Macroscopic modeling of functional fatigue in shape memory alloys
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1. Introduction

Shape memory alloys (or SMA) provide an astonishing combi-
nation of fascinating theoretical problems and promising potential
industrial applications. From the mathematical point of view, the
key element in SMA is the fact that they exhibit a transition be-
tween a more symmetric crystallographic phase (austenite) to a less
symmetric phase (martensite) in which the non-trivial and non-
convex character of the elastic potential gives rise to a variety of
microstructured energy minimizers (Ball and James, 1987). The
involved phase transitions (between austenite and martensite, as
well as among different martensitic relative energy minimizers, or
variants) may be controlled by suitably modifying the external
temperature and loading conditions. The resulting phase diagrams
(Bekker and Brinson, 1998) and the possibility of performing
reversible cycles in them (Bhattacharya et al., 2004) are at the basis
of potential applications (Otsuka and Ren, 1999; Shabalovskaya
et al., 2008).

Several theoretical studies analyze the micro- and macroscopic
phenomena consistent with non-convex elastic potentials, basically
derived from the analysis of the symmetry induced by the Bravais
lattice associated with the crystalline phase stable at the applied
external temperature and loading conditions (see e.g. (Vedantam
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and Abeyaratne, 2005), or the enlightening reference texts by
Pitteri-Zanzotto (Pitteri and Zanzotto, 2003) and Bhattacharya
(Bhattacharya, 2003)). These works originate from two funda-
mental hypotheses: first, the Born rule (lattice vectors deform ac-
cording to the deformation gradient (Zanzotto, 1996)) is assumed to
stand; second, single-grain crystals are considered instead of multi-
grain materials, to support the assumption that the relaxed orien-
tation of the lattice vectors remains uniform within the domain or
interest. In most applications, however, multi-grain materials are to
be used (Casciati and van der Eijk, 2008). When this is the case,
macroscopic theories come into play to predict the material
response of homogenized samples (Souza et al., 1998; Auricchio
and Petrini, 2004a; Hartl et al., 2010), where homogenization ari-
ses from the random relative orientation of single SMA grains (we
refer the reader to the text by Lagoudas (Lagoudas, 2008) for a clear
introduction on the topic).

A crucial subject when focusing on possible engineering appli-
cations is the ability to predict the onset of structural and functional
fatigue in the material during cyclic transformations (Eggeler et al.,
2004). The second task has been attacked by Auricchio and co-
workers (Auricchio et al., 2007), by suitably modifying the Souza-
Auricchio model (Souza et al., 1998; Auricchio and Petrini, 2004a)
of homogenized shape memory alloys. It is the aim of the present
paper to proceed further in the direction of introducing a fatigue
descriptor in the Souza-Auricchio model. The key element of nov-
elty in our proposal is the formalization of the experimental
observation that fatigue effects are intrinsically irreversible
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(Hornbogen, 2004), and therefore may not be erased by, e.g., simply
subjecting the material to an opposite load. Moreover, we also
modify the elastic energy, to account for the onset of macroscopic
plasticity. In the following, we present and discuss in detail both the
Souza-Auricchio model and its proposed modifications. The com-
parison between the outcome of numerical simulations and
experimental results allows us to test the quality of the theoretical
predictions.

The paper is organized as follows. In the next section we fix the
notations and briefly review the main features of the Souza-
Auricchio model of shape memory alloys. In Section 3 we intro-
duce and discuss the main elements of novelty of our approach. In
Section 4 we test the model in a model experiment, while in the
concluding section we collect the discussion of the results, and the
possible developments of the theory.

2. Souza-Auricchio SMA model

We consider shape memory alloys as continua exhibiting in-
elastic response (Rajagopal and Srinivasa, 1998a, 1998b). More
specifically, the setup we present in this section is the Souza-
Auricchio model (Souza et al., 1998; Auricchio and Petrini,
2004a), with the plasticity description introduced in Auricchio
et al. (2007). Constitutive elements in this thermo-mechanical
model are the following.

e The macroscopic strain E, defined in terms of the deformation
gradient Fas E = 1/2(F'F — I), where I is the identity tensor. We
further introduce the spherical and deviatoric parts of E by
letting E = e + 1/3E I, with E = tr E.

e The transformation strain tensor ey, and the functional fatigue
tensor q. The former describes the microstructural trans-
formations. More specifically, it models the presence of a non-
zero natural strain, induced by the underlying austenite—
martensite phase transitions, in a homogenized material
element. Most martensitic transitions, including all self-
accommodating transitions, involve small or negligible vol-
ume variations (Bhattacharya, 1992). In order to keep our
presentation as simple as possible, we therefore focus on iso-
choric martensitic transformations, though all what follows
could be promptly adapted to any volume-changing trans-
formation - as long as the dilation coefficient associated with
the transformation is known. In the linearly-elastic regime, an
isochoric transformation is characterized by a traceless strain,
so that the transformation strain will be represented by a
traceless tensor. The functional fatigue g models the irrevers-
ible processes induced by microscopic and macroscopic
stresses. Increasing q prevents the material from fully recov-
ering from generic external deformations. Evolution of the
microscopic order parameters is described through the asso-
ciated velocity fields

