-peer
basis. The protocol enables real-time sampling of the RSS field
and provides a practical solution for on-line target detection and
tracking, being fully compatible with the IEEE 802.15.4 stan-
dard. For positioning, multi-link measurements are optimally
combined in a multi-angulation fashion using two different
criteria for estimation: maximum likelihood estimation (MLE)
based on snapshot measurements (i.e., without tracking);
Bayesian sequential estimation exploiting a-priori information
on the target mobility and particle filtering (PF) to alleviate
false localization problems [6]. Results from the test-bed mea-
surements confirm that the proposed model provides a reliable
description of the RSS changes caused by moving objects and
allows to obtain an accurate localization.

II. PROBLEM FORMULATION

As shown in Fig. 1, the localization system is based on a net-
work of nodes connected in mesh mode and spread over the
region to be monitored (detection area). Devices are
acting as anchor nodes being placed at known position

, where denotes the -th Cartesian coordi-
nate ( ) of the -th node ( ) in the two-di-
mensional (2D) space. These known positions can be either
measured during the deployment phase or estimated by the net-
work itself through a cooperative localization approach [1], [7].
We model the network as an undirected connected graph with
active wireless links (edges) indexed as .

The active links experience a sufficiently high signal strength
to support reliable communication even in case of obstruction
caused by the target. To simplify the reasoning, we assume that
the two links associated with the same pair of devices are re-
ciprocal. Experimental tests show that link asymmetry [8] has a
marginal influence on our localization modeling and thus justify
the assumption.
At discrete time , with sampling interval , an

access point (AP) acting as sink node collects the set of noisy
measurements where each observation
represents the RSS measured on the link during the -th
time interval. As detailed in Section V, the network used for
experimental validation employs a proprietary MAC protocol –
defined on top of the IEEE 802.15.4 standard – to rule the com-
munication between the anchor nodes and towards the AP.
The devices perform a periodic and synchronous transmis-
sion of probe signals over reserved time-slots, they measure the
RSS from the received signals and forward the data to the AP.



A single target1 is assumed to move within the detection area,
with position at time . The target does
not need to carry any electronic device and it is not aware of
being localized. The problem we tackle is to estimate the posi-
tion given the measurements taken over the peer-to-peer
links up to time . The position is not directly observable but it
is hidden into the noisy RSS measurements according to the
statistical model that will be defined in the following sections.

A. RSS Model for Localization

The signal model here proposed describes how the RSS on
each link is related to the target position in . The analytical
model will be derived with the support of a diffraction-based
analysis (Section III) and corroborated by experimental results
in both indoor and outdoor scenarios (Section V).
We assume that the anchor devices are equipped with a

single omnidirectional antenna transceiver. As for typical sce-
narios, the AP antenna is mounted on an elevated point over flat
terrain. Consider a link as in Fig. 2, a target (a human body in
the example) traversing the link induces significant fades on the
power [9] and the perturbation depends on the target loca-
tion relative to the link. Notice that in this work we are interested
in the target location regardless of any turn or change of posture
that the target may perform in that position; also, the desired ac-
curacy does not need to be higher than the target size. Thereby,
the event “target in position ” refers to the target being lo-
cated in the surrounding of and assuming any orientation (or
azimuth) with respect to the line-of sight (LOS) path, as in-
dicated in Fig. 2. This will give rise to a random fading on the
observed RSS due to different orientations or arrangements as-
sumed by the target in .
According to the widely adopted log-normal power model

(see e.g., [10]), the RSS expressed in dBm is defined as a
Gaussian random variable whose parameters depend on the spe-
cific environment. In our model, the probability density function
(pdf) parameters are related also to the absence ( ) or
presence ( ) of the target in the area :

if
if

(1)

In case of missing target ( ), the link experiences
an average received power, denoted as , that accounts for
time-invariant propagation effects such as path-loss and static
multipath due to fixed obstructions [11] or scattering objects
(metallic reflectors, walls, floor, etc.). On the other hand, the
Gaussian noise , with zero mean and
standard deviation , models the measurement errors due
to hardware limits (e.g., quantization, RF processing, etc.) [12]
as well as the randomness of shadowing due to variations in
the surrounding environment (e.g., objects or people moving
outside the detection area ).

1Multi-target analysis is out of the scope of this paper. Extension to multiple
targets would require the adaptation of the model so as to describe the effect
generated on the received signal power by one, two, etc. targets located along the
radio link. Preliminary experiments have been conducted highlighting a certain
sensitivity of the system to the presence of multiple targets.