Ly = e and Lg = q-.

e The Piola-Kirchhoff stress tensor S, that we will also split as
S=s+1/3SI, withS =trS.

e The Helmholtz potential density (stored energy function)
VY(E.e,q;T), where T is the absolute temperature. Associated
with the Helmholtz potential we introduce the driving forces
(Rajagopal and Srinivasa, 1998b; Auricchio et al., 2007)

oy oy
Xf—gtr and Qf—@, (1)
that can be shown to be equivalent to the Eshelby configurational
forces (Eshelby, 1970) which govern microstructural evolution.

e The rate of dissipation function £ which, in general, is a function
of the microscopic order parameters e,q, and the related ve-
locity fields Ly,Lq. However, by using the maximum rate of
dissipation criterion, it can be proved (Rajagopal and Srinivasa,
1998b) that the rate of dissipation depends in fact on the ve-
locity fields only through the driving forces X,Q, so that we will
henceforth consider a rate of dissipation density (e, q, X, Q).

The Souza-Auricchio SMA model relies on the small-strain
(though not necessarily small displacement) approximation
(Auricchio and Petrini, 2004a; Leclercq and Lexcellent, 1996). When
this is the case, a linear elastic approximation can be used in the
stored energy function, with the transformation strain tensor e
modeling the natural strain induced by the austenite—martensite
phase transition. A further assumption on the microscopic degrees
of freedom is that their evolution is quasi-static, in the sense of [19,
§VI]. In words, we focus on macroscopic processes that occur on
time-scales that are much slower than the microscopic relaxation
times. Macroscopic evolution occurs then within the inner part, or
at most the boundary, of the elastic domain (the domain over
which the rate of dissipation is non-positive). Consequently, evo-
lution of the microscopic order parameters occurs along the
boundary of the elastic domain itself.

The Helmholtz potential in Auricchio et al. (2007) can be written
as follows

1
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The first terms in (2) are proportional to K and G, respectively the
bulk and shear modulus. The former penalizes dilations and/or
compressions, but for those induced by the thermal expansion
coefficient « (not explicitly included in Auricchio et al. (2007), but
present in Auricchio and Petrini (2004a)). The latter gives rise to the
interpretation of ey as relaxed strain. The §-term is temperature
dependent and in particular it acts only at temperatures higher
than the martensite finish temperature My, as (-) := max{-,0}.
Effect of this term is to strengthen the effect of the h-term in driving
the transformation strain ey towards its high-temperature value
(austenitic phase), which may be null or not depending on the
possible onset of plasticity effects. It is to be noticed the linear vs.
quadratic dependence of the § and h terms. Because of this differ-
ence the §-term is able to induce a finite driving force even when
only a residual transformation strain is left. Finally, the constitutive
parameter H models the plastic hardening of the material, and ¥,
is an indicator function that may be null/infinite depending on
whether e and q belong to or are outside of the transformation
domain ¢ that will be discussed in detail below.

The rate of dissipation density proposed in (Auricchio and
Petrini (2004a); Auricchio et al. (2007)) admits the following rep-
resentation in terms of the driving forces

£(X,Q) = max{|X| +«|Q| - R,0}, (3)

where « is a dimensionless material parameter defining a scaling
modulus between fatigue and transformation effects, and R is the
radius of the elastic domain (i.e., the domain such that no micro-
scopic evolution takes place until the driving forces reach its
boundary).

The transformation domain within which the transformation
strain e is forced to evolve, is simply a ball of constant radius ¢
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The microscopic interpretation of such set is the following. The
Souza-Auricchio SMA model aims at modeling a homogenized, multi-
grain shape memory alloy where different austenite—martensite
transitions may occur in nearby grains. The transformation strain e, is
to be interpreted as the microscopically-induced local natural strain.
Now, even if all the local grains are coherently oriented in one and the
same direction, the natural strain has an upper bound ¢, which is
simply related to the strain associated with the structure of the Bain
matrices of the underlying austenite—martensite transition.

Microscopic quasi-static evolution is then settled by introducing
the flow rules for the internal variables
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and the Karush—Kuhn—Tucker conditions related to the dissipation
function
A>0, £§=0, {A=0 whenever |X|+«|Q|<R}, (5)
where the latter condition implements in the present setting the
classical yield criterion for the emergence of microstructural
modifications.

3. Functional fatigue description in the Souza-Auricchio SMA
model

In this section we propose and discuss some improvements that
may be of help in bringing the theoretical estimates closer to the
experimental results. The main elements of novelty may be sum-
marized as follows: inclusion of macroscopic plasticity in the elastic
strain energy; evolution of the transformation strain; introduction
of a suitably-modified rate of dissipation function.

3.1. Macroscopic plasticity

When plastic deformations occur, the sample is not able to fully
recover the strains induced by arbitrary loads. Let us denote by e
the (traceless part of the) strain which is associated with the elastic
energy, and therefore is fully recovered during unloading pro-
cesses. In the presence of plastic deformations, a plastic strain ey
must be introduced such that

€] = € — €y — epl,

where e and ey, are still defined as in the preceding section. Such
elastic strain is to be inserted in the shear elastic term in the
Helmholtz potential (2). A complete, though maybe unnecessarily
involved, theory should provide for a constitutive prescription for
the evolution of the plastic strain ep. We prefer, however, to keep
the model as simple as possible, and assume the plastic strain to be
proportional to the functional fatigue tensor q: e, = aq. An
important feature we do not want to miss is that in shape memory
alloys plasticity arises both as a consequence of repeated micro-
scopic phase transitions, and after over-threshold imposed strains.
Consequently, it will be necessary (see Section 3.3 below) to modify
the functional-fatigue evolution equation to account for possible
plastic effects not related to microscopic transformations.

3.2. Evolving transformation domain

The transformation domain aims at modeling the physical effect
that, even whenever all the microscopic grains are coherently

aligned, the maximum achievable transformation strain is bounded
by the size of the Bain matrices associated with the particular
austenite—martensite transformation. However, in the presence of
functional fatigue effects, i.e., whenever the tensor q undergoes any
evolution, it is to be expected that the onset of microscopic defects
and dislocations prevents the material from fully aligning in di-
rections different from the one where plasticity is occuring. In other
words, increasing values of the functional fatigue tensor model the
presence of microscopic domains where phase transitions are not
possible anymore, and a fraction of the transformation strain remains
quenched during subsequent evolution. Consequently, the evolution
of q influences the size and shape of the transformation domain e.
We aim at modeling the interpretation of the value of q as the
non-recoverable transformation strain at a certain point in space
and time. The value of q is therefore to be conceived as the fraction of
the initially available transformation strain that remains thenceforth
frozen at that specific value. To model this process we put forward an
evolution law for the transformation domain & such that:

e atany point and time, & (r, t) is a ball (in the space of symmetric
traceless tensors) centered in q(r,t);

. Etr(r, tz) < sn-(r, f]) for all th > ty;

e (1, t) is the largest ball among those which satisfy the two
preceding criteria.

The following proposition provides an efficient way to
completely identify the transformation domain.

Proposition 3.1. The radius ¢ of the transformation domain evolves
along solutions of the differential equation

E'L(r, t) = {_lq.(gr" t)| llff:LL((;.’tg)ig with sL(r,tO) = £0- (6)

Proof. Let q(r,t) denote the value of the functional fatigue tensor
at the material point r at time ¢t (see Fig. 1 for reference). The
transformation domain will then be

(T, t) = {etr ceq = e, treq =0, |ex—q(r,t)| < er, t)}.

M€W as illustrated in Fig. 1), we

When q evolves (say, from q° to q
need to identify the largest ball, among those centered in g"¢%,
which is completely within 2. The radius of such ball is clearly to
be decreased (with respect to sfld) exactly by the amount
‘q“ew — @°'4|. When passing to differential evolution, Equation (6);
1s thus easily recovered. Evolution of the transformation domain
ends when the domain itself is turned to a point (¢, = 0).

a

It is important to stress that, in view of the choice of evolution
for the transformation domain, any change in the functional fatigue
tensor q yields irreversible effects. Indeed, if q(r, t) #0 at any given
position and time, the transformation domain at that position will
be reduced forever, even if during the future evolution q were to
return to its initial null value.

3.3. Rate of dissipation function

Our final proposed modification with respect to the Souza-
Auricchio SMA model concerns the rate of dissipation function.
The choice we put forward differs from the original proposal (3) in
order to extend the validity of the modeling predictions to



Fig. 1. Representation of the evolution of the transformation domain. Any change in
the functional fatigue tensor automatically turns into a reduction of the radius of the
transformation domain.

situations in which functional fatigue may arise as a consequence of
recoverable transformation strains and/or irreversible plastic
strains (Hartl and Lagoudas, 2009).