In case of target presence ( ), the measured RSS is
subject to a perturbation that depends on the specific position
within . As confirmed by our experiments (see also

[13]–[15]), considerable perturbations are observed when the
target is located within the first Fresnel zone [16] of the link, as
this zone typically contributes to 90% of the propagating energy
in the wavefield. Both the deterministic path-loss and
the random fading provide informa-
tion on the target location and are thus modeled as function of
. As a matter of fact, a target located along the link typically

causes an increased path-loss such that:

(2)

where is the additional attenu-
ation due to the obstruction of the LOS path by the target (if the
target is outside the sensitivity area of the link ).
In addition, since the target can turn, move or assume different
postures in the surrounding of the location , an increased RSS
variability is observed:

(3)

with denoting the increased
standard deviation.
Evaluation of the 2D power maps is

crucial for solving the localization problem. Maps are typically
obtained experimentally by ray-tracing tools [17] or extensive
finger-printing procedures [5], [18]. In this work, we propose
to employ a new and analytically tractable model based on the
diffraction theory as described in the next section.

III. DIFFRACTION-BASED MODEL FOR RSS PERTURBATION

As depicted in the example of Fig. 2, we consider a link
where the distance between the transmitting and receiving an-
chors is and devices are mounted at the same height m
from the ground (flat terrain). The target is modeled as a di-
electric elliptic cylinder, with semi-axes of the elliptical cross
section denoted as , with , and height above
the LOS path. The target location is assumed to be along the
LOS path, with distance from the transmitter2 and
azimuth relative to the LOS path uniformly distributed

. Two examples of configurations with and
are shown in Fig. 2.

We assume that the additional target-induced attenuation
and standard deviation characterizing the

stochastic model (1) are mainly due to wavefronts diffracting
around the target object that is obstructing the -th link at
position and with random azimuth . Furthermore, for
any pair , the target is acting as a perfectly absorbing
knife-edge object. The observed RSS perturbation terms

and are computed in Sections III-A and
III-B, as a function of the portion of the Fresnel volume circular
cross-section obstructed by the target and thus they depend
on the distance . The diffraction-based model is then
validated in Section III-C for the relevant case of a human

2The target is located in the far-field region of transmitter and receiver.



Fig. 2. Diffraction-based model for target object (human body scattering).

body, in both indoor and outdoor environments, using experi-
mental power maps collected during a calibration phase over
relevant set-points . The notation is used
to indicate logarithmic dB conversion.

A. Modeling the Attenuation

The attenuation averaged over the random object
azimuth , can be modeled as the sum of a term accounting
for the diffraction caused by the obstruction and a residual term

– evaluated experimentally in Section III-C – accounting
for additional reflection and refraction effects. It is calculated
as:

(4)

where denotes the average of
the function of the azimuth . For target standing at with
any azimuth , the term represents the electric
field loss due to the target obstruction, computed as the ratio be-
tween the field received over the obstructed link and
the field measured in free space (i.e., in absence of target).
The energy loss due to the diffraction is computed using the
Fresnel-Kirchhoff method [19], [20] here extended to the 2D
case taking into account the object profile for varying target
orientation. Based on the Huygen’s principle, the exponential
phase term of the electric field is integrated over the two ver-
tical and lateral dimensions [21] as

(5)
where denote the axes of the 2D plane orthogonal to the
LOS path at location . The region indicates the area oc-
cupied by the target object in this plane, as illustrated in Fig. 2
for the relevant cases and . The term

is the radius of the circular cross-section of the first Fresnel
volume, measured at the location along the link3:

(6)

with denoting the signal wavelength. The maximum radius
is observed for . Exact solu-

tions to the integral (5) can be found in [21].
Assuming that the vertical dimension of the object is larger

than the Fresnel circular section, , and that ,
the attenuation (4) can be approximated as

(7)

with (see proof in the Appendix). The approximation
will be validated experimentally in Section III-C. From (7) we
can conclude that the increase of attenuation is ruled by the frac-
tion of the Fresnel cross-section obstructed by the target. Being
the vertical target size , the only relevant factor for
attenuation is the lateral obstruction represented by the ratios

and between the width of the obstruction
cross-section and the Fresnel radius in the two ex-
treme cases and . The term
approximates the average square obstruction for the rotating
target.

B. Modeling the Standard Deviation

The increase of standard deviation is due to the random az-
imuth and it is calculated as

(8)

with and
loss term defined as in (5). The residual term

– evaluated experimentally in Section III-C – models the
contribution of further reflections and refraction effects caused

3The approximation uses the distances measured along the ground rather than
along the direct wave.



Fig. 3. Indoor tests for single-link sensitivity region: measurements and diffraction-based model calibration.

by the target and not accounted for in the diffraction analysis.
Similarly as for the signal attenuation, the simplifiedmodel used
for localization assumes that and , which leads
to the result:

(9)

(see the Appendix for the proof). As confirmed by the ex-
perimental radio measurements outlined in Section III-C, the
random orientation of the object located at position within
the link area causes the standard deviation term to increase for
any practical case such that . Unbalanced geometric
dimensions of the target (e.g., for ) cause significant
variations of the obstruction area with the random azimuth
and consequently an increase of the RSS fluctuations around
the average term .