We begin by associating to any rate of dissipation function a
weighted norm «,» defined on the pairs (X,Q) such that, for
example, the Souza-Auricchio rate of dissipation function can be
written as ¢ = max{[|(X,Q)||,; — R,0}, where
l(v1,v2)llx1 = [-v1]. +&|.v2|. is a weighted ¢; (or taxicab) norm for
any strictly positive value of . In the following we analyze the
consequences of replacing &1 with one of the following choices

& =max{]|(X.Q)ll2 ~ R0},

[ 2 2
where]|(v1,v2)ll o = \/[v1]” + K2[vy]

(weighted ¢, or Euclidean norm)

£ =max{|[(X.Q).. ~R.0},

where||(v1,v2) |l o = max{|v1],k[v2|}
(weighted 2. or supremum norm).

An immediate consequence of changing the definition of the
rate of dissipation function can be promptly understood with the
aid of Fig. 2. Modifying the norm in £ naturally changes the shape of
the elastic domain, which is the 0-level set of the rate of dissipation
function. More importantly, the direction of the unit normal to the
boundary of the domain changes along the boundary itself, and this
fact bears nontrivial consequences. Indeed, in the quasi-static
regime the microscopic variables evolve if and only if the driving
forces reach the boundary of the elastic domain. When this hap-
pens, (et,q) is parallel to the unit normal of the elastic domain
(see (4)). The main difference between the proposed choices stems
precisely from the relative magnitude of these derivatives.

e When the weighted taxicab norm is chosen, the unit normal to
the boundary determines a fixed angle ¢ (precisely
¢ = arctan k) with the |X| axis. Suppose now that the model is
used with the aim of simulating the material response to, e.g., a
thermal cycle along which repeated austenite—martensite
transitions are induced. In order for microscopic transitions to
occur, the transformation strain e must repeatedly evolve from
austenite to martensite values. Such evolution occurs if and only
if the driving forces repeatedly reach the boundary of the elastic
domain. On the other hand, evolution of ey is automatically
coupled with evolution of the functional fatigue tensor. More
precisely, since (along the boundary)

!
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Fig. 2. Different rate of dissipation functions induce different elastic domains, and
consequently give rise to different microscopic evolutions. In all plots, the scaling
modulus k has been set equal to 1/2.
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Equation (4) implies that |q-| = tan §|.e-|. = «|.e'|.. In words,
any microscopic transformation is necessarily accompanied by an
increase in functional fatigue. This prediction is not in agreement
with experimental evidence, which claims that after a limited
number of cycles (training of the sample (Liu et al., 1999; Auricchio
et al., 2003)), the stress-strain experimental plots associated with
repeated thermal loadings remain basically unchanged for up to
thousands of cycles (Van Humbeeck, 1991; Hornbogen, 2004).

e Choosing the Euclidean norm in &, solves the modeling problem
illustrated above. Indeed, the angle ¢ introduced above varies
now along the boundary of the elastic domain. The stable cyclic
behavior reported after the initial training may then be modeled
as follows. As the training process concludes, the system gets to
the boundary of the elastic domain with vanishing values of |Q|
(i.e., close to the horizontal axis in Fig. 2), so that in such regime
|e'wr| > |q| as expected. If, on the contrary, in a loading experi-
ment we keep pulling a sample beyond the point where all the
material is in the martensitic phase, another interesting phe-
nomenon takes place. Once the transformation strain reaches
the boundary of the transformation domain &, the indicator
function in (3) comes into play, with the immediate effect of
keeping the associated driving force X within the elastic domain.
If we, however, keep stretching the specimen, the driving force
Q keeps increasing. Eventually the driving forces may reach the
boundary of the elastic domain very close to the point
(1.X|.,1-Q].) = (0, R/k). When this is the case, the material un-
dergoes macroscopic plasticity without exhibiting any further
microscopic phase transformation, as the boundary unit normal
has vanishing component along |X|.

e The supremum choice associated with £, shares all the features
we have analyzed in the Euclidean case, but introduces a further
degree of freedom, as in practice it introduces two different
thresholds (R and R/k, respectively) for the two driving forces in
order for either phase transformation and/or functional fatigue
to arise. Both phenomena may, at this point, appear either
separately (when one side of the elastic domain is reached) or
combined (if the driving forces drive the system to the upper-
right corner of the rectangle displayed in Fig. 2). More pre-
cisely, Equations (4) and (5) are to be modified in this case by
introducing a second Lagrange multiplier u and setting.

eq = AX if X|=R (120),

(n>0),

ey = 0 otherwise

qg =uQ if k|Q| >R q = 0 otherwise.

4. Thermally-induced hysteresis loops

The Souza-Auricchio SMA model, either in its original form or
with the modifications we are discussing in this paper, introduces a



number of constitutive parameters that must be measured exper-
imentally. To this aim we discuss in this section a very simple
experiment, in which the role played by the different parameters
may be singled out from simple stress-strain measurements per-
formed during repeated uniaxial loadings.

We study the equilibrium configurations of a SMA specimen
subject to either uniaxial traction or compression, under uniform
temperature conditions. Subsequent equilibrium configurations are
obtained by relaxing in a quasi-static process the system after
infinitesimal loading or temperature variations. We assume that all
induced deformations and phase transformations comply with
uniaxial symmetry, and that all deformations are homogeneous
(affine). In most of the following tests a constant load is applied,
and we study the system evolution under cyclic temperature var-
iations, which bring the system across the martensite finish tem-
perature M.

The homogeneity assumptions on both the material properties
and the deformation guarantee that the momentum balance
equation

divsS =0 (7)

is satisfied, the uniform stress tensor being established by the
boundary conditions. We stress that we are interested in studying a
quasi-static process, in which the external control parameters are
varied very slowly with respect to the material relaxation times. It
is for this reason that we solve the equilibrium Equation (7), while
still considering a time evolution (see (4) and (5)) of the micro-
scopic transformation and functional fatigue tensors, under the
effect of the driving forces (1). The system of equations is
completed by deriving the Piola—Kirchhoff stress tensor S =s + 1/
3S I from the Helmholtz potential (2) through

oy oy
S=2p 5= (8)

The results we discuss below evidence the existence of
a hysteresis loop in the macroscopic strain as a function of the
temperature. This is a consequence of the fact that the equations we
consider admit multiple solutions. The physically relevant one is
singled out at each step through continuity requirements. We
investigate the shape memory effect of the material by acting upon it
with the following thermal cycle. We apply a constant uniaxial load
on the specimen at a temperature where only the austenite phase is
stable, and start cooling it. At a certain temperature the driving force
|X| reaches the critical value, and the austenite—martensite trans-
formation begins. Because of the applied load, the transition is
completed at a temperature T; > M. If we now reverse the process,
and start increasing the temperature, the reverse transition takes
place at a temperature T, > T;, because the driving force X must
reach a different point of the boundary of the elastic domain (more
precisely, the point in the direction of decreasing the transformation
strain). It is in this high-temperature, complete transformation in-
terval Te [Ty, T] that plasticity effects are most likely to occur, as the
functional fatigue tensor q is most pushed towards the trans-
formation strain e This effect reflects the experimental observation
that pushing a martensitic transformation up to its complexion
often results in a reduction of the fatigue life of the material
(Bertacchinietal.,2003,2009). Subsequent cycles (performed under
the same or a reversed applied load) are then possibly influenced by
the modified value of the functional fatigue tensor.

Under the symmetry considerations already discussed, all the
traceless symmetric tensors s, e, e, q, X, and Q are proportional to
one particular tensor, namely i = e;®e, — 1/31, where e; is the
direction of the uniaxial loading. We then write s = si, e = ef,
er=eyi,q=qi, X=Xi, Q= Qi and use Equation (8) to obtain

E=32+3aT-Ty), s=2G(e—eyx—aq)
X = s+h(q—ew)+ (v +B8(T— Mr))sgn (q - ew) 9)
Q = as+ e — q) — Hq+ 6(T — M¢ )sgn (e — q).

Microscopic evolution takes place whenever the driving forces
bring the system in contact with the boundary of the elastic
domain. When this is the case, e;; and g evolve (with continuity),
according to the evolution laws (4), (5).

4.1. Parameter calibration

In any constitutive model it is of paramount importance to
identify a small number of easily reproducible experimental tests
able to calibrate the value of the relevant phenomenological pa-
rameters. To this aim, we now extend to the functional-fatigue case
the method put forward in Auricchio et al. (2009) to study the
reversible case. Fig. 3 shows the results of repeated cycles performed
with the choice of the rate of dissipation function & .., based on the
weighted supremum norm for the driving forces (X,Q), though
qualitatively similar results could be obtained with the Euclidean
choice £,. We apply on the sample a load s at a temperature where
only austenite is stable (point A in the figure). When cooling, phase
transformation starts (point B) at the temperature T such that

S—R

X:s—ﬁ(TB—Mf):R = Ty =Mp+-p. (10)

It is in particular possible to derive the value of the constitutive
parameter § by measuring the value of Tp for different values of the
applied load s, as ¢ simply provides (the inverse of) the slope of the
Tp vs s line. The phase transformation proceeds until |e;;| reaches its
maximum allowed value ¢ (point C), which occurs at the
temperature

s—th—ﬁ(TC—Mf):R = TC:TB—%A (11)
Since the macroscopic strain (bold line) allows to measure the
maximum transformation strain ¢, a measure of the length of the
transformation interval (T¢,Tg) provides an estimate of the ratio h/g
(and therefore h). Further cooling of the system (point D) does not
yield considerable modifications, though allows to measure the
thermal expansion coefficient a«. When heating, plastic de-
formations (point E) first arise when