C. Single-Link Model Calibration

The proposed models (7) and (9) have been validated through
indoor and outdoor measurement campaigns. The parameters
characterizing the diffractionmodel have been obtained by post-
processing of the measurements. The following tests consider a
single link where two IEEE 802.15.4 devices are deployed at
distance m and m, respectively. As depicted in
Fig. 3 for the indoor scenario, a human body target moves along
a known trajectory that covers positions
over a regular grid. The grid is characterized by intervals of

cm along the LOS path and cm along
the direction orthogonal to the LOS path. The target stays in
each position for a period of 10 s, turning and moving
within the spatial bin, randomly changing its orientation and

thus the size of the obstruction area . The corresponding
RSS samples associated with the binned position and col-
lected by the receiver during the 10 s period are used to eval-
uate a sample average and a sample standard devia-
tion . Each pixel of the four gray scale maps in Fig. 3
represents the measured average path-loss and stan-
dard deviation increase (in dB) compared to the case
of no target. The examples consider two indoor links with dis-
tance m (top) and m (bottom), respectively.
The diffraction effect can be mostly appreciated along the LOS
path, minor (but still significant) effects can be observed within
the first Fresnel volume.
For the attenuation, the sensitivity region is de-

fined as the locus of positions where the target generates a sig-
nificant path-loss increase (ranging from 4 dB to 12 dB).
This region is shaped as a strip of width centered around
the direct path connecting the two nodes, with m
being the carrier wavelength. A similar reasoning holds for the
standard deviation: for any link , the sensitivity region
now defines the locus of positions where a significant change

in the standard deviation could be observed due to the target
presence. Compared to the attenuation, the strip region for the
standard deviation is characterized by a larger width, approxi-
mately , therefore : this is also confirmed by
the experiments illustrated in Section V. The standard deviation
increase is 1 dB dB.
The four plots on the right side of Fig. 3 are instrumental to

the validation of the diffraction model (7) for the attenuation
and (9) for the standard deviation. The plots show the increase
of the average attenuation and the standard deviation

for belonging to the LOS path, i.e., the sections
along the LOS path of the 2D power maps on the left figures.



For each case, the diffraction model is superimposed in solid
lines. The object has size cm and cm while
the target volume within the plane is confined within an
area of m . Observed residual terms due to re-
flections and refractions are dB and dB,
for m, dB and dB for m.
The reflection/refraction components are shown to have a more
significant impact for larger distance as m. As predicted
by the model, the amount of path-loss increase caused by the
target depends on the position of the obstructing object along the
LOS path and thus on the distance from the transmitter.
The behavior can be better appreciated for large distances, i.e.,

m, rather than smaller distances, i.e., m, as the
fraction of obstructed Fresnel cross-section is larger in the first
case. The impact is more significant on the path-loss increase
rather than on the standard deviation. Based on further experi-
ments here not included, we observed that the accuracy of the
RSS model is higher in outdoor compared to indoor. This is due
to reflections from surrounding walls and furniture not consid-
ered by the diffraction model.
When the target position is outside the LOS path (but still in-

side the corresponding strip regions , ) the observed
link sensitivity is reduced as predicted by the diffraction inte-
gral in (5): for the test-bed (see Section V) a Gaussian decaying
function is adopted to approximate the attenuation and standard
deviation behavior within the strip (along the direction perpen-
dicular to the LOS path).

IV. POSITIONING ALGORITHMS AND PERFORMANCE

For on-line tracking4 of the target location from the ob-
served data , we employ Bayesian sequential
estimation. The target motion is modeled as a first-order Hidden
Markov Model (HMM), , where denotes
the driving process with known distribution 5. Transition
probabilities are given by . The
initial state distribution , for any , is chosen based
on the available a-priori information about the target object po-
sition at time : it can be uniform over the whole monitored
area or over the related boundary, shaped according to the ac-
cess areas of the considered environment, or impulsive in case
of knowledge of the starting position.
The state is hidden into the observation , whose

components are assumed to be conditionally independent
given the location . Recalling the model (1), the measure-
ment conditioned to is an uncorrelated Gaussian vector
with mean and covariance

. The conditioned pdf
follows as:

(10)

4Extension to joint detection-tracking can be obtained by modifying the Mar-
kovian motion model to include an additional state that denotes the target ab-
sence and defining the transition probabilities to/from such state (target un-
lock/lock) as in [22].
5Extension of the HMM to account for target velocity can be obtained by

employing e.g., a random force model [23].

where denotes the square norm of the vector
weighted by the matrix . A snapshot MLE of can be

obtained by maximizing the likelihood of the measurement
at time as . On the other hand, the
Bayesian approach allows us to exploit the a-priori information
on the target motion and to recursively derive the a-posteriori
pdf as [24]:

(11)
where unimportant constant terms have been neglected. The
a-priori pdf is obtained from the a-posteriori pdf
of the previous step and the knowledge of the
transition probabilities for any . It is initial-
ized with for . Once the a-pos-
teriori pdf is calculated using (11), the estimate of the state
is obtained using either the maximum-a-posteriori (MAP)

or the minimum mean square
error (MMSE) criterion .
For the evaluation of the a-posteriori pdf (11) we consider a

grid sampling of the location space (grid-based filtering or GF
[22]) and a sequential importance sampling (particle filtering
or PF [6]). The GF approach is based on a regular 2D grid of
spatial positions, with spatial sampling interval over the

two dimensions; the pdfs are evaluated over the grid points
and the integral in (11) is approximated by a finite sum [25].
The more efficient PF approach relies on random sampling with
particles (and associated weights) optimally selected at each

time step according to the importance sampling principle [24].

A. Performance Metrics and Bounds

The Cramer Rao Bound (CRB) is a useful performance
benchmark for assessing the localization algorithms or op-
timizing the anchors’ deployment. Here we are specifically
interested in the maximum accuracy that can be obtained from
the RSS measurements exploiting the analytical maps (7) and
(9) for all the active links; we do not consider in this analysis
any a-priori knowledge drawn from the target dynamics model
or other a-priori information on the target position6. The aim is
to explore the potentiality of the cooperative passive monitoring
system.
The CRB provides a lower bound on the covariance matrix

for any unbiased estimator of the target position
[26]:

(12)
where is the 2 2 Fisher information matrix (FIM). Ac-
cording to the model (1), the FIM elements ,
for , can be evaluated from the 2D maps of power
loss and standard deviation as

(13)

6Extension to the Bayesian CRB for location tracking can be derived based
on the work in [23].



Fig. 4. Network architecture for device-free localization: timed-token beacon message passing.

(14)

for the main diagonal entries and

(15)
for the off-diagonal ones. The gradient functions
and , for , embody the information on the
target location provided by the RSS attenuation and stan-
dard deviation maps, respectively. A performance metric
of practical relevance is the lower bound on the mean square
error (MSE) of the position estimate:

(16)

which will be evaluated in the subsequent analysis.

V. EXPERIMENTAL ACTIVITIES

In the proposed experimental setup, the device-free localiza-
tion system is implemented over battery-powered transceivers
based on the low-power single-chip 2.4 GHz IEEE 802.15.4
compliant device CC2420 [27]. The processor board is equipped
with the ATmega128L microcontroller. Experiments have been
carried out in indoor and outdoor sites: the first site is an open-
space room; the second site is an open outdoor area character-
ized by flat terrain. In both tests, nodes are regularly
deployed along the boundary of a 5 m 4 m area, according
to the geometry in Fig. 4 (for indoor). The target is a person
moving inside the area. Radio transmit power is set to 0 dBm.
For all cases we considered omnidirectional, vertically polar-
ized antennas, with 2 dBi gain: antennas with such a gain can
be commonly found on the market and do not require special
alignments. An 8-bit RSS indicator (RSSI) is used to measure
the RSS, here ranging between dBm and dBm. The
processor board of the AP node collecting data from the sensors
is equipped with a Texas Instruments MSP430 microcontroller.
Measurements are sent to a PC for data processing and imaging
according to theMAC protocol that is discussed in Section V-A.
The proposed localization method is validated by means of

the following two steps:
1) Trajectory-Based Multi-Link Calibration: A person, with

similar characteristics of the intended target, moves according
to a known training trajectory that spans different positions

. The AP collects and synchronizes the RSS
observations received from the sensors. A sample average

and a sample standard deviation is calculated
from the collected measurements for each link. These samples
are then used to calibrate and validate the parametric model

functions and , in (7) and (9) respectively7.
Since only few parameters need to be trained (not necessarily
over all links), the parameters can be updated periodically, even
during on-line tracking phase, by expectation-maximization
(or Baum-Welch) training procedures [25]. This overcomes
the limit of non-parametric fingerprinting methods that rely on
an extensive and time-consuming calibration; they are highly
sensitive to possible changes in the environment and thus only
suited for small quasi-static environments. The comparison be-
tween the 2D analytical maps and experimental maps obtained
by fingerprinting procedures is carried out in Section V-B.
2) Target Localization and Tracking: At each time instant ,