Q = as+hsL+6(TEfo)
(1+ k)R —(1+a)ks
Bk '
while, neglecting plasticity (as g is expected to be much smaller

than ¢ ) the reverse transformation occurs in the interval Te (Tg, Tg),
with

:g = Tg=Tc+

2R 2R
T Tc + g g
The ratio 2R/g provides then the width of the hysteresis loop. It is
interesting to stress that, as long as the functional fatigue param-
eter g can be neglected when compared to ¢, the width of the
cooling and heating transformation intervals coincide, as
T — Tr = Tg — Tc. The measure of R which follows, together with the
Tg value in (10), provides finally the value of the martensite finish
temperature M.

and Tg = Tg + (12)
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Fig. 3. Evolution of a specimen subject to a thermal cycle across the martensite finish
temperature My, under a constant uniaxial load s = 150 MPa. The bold line displays the
macroscopic strain e, the thin line evidences the transformation strain e (both in the
left scale), while the dashed plot reports the behavior of the functional fatigue q (in a
different scale, illustrated on the right). The value of the constitutive parameters have
been set equal to the following realistic values: K = 34.3 GPa, G = 13.2 GPa, « =10~>/
°K, 8 =6.71 MPaj° K, h = 2 GPa, H = 4 GPa, ¢, = 6.12 x 1072 R = 75.1 MPa, k = 0.14,
a = 0.9, Mf = 330° K.

4.2. Plasticity and permanent effects

As irreversible evolution is introduced in the model, the
response of the material to repeated thermal or mechanical cycles
is not periodic. It is the aim of the present section to evidence the
role of the modifications to the Souza-Auricchio SMA model pro-
posed in Section 3.

Macroscopic plastic effects enter the Helmholtz potential through
the constitutive dimensionless parameter a. As a consequence, per-
forming repeated thermal cycles induces increasing macroscopic
deformations, as each attained strain is not fully recovered, and
therefore the following thermal cycle pushes farther the deforma-
tion. This effect is in turn hindered by both the irreversible shrinking
of the transformation domain and the effect of the plastic hardening
modulus H. As a consequence, after a certain number of cycles, the
training (Liu et al., 1999; Auricchio et al., 2003) phase ends and the
mechanical response of the sample approaches a periodic limit cycle.

Fig. 4 shows how the plasticity-induced deformation on a
thermal cycle depends on the constitutive parameters a (which
measures the amount of macroscopic plastic strain induced by the
microscopic functional fatigue) and x (whose value less than 1
models the fact that smaller microscopic driving forces are needed
to induce the reversible phase transformation than those necessary
to cause fatigue effects). On the y-axis we have reported the dif-
ference A¢ between the uniaxial strain when the stationary regime
is reached, and the uniaxial strain attained during the first cycle.
The plot evidences the existence of a wide range of constitutive
parameters for which the linear approximation to the functional
dependence A¢(a,«) provides an excellent prediction. However, a
very interesting result is the evidence of the existence of a
threshold value under which no plastic effects arise. In other words,
if k and/or a are too small, the loading behavior is reversible, and no
plasticity emerges. The reported results for the linear regression
predict that plastic effects appear only when aja + axk + a3 > 0. By
replacing the computed values we obtain a > ay,, with
awhe(k) = 1.9 — 7.7k.

The threshold just identified must be expected to depend on the
other constitutive parameters as well. It is indeed possible to pro-
vide both lower and upper analytical bounds for such a threshold.
The analysis of the preceding section showed that in order for
plasticity to arise a minimum temperature T is to be reached. If

such temperature appears to be greater than the temperature T at
which the reverse transformation is completed, it is plain that no
fatigue effect is able to arise. The consequent necessary requirement
for plastic effects to arise, Tz < Tg, provides

(1+a)xs > (1 —k)R— hke, (necessary).

On the other hand a sufficient condition for the emergence of
plasticity may be obtained by requiring Tr to be lower than the
temperature Tr at which the reserve transformation begins. Such
condition is equivalent to

(1+a)ks > (1 —«)R (sufficient).

Amid both conditions, the threshold ay,; above provides the
necessary and sufficient value of a for the emergence of plasticity
(in correspondence of the constitutive parameters chosen in Fig. 3).

The effects of the irreversible evolution of the transformation
domain are also evidenced if we simulate a different experiment,
consisting in repeatedly performing double-cycles in which the
material is subject to a thermal cycle (across the martensite finish
temperature M) under a constant load, and then to an identical
thermal cycle under the opposite load. Should a constant trans-
formation domain be assumed, the response of the material to such
external conditions would very closely mimic an elastic behavior.
Indeed, the functional fatigue tensor q could simply recover during
the pushing cycle the null value it abandoned during the pulling
phase, paving the way to even a possible cancellation of any trace of
the irreversible processes occurring in both stages. In fact, per-
forming repeated double-cycles with constant transformation
domain simply results in an overlapping material response.

We have analyzed how the reduction of the transformation
domain, and therefore the reduction of the maximum available
transformation strain, limits the available strain in repeated double-
cycles. Fig. 5 reports how the uniaxial strain lost between the first
and second double cycle depends on the modulus « and the applied
load s. As before, the quantity we are computing could in principle
depend on all constitutive parameters, but we aim here at underly-
ing the quasi-linear behavior which may be obtained for a whole
range of values of k and s. In this case, we have explored higher values
of the applied load to evidence the fact that, once the quasi-linear
regime is abandoned, the system seems to approach a saturation
regime in which the lost strain becomes independent of the load.
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Fig. 4. Plastic deformation as a function of the constitutive parameter a, for different
values of k, namely 0.15 (filled squares), 0.16 (empty squares), 0.17 (crosses), 0.18 (filled
circles), and 0.19 (empty circles). The remaining constitutive parameters are as in Fig. 3.
The values of the fitting parameters are as follows: a; = 0.10, a; = 0.81, a3 = —0.20.



4.3. Comparison with experimental data

In order to test the predictions of the modified Souza-Auricchio
SMA model, we have compared the results of the theoretical sim-
ulations with the outcome of a practical test. The experiment has
been performed in the SAES Getters Laboratories on a TiNi SMA wire
(with molar composition of 51%Ti, 49%Ni) with a diameter of 75 pm.
The wire is subject to a constant uniaxial stress equal to 360 MPa
through the use of a linear motor controlled in closed loop by means
of a load cell (Urbano et al., 2008). The initial temperature is suffi-
ciently great to ensure that the system is basically in its austenite
phase. The cycle consists in cooling and heating the wire, as previ-
ously described in the simulations referring to Fig. 3. Temperature
variations are attained by inducing an electric current in the wire,
and are controlled through the use of a thermographic camera.

Fig. 6 reports the experimentally-measured strain exhibited by
the wire as a function of the temperature, where the features
already underlined immediately emerge. The maximum strain
induced by the phase transformation increases when repeated
cycles are performed, but this growth saturates after a certain
number of cycles. This is an evidence of the necessity of introducing
the plastic deformation term aq in the elastic part of the Helmholtz
potential. On the contrary, no significant effect of the evolution of
the transformation domain is to be expected in this test, as our
previous study evidenced that such evolution bears critical conse-
quences in double-loading cycles.

In order to test the ability of the model of simulating the
experimentally observed behavior, we have calibrated our consti-
tutive parameters to describe the first hysteresis loop in Fig. 6.
When performing the comparison, we have used the known ma-
terial parameters for the bulk and shear moduli. Since we collected
data for a single value of the applied load, it was not possible to
determine § from the T vs s slope, as suggested in Section 4.1, and
we proceeded by using previous available data on the value of the
martensite finish temperature My. The value of the uniaxial loading
is fixed from the experiment as well. Further material parameters
may be directly estimated from the experimental plots: they are the
maximum transformation strain ¢, and the values of the temper-
atures T, T¢, Tr defined in the above section (see Fig. 3). We have
further computed the constitutive parameters R, 8, h by using
Expressions (10), (11), (12). The remaining parameters (i.e., a, k, and
H) have been estimated by fitting the experimental data. The results
obtained are summarized in Table 1. Fig. 7 illustrates the outcome,
with the experimental points superimposed to the theoretical
curves. Though the qualitative agreement is satisfactory, it is plain
that no complete matching may be achieved because of the strong
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Fig. 5. Lost strain deformation as a function of the constitutive parameter « (ranging in
the interval [0.15,0.17]) and the load s (varying from 3 to 3.1 GPa), for a = 0.76. The
remaining constitutive parameters are as in Fig. 3. The values of the fitting parameters
are as follows: @; = 1.83 GPa™', @, = 4.63, @3 = —1.23.

simplifying assumptions described at the beginning of the present
section. In particular, the difference between the smoothed
experimental transition and the abrupt theoretical prediction is
certainly to be ascribed to the homogeneity hypothesis introduced
in the numerical simulations. In fact, not only the real wire is
certainly not homogeneous because of the presence of defects and
different grain structure, but also even in the presence of a quasi-
homogeneous material, the austenite—martensite transition is ex-
pected not to occur simultaneously at all places, but rather as a
consequence of domain creation and growth. Moreover, it is also to
be expected that functional fatigue is not at all homogeneous, as the
boundary conditions imposed on the experimental sample may
more easily induce functional fatigue close to the hinges and
clamps that keep one end of the wire fixed.