each sensor measures and forwards to the AP the RSS samples
observed over its active links. The data set collected by theAP
is then used for the estimation of the object position based on
the knowledge of the 2D analytical maps. Compared to tomo-
graphic imaging solutions, the adoption of the diffraction-based
Bayesian methodology provides a clear advantage in terms of
complexity and workload of the on-line estimation. The use of
the parametric RSS model avoids time-consuming link-by-link
calibration, the system can be therefore implemented with min-
imal low-level software adaptation and integrated with RSS-
based active localization systems (see e.g., [23], using the same
network for passive and active localization). In contrast, tomo-
graphic methods appear to be less promising in terms of flexi-
bility and scalability.
Focusing on the square network layout chosen here as case

study, the fundamental performance limits are analyzed in
Section V-C based on the CRB (as defined in Section IV).
These limits are then compared to the localization perfor-
mance obtained from the experimental data by snapshot MLE
and Bayesian tracking in Section V-D. Finally, preliminary
results for device-free localization in more complex mixed
LOS/NLOS environments are illustrated in Section V.E to
support ambient-intelligence services.

A. Network Protocols for Localization

The radio imaging system has stricter reliability and delay re-
quirements compared to conventional WSN applications. The
real-time constraint prescribes that the whole observation data
set should be decoded and processed by the AP before a new
data set is generated after sec. This hard deadline de-
fines a lower-bound on the interval among two consecutive lo-
calization updates. In addition, the RSS sampling time interval

7To improve the estimation of model parameters, the training trajectories
are repeated (3 times in our experiments). Experiments show that the attenua-
tion and standard deviation terms characterizing the RSS perturbations for each
target position can be reasonably considered as static.



Fig. 5. Top-left corner sub-figure: network layout for the indoor tests. Top-right corner sub-figure: example of experimental maps for the average attenuation (a)
and standard deviation (c) for link (1,8) and corresponding diffraction-based analytical maps with the same resolution (b), (d). Bottom sub-figures: experimental
average attenuation and standard deviation maps (differential maps) for selected links.

needs to be adapted to the target mobility model. Assuming
that the target velocity is below 1m/s, here the sampling interval
is set to ms.
The proposed MAC sub-layer uses a timed-token message

passing protocol [28] on top of the IEEE 802.15.4 compliant
network illustrated in Fig. 4. Medium access is based on time
division while tokenmessage exchange (dashed black arrows) is
used to periodically synchronize the network: the slotted Carrier
Sense Multiple Access with Collision Avoidance (CSMA-CA)
implemented by the IEEE 802.15.4 compliant devices is modi-
fied so that the back-off function is disabled. An energy scan to
detect cross-tier interference – by clear channel access (CCA)
– is performed at the beginning of the assigned slot; in case the
channel is sensed as free the transmission of the token frame
is performed with the acknowledgement option disabled. The
error control system is based on implicit acknowledgements.
Each device is configured to wait for the token message: in
case of a packet drop, a real-time error controller guarantees
the generation of a new token after the time-to-token-visit lis-
tening time expires. The token frame structure is based on the
IEEE 802.15.4 frame type: when the device receives the token
message it is configured to perform two tasks: i) transmit the
backlog of RSS measurements embedded into a IEEE 802.15.4
data frame over a default channel used for communication with
the AP (red arrows); ii) broadcast the beacon probe signal (solid
arrow) over a pre-configured channel.

B. Multi-Link Model Calibration: Outdoor/Indoor Scenarios

During the calibration phase, a person moves along a known
training trajectory of positions as indicated
in Fig. 5 (top left corner) with a velocity of approximately 1 m/s,
yielding 8 RSS samples per position on average. The choice for
8 RSS samples is reasonable as far as i) the person is moving
with velocity around 1 m/s; ii) the (noisy) information about the
attenuation and standard deviation are combined with a-priori
information about the target mobility. The trajectory covers all
the of the 2D regular grid used for ap-
proximating the state space , with spatial sampling interval

m. For illustrative purpose, a detailed view of the
outdoor attenuation and standard deviation maps, and

respectively, for the link (1, 8) between nodes 1 and 8,
is reported in the top-right corner of Fig. 5 (sub-figures (a) and
(c)). For the considered link, the average RSS ranges between
78 dBm and 64 dBm while the standard deviation is in the

range of 1–8 dB. Corresponding maps in sub-figures (b) and
(d) are obtained analytically based on the diffraction model in
Section III. The color-map has been normalized for each map
to the range of values indicated on top of the sub-figure. The re-
sulting maps highlight the accuracy of the diffraction model in
predicting the RSS fluctuations within the strip-sized sensitivity
areas. The average attenuation, , and the standard de-
viation increase, , along the positions of the target ob-



Fig. 6. (a) CRB on the location estimate accuracy (expressed in cm) for the
square network deployment; (b) Attenuation and standard deviation analytical
maps for the single link based on the diffraction model. (a) CRB to posi-
tioning accuracy. (b) Attenuation and standard deviation maps.

structing the LOS path are obtained from (7) and (9), respec-
tively. A Gaussian decaying profile is used to model the reduced
attenuation and standard deviation outside the LOS path (but in-
side the corresponding strip regions , ).
Sub-figures at bottom of Fig. 5 represent the differential 2D

maps for the attenuation, , and standard deviation,
, calculated from the RSS measurements gathered

along the training trajectory. The 2D maps are shown for a
selected subset of links , with nodes and

numbered as in the top-left corner sub-figure.
Similarly as in Fig. 3, the maps provide a statistical description
of the change in attenuation and standard deviation caused
by the moving target. The strip-shaped region defining the
sensitivity for link is now centered around the direct path
(highlighted in green color) connecting the corresponding
anchor nodes.
In the indoor tests, the observed strip widths for attenuation

and standard deviation are larger compared to those observed in
the corresponding outdoor tests. For the outdoor tests, the ob-
served attenuation strip region has width of about 4- ,
while the strip region for the standard deviation has a
larger size of 5- . The observed strip width for the outdoor
scenario reasonably fits with the maximum size (or diameter) of

Fig. 7. Joint and partial log-likelihood functions for selected links. Target is
located in the top-right corner of the rectangular layout.

the first Fresnel volume cross-section (6), with
m for the considered case study. The observed strip size

for the indoor tests is larger and reasonably matches with the
one observed in the single-link tests (Section III-C). The results
obtained in the indoor scenario can be attributed to the higher
amount of reflections and multipath compared to the outdoor
open area. This typically leads to a lower accuracy of localiza-
tion in indoor scenarios compared to outdoor, motivating the use
of Bayesian tracking to reduce the location errors.
By looking at the 2D maps in Fig. 5, it is reasonable to con-

clude that only the joint exploitation of the attenuation and the
standard deviation maps, possibly combined with prior informa-
tion from motion modeling, can provide enough information for
accurate mobile positioning. The optimal combination of atten-
uation and fluctuation information for all links into the location
belief allows to turn the measurement uncertainty (i.e., the noise

) into an advantage.
The strip-shaped sensitivity regions highlighted by the same

maps suggest to define a decision-directed approach for model
adjustment during the on-line localization. An automatic pro-
cedure can jointly and periodically update the link-dependent
propagation parameters observed in absence
of the target and the diffraction parameters for the
target moving within the strip region. Any new observation
indicating a target at position (or for
standard deviation) can be used to update on-line the diffrac-
tion model parameters along the link sensitivity
region and the propagation parameters for the
remaining links not affected by the presence of the target.



Fig. 8. Top: indoor test environment with human target moving along a trajectory obtained from the experiments. Bottom: location belief images obtained by
Bayesian tracking and snapshot MLE as a-posteriori pdf and likelihood function, respectively, for positions corresponding to the top sub-figures.

C. CRB Analysis

The analysis of the CRB presented in this section provides a
theoretical framework for the evaluation of fundamental limits
to the positioning accuracy that can be reached by jointly
exploiting the analytical maps for the RSS attenuation and
the standard deviation, in (7) and (9) respectively. In Fig. 6(a)
the theoretical root MSE (RMSE) bound to the localization
accuracy is analyzed for different positions of the target within
the detection area. Positions over a regular grid spanning the
whole detection area are considered, as the geometric factor
(i.e., the impact on the localization accuracy of the nodes’
deployment relative to the target location) and the different
sensitivity of the RSS measurements along the link, make
the localization accuracy space-varying. The corresponding
diffraction-based analytical maps for the attenuation and
the standard deviation used to compute the FIM
in (12) are illustrated in Fig. 6(b) where the Gaussian decaying
function approximates the decaying profile of the sensitivities
along the direction perpendicular to the LOS path. As outlined
in Section III, the diffraction effect predicts a higher sensing
capability of the radio link (in terms of both attenuation and
standard deviation) for targets close to the transmitter/receiver
anchors, compared to the sensitivity that would be observed
for targets located in-between the two nodes. As highlighted in
Fig. 6(a), the localization error is maximum when the target is
confined in the area (highlighted in dashed lines) in the center
of the deployment, with cm. Notice that
this is the area where most of links are intercepted (i.e., where
a good geometric factor would be expected), but the effect
of the reduced sensitivity of each link (which depends on the
link length) prevails over the multiplicity of the sensing links
in this case. In the following section, we will show that this
conclusion is confirmed also by experimental results on the
localization performance.