5. Conclusions

We have presented and discussed some modifications to be
implemented on the Souza-Auricchio macroscopic model for shape
memory alloys, with the aim of better reproducing the onset of
permanent and functional fatigue effects. The comparison with the
experimental data shows a remarkable qualitative agreement, and
fosters further studies that may result in a complete characteriza-
tion of a SMA material in terms of a limited number of parameters,
that could then be used for predicting the material response in
more complex situations (Auricchio et al., 2009).

The proposed model incorporates the minimal elements
necessary to simulate the full fatigue life of a sample, including
training, stable regime, and degradation. In order to evidence the
three fatigue regimes, let us consider a homogeneous sample un-
dergoing cyclic loading - either thermal or mechanical. At first
variations in the transformation strain induce some plastic de-
formations, mainly induced by the h-term in the Helmholtz po-
tential (2), so that subsequent loading cycles do induce different
material responses (see Fig. 3). Both the energy terms proportional
to 8 and h in (2) set the reference value of the transformation strain
to be equal to the functional fatigue tensor q. Therefore, variations
of q during this training regime have the effect of paving the way to
favor the repetition of similar transformation strain responses in
the future. As the cyclic repetitions proceed, the saturation term
(proportional to H in the Helmholtz potential) decreases the
functional fatigue driving force Q (see also (9)), thus making it
harder to hit the yield criterion. We then enter the stable regime,
where functional fatigue arises at a considerably smaller rate. No
matter how slow, functional fatigue continues to appear during the
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Fig. 6. Experimental results for a TiNi micro-wire, subject to a thermal cycle under a
constant uniaxial load, as specified in the text.



Table 1

Values of the constitutive parameters used in Fig. 7.
Parameter Value Method
K 60.7 GPa Known
G 23.3 GPa Known
Mg 296 K Known
eL 0.0595 Estimated
R 60.6 MPa Computed
6 3.03 MPa/° K Computed
h 510 MPa Computed
a 0.20 Fitted
K 0.25 Fitted
H 3.7 GPa Fitted

stable regime (e.g., close to defects and/or clamps in inhomoge-
neous materials). Therefore, the evolution (6) of the transformation
domain eventually reduces it to a point where the transformation
strain is not able to trigger the pseudo-elastic behavior anymore.
We thus arrive to the degradation regime, in which the system is
only able to exhibit an elastic response, eventually followed by a
plastic slip if the mechanical load increases enough. A quantitative
analysis of how the fatigue life predicted by this model compares
with respect to experimental evidence will be performed as soon as
a sufficient amount of experimental data (covering the three re-
gimes) will become available.

The first assumption to be relaxed is the generalization of the
studies here presented to non-homogeneous deformations
(Auricchio and Petrini, 2004b; Attanasi et al., 2011). The onset of
plastic deformations is indeed a local phenomenon that is to be
expected to occur close to points where local stresses increase, such
as clamps or inclusions (Urbano, 2012). It is therefore a too
restrictive hypothesis to limit the analysis to homogeneous mate-
rials and deformations. This generalization does not introduce
significant modeling complexity, as the framework remains that of
elasto-plastic theories, in the presence of small strains (though not
necessarily small displacements). It is however of tantamount
importance to study the model cases first, as much more compu-
tational power is however required to perform realistic simula-
tions, and few or none analytical estimates are available as soon as
complex geometries and/or loads come into play. The study of non-
homogeneous processes will further require to relax the hypothesis
of uniform temperature and to couple the elasto-mechanical quasi-
equilibrium equations with the suitable description of heat diffu-
sion (Zanotti et al., 2009).
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Fig. 7. Comparison of experimental (points) and theoretical (line) results for the first

cycle of the TiNi microwire illustrated in Fig. 6, with the constitutive parameters
described in the text.

In our study the scaling modulus k, which enters in the weighted
norms that define the rate of dissipation function, has been treated
as a constant. We remark, however, that a more accurate descrip-
tion of the macroscopic SMA behavior would likely require an
evolution of k, coupled with the evolution of the transformation
domain. It is in particular to be expected that x should decrease
when the radius of the transformation domain does so. In fact, the
functional fatigue has been introduced with the aim of modeling
the presence within the sample of micro-domains which, as a
consequence of the onset of defects and plastic deformations, are
no longer able to recover their natural strains. It is therefore to be
expected that the more plastic deformations have occurred in a
specific material position, the more difficult will be to sum up
further plastic effects in the same position.
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