D. Mobile Positioning Performance

In Figs. 7–8 we analyze the performance of the MLE and
Bayesian MMSE localization methods, that have been imple-
mented using the diffraction-based RSSmodel calibrated as dis-
cussed in Section V-C. The regular grid-based sampling con-
sidered for the evaluation of the location beliefs, with
grid positions, is also described in Section V-C.
Fig. 7 shows the partial log-likelihood maps

for 30 selected links as a function of the grid positions.
The corresponding joint log-likelihood map

is illustrated in the top-right corner
sub-figure. The target is located at position as indicated in
the top-left corner sub-figure. The partial log-likelihood maps
confirm the effectiveness of the stochastic model illustrated in
Section III. The subset of links highlighted in red corresponds
to the most informative cases where the target is located inside
the link sensitivity strips (i.e., inside the areas around the LOS
paths connecting transmitter and receiver). For those links the
likelihood function takes substantially larger values inside the
strip compared to the values observed outside the same strip.
For the remaining links instead, being the target located outside
the corresponding sensitivity region, the likelihood function
inside the strip takes lower values compared to those observed
in the outer area.
In Fig. 8 we compare the location belief images provided

by snapshot MLE and GF Bayesian estimation, given that the
human target is standing in four different positions indicated by
markers inside the detection area for both indoor and outdoor
scenarios. The transition probabilities for Bayesian
tracking are based on a randomwalkmodel with 2D uniform pdf

and standard deviation m (along each dimen-
sion), corresponding to m . The starting distri-
bution is uniform over the whole detection area. Consid-
ering the spatial node density and the number of samples (grid
points) used for tracking, initialization is not a critical issue



Fig. 9. Top figure: examples of location trajectories (solid lines) and related es-
timates (markers). From left to right: MLE, GF and PF based Bayesian tracking.
Dashed lines connecting the true and estimated positions highlight the localiza-
tion errors. The RMSE averaged over the trajectory is indicated for each case.
Bottom figure: RMSE and CRB performance as a function of the position along
the corresponding trajectory (indicated in the sub-figure).

in the considered scenario8. Belief images now represent the
a-posteriori pdf for Bayesian tracking (top) and the
likelihood function for MLE (bottom). Location am-
biguities observed for MLE case can be removed by Bayesian
filtering.
GF techniques have accuracy limited by the grid spacing of

m. The PF approach is thus proposed to improve
the positioning performance without increasing the computa-
tional cost of the localization algorithm. The transition pdf has
the same standard deviation as for GF. Fig. 9 compares three
true reference target trajectories examples (solid line) with the
estimated ones (markers) obtained by MLE (Fig. 9(a)), MMSE
GF-based tracking (Fig. 9(b)) and MMSE PF-based tracking
with 60 particles (Fig. 9(c)). The localization errors can be ap-
preciated by looking at the dashed lines that connect the true
and the estimated positions. The RMSE of the location estimate
averaged over the trajectory is also indicated for each case. It
can be seen that the MLE performance is affected by false-lo-
calization problems that are especially higher in the center of
the detection area, causing an average localization error of ap-
proximately 1 m. A main limiting factor for the snapshot MLE

8Clearly, initialization becomes critical in large areas with lower spatial den-
sity of nodes (and/or lower number of particles, considering PF). In case of node
deployment along the perimeter, the location pdf could be initialized uniformly
along the boundary or, better, concentrated around the access points of the con-
sidered area (doors or main paths, etc.).

Fig. 10. RMSE for MLE (a) and PF Bayesian tracking (b) as a function of the
target position within the detection area . (a) MLE. (b) PF Bayesian tracking.

is the limited spatial accuracy of the pairwise location measure-
ments. Using the grid-based sampling, the MMSE tracking is
shown to reduce the average error of about 10–20 cm compared
toMLE. However, an error floor is observed due to the fixed grid
spacing: this error can be eliminated by the use of PF. This latter
approach reduces the average RMSE to a value that is compa-
rable with the size of the target (10–20 cm). In Fig. 9 at bottom
we show now the RMSE and the CRB (see Section V-D) perfor-
mance as a function of the position corresponding to the trajec-
tory indicated in the sub-figure (on the right). It can be noticed
that the PF estimate greatly outperforms the MLE. In the con-
sidered case, the PF accuracy can actually outperform the CRB
as the conventional CRB does not take into account the a-priori
information that comes from the target motion.
In Fig. 10 the RMSE of the location estimate is shown as a

function of the target position for both MLE and PF tracking.
To evaluate the accuracy over a wider set of positions, a trajec-
tory going along a regular grid of 10 cm spacing and covering
the whole space (back and forth, for a total of 2400 positions)
has been generated. The corresponding RSS observations and
the likelihood function are modeled as in (10). Local-
ization performance has been averaged over 50 realizations of
measurements. As expected the ML performance is above the
CRB. On the other hand, the PF accuracy could outperform the
CRB, as the conventional CRB does not consider the a-priori



Fig. 11. Localization tests in a mixed LOS/NLOS environment with non-reg-
ular network deployment. The target area is divided in four areas/rooms (top)
and MLE localization is used for room localization (bottom).

information. As also observed for the CRB analysis, the max-
imum positioning accuracy is located at the boundary of the de-
tection area while the minimum is confined in the center now
with cm.

E. Localization for Ambient-Intelligence Services with
Non-Regular Deployment in Mixed LOS/NLOS Environments

In this section we show a preliminary experiment that high-
lights the potential of the proposed system in more practical
scenarios. The selected scenario, depicted in the top plot of
Fig. 11, consists of a mixed LOS/NLOS environment with mul-
tiple rooms and corridors, characterized by different kinds of
furniture. The radio devices are now deployed at strategic posi-
tions to guarantee connectivity, while the network protocol al-
lows for the coexistence of two personal area network (PAN)
coordinators simultaneously collecting the RSS measurements
(from two sub-networks). Each node communicates with the re-
spective coordinator and overhears the messages of the adjacent
devices (from which the RSS can be estimated).
As shown in Fig. 11, the radio devices are deployed in four

different areas/rooms (labeled R1-R4 and highlighted by dif-
ferent colors). The mobile target walks along the trajectory in
outward and return starting from room R1. The system is de-
signed to support ambient intelligence (i.e., assisted living) ser-
vices [29] by locating the target in the different rooms while
moving across them. Preliminary estimation results based on

the MLE technique are shown at the bottom of Fig. 11. Despite
some false localizations, the system can detect and localize the
target traversing each room. The estimation accuracy is lower
than in previous experiments but it reasonably fits with the ap-
plication requirements.

VI. CONCLUDING REMARKS

Device-free localization can be used to track objects or
people moving in areas covered by a dense cooperative wire-
less network. In this paper a stochastic log-normal RSS model
has been proposed to describe the fading effects caused by
the object/human movement in both indoor and outdoor en-
vironments. In case of target presence the measured RSS is
subject to a perturbation that depends on the specific position
and affects both the average path-loss and the degree of fading
fluctuations. The increase of the path-loss and the power fluctu-
ations have been evaluated analytically based on the theory of
diffraction. This allows to avoid time-consuming link-by-link
calibration – mandatory for conventional tomographic or
non-parametric fingerprinting methods – requiring the tuning
of only few model parameters. The system can be therefore
implemented, with minimal software adaptation, on top of
existing wireless network standards supporting short-range
device-to-device communication (WiFi/ZigBee/LTE-Direct)
and easily integrated with RSS-based active localization sys-
tems. The methodology provides a cost-effective solution to
complement the existing surveillance systems, using the avail-
able wireless infrastructure and thus augmenting localization
services without the costly (and unfeasible for logistic reasons)
deployment of new equipment. The model, combined with
target motion prediction, has been used to cast the localization
problem into the framework of Bayesian estimation. Funda-
mental limits to the positioning accuracy have been evaluated
based on the analysis of the Cramer-Rao bound. The use of
PF Bayesian tracking has been shown to provide an improved
accuracy and it can thus be exploited to overcome the limits of
positioning based on snapshot measurements, particularly in
areas subject to reduced sensitivity. Further developments will
be the extension to multiple targets, the integration with aggre-
gate mobility models (e.g., for pedestrian flow tracking) and
the implementation of more scalable partial/fully decentralized
estimation schemes to support context aware people activity
recognition. Integration of passive and active localization is
also a new direction of research. Preliminary experiments show
that the combined use of Bayesian localization and particle
filtering allows dual target tracking with minimal complexity
increase.

APPENDIX

The electric field measured at the receiver may be
interpreted as generated by a virtual array of Huygen sources
located in the plane of the target at distance from the
receiver. Considering a single infinitely small target element of
area located at position in the plane and at
distance9 from the transmitter, the received electric field

9measured along the ground rather than along the direct wave.



is subject to a loss com-
pared to the field that would be observed without the target.
The electric field can be approximated10 assuming that

and according
to the following equation

(17)

where is defined in (6). Based on (17), the overall field
loss , for an object located at same distance

from the transmitter and covering now all the positions
, can be written as

(18)

where we used the substitutions
and , while

measures the
lateral section of the obstruction (acting as a knife-edge
object) for random orientation . Using the
approximation valid for , and since

the field loss can
be simplified as

(19)

Using an asymptotic expansion [30] for the integrals in the form

valid for large enough , the energy loss (19) scales as

(20)

The target-induced average attenuation
is approximated as

(21)

being from Jensen

inequality. The average term can be simplified

by considering the lateral section of the obstruction only

10as far as the target is confined within the first Fresnel volume.

for the azimuths and assumed as equiprob-
able (see Fig. 2). We thus redefine the random variable
as: with probability 1/2 and

with probability 1/2. We get:

(22)

with . Using the same approximation, the standard
deviation term is

(23)

while the additional deviation is computed as

(24)

In Section III.C, it has been observed experimentally that the
impact of the two approximations (21) and (22) is marginal for
the considered scenarios.
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