
The present research paper describes a new method to locate stag-
nation points, which does not require complex calculations, nor the 
development of a numerical model. Instead using a simple trigono-
metric relationship, the areas of location for the stagnation point, 
can be found, with respect to the centre of the hydraulic barrier. The 
trigonometric equation is used to draw triangles whose vertices 
correspond to stagnation points, supposing that they belong to the 
line bisector connecting the two wells; the interpolation of the ver-
tices is the groundwater divide.

The computed results are compared to a numerical real case 
model (an industrial site in Sicily, Italy) to assess the performance 
of the new method.

Stagnation points are defined as the points in an aquifer where 
the equilibrium between all the forces causes the stagnation of 
groundwater. Determining their location, together with the location 
of areas where groundwater velocity is very low, is important in 
many situations, as previous works have shown (e.g. Kasenow 
1968; Winter 1976; Mary & Anderson 1981, 1992); in particular:

(a) By interpolating all the stagnation points, it is possible
to draw the groundwater divide of a capture zone. This
is an absolutely essential step in order to evaluate the
effectiveness of any groundwater remediation action.

(b) Stagnation points often identify areas where the flow field
cannot be easily modified, hence the need to know their po-
sition in order to design a drainage system (Winter 1976).

The study of stagnation points and the corresponding analysis of 
well problems and drainage systems has been addressed by many 
authors (Muskat 1946; Hantush 1965; Fanelli 1971; Bear 1979; 
Javandel 1986; Strack 1989; Christ et  al. 1999; Christ & Goltz 
2002; Intaraprasong & Zhan 2007). Shan (1999) has provided an 
analytical solution for the groundwater divide in a two wells co-
linear system, showing the importance of well locations. Christ & 
Goltz (2002) have determined an analytical method to capture 
zones for a non-co-linear system, showing that moving a well 
down gradient from the co-linear wells position, the stagnation 
points of the capture curve moves in the same direction. 
Furthermore, the same authors have proposed a general formula-
tion for multiple linear wells. Skvortsov & Suyucheva (2004) 
have presented a solution for an injection well in a straight-paral-
lel natural stream. Lastly, Lu et al. (2009) showed an analysis of 

stagnation points for a pumping well inside the recharge areas, 
demonstrating that a zero velocity point is function of different 
extraction rates. In fact, for a low pumping rate, there are always 
three stagnation points as the rate of infiltration that is not with-
drawn, produces the separation streamlines outside the recharge 
area. However for the well with a high pumping rate, there is 
just one sole stagnation point outside the recharge area.

Colombo et  al. (2012) have computed the stagnation point’s 
position as a function of different locations and extracted flow 
rates, observing that for particular situations, the central stagnation 
point of the barrier is very far downstream from the wells. To iden-
tify these particular zero-velocity zones, a groundwater level sur-
vey is needed. The search for these sectors then takes place through 
the reconstruction of the network flow, with the help of a piezom-
eter which highlights the distribution of the piezometric levels on 
the vertical up to the depth of interest. The understanding of the 
phenomena governing the formation and presence of stagnation 
points in the situations described above, is greatly improved by the 
availability of a quick and efficient computational method.

This paper describes a simple analytical trigonometric relation-
ship to calculate the position of the stagnation point in a two well 
extraction system. The simplified mathematical procedure is 
applied to a real case problem and successfully verified by com-
parison to a numerical model representing the real setting.

Previous research: analytical method 
for computation of stagnation points

Shan (1999) and Christ & Goltz (2004) model’s considered both 
multiple wells and a location in any point of the complex plane 
(x, y), but has been developed in the Colombo et  al. (2012) 
study. In that study a complex analytical model has been applied 
in order to identify the location of stagnation points for different 
hydraulic barrier geometries. A simplified method is described 
in this paper to locate stagnation points in a two-well geometry. 
The method provides a convenient way to analyze the perfor-
mance of hydraulic barriers.

The mathematical model presented in the previous work has 
undergone some simplifications, that is, the behavior of an homo-
geneous isotropic confined aquifer has been simulated, with uni-
form thickness B (m) and constant Darcy velocity U (m/s). A 
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steady state groundwater flow is considered. The complex potential 
w (Javandel & Tsang 1984), due to the linearity of Laplace’s for-
mula, can be expressed as a superposition of the piezometric effects 
of pumping in several wells (both injecting or extracting) and of the 
uniform flow. Equation (1) shows that
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where w is the complex potential of the overall system, J [m/s] 
is the Darcian velocity of a uniform regional flow, α is the angle 
between the regional flow direction and the x-axis, B [m] is the 
aquifer thickness, if Qj [m

3/s] ≥ 0, N is the number of wells, z 

( z x iy= + ) is the coordinate in the complex plane where the 
potential w is evaluated, z j ( z a ibj j j= ± ) the well coordinates j in
the complex plane (x, y) where a [m] e b [m] are the coordinates of 
the wells in the real plane x, y, , i = −1  and C is a constant of 
integration that depends on boundary condition.

The complex potential w may be separated into two parts: the 
real part Φ represents the constant head lines
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and the imaginary part Ψ represents the stream function,
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In order to calculate the location of the groundwater divide gen-
erated by the hydraulic barrier, the stream function at a stagnation 
point, where velocity is zero, must be evaluated first. The stagna-
tion point can be calculated (Christ & Goltz 2002) deriving w as a 
function of z and setting it equal to zero.
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For example for a 5 wells barrier a zero flow equation can be 
obtained as:
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These values depend on the spatial distribution of the wells, on 
the groundwater flow direction and on radius R0 [m] (in Fig. 1a R0 
is the minimum distance measured along the x-axis between the 
well and the groundwater divide).

A trigonometric computation of 
stagnation points for a hydraulic 

barrier
For a single well, the formation of stagnation points is a conse-
quence of the perfect balance between the opposing forces in the 
fluid field; in particular it can be remarked that a sort of equilib-
rium can occur between the natural hydraulic gradient J and the 
hydraulic gradient of the piezometric depression induced by the 
pumping well. Where the natural hydraulic gradient (and the 
vector representing the natural velocity KJ of groundwater flow) 
has the same magnitude and a direction opposite to that of the 
hydraulic gradient caused by the well discharge, their application 

(a)

(b)

Fig. 1. (a) The red area (shaded in the print version) represents the 
lower velocity flow region (modified by Schoeller H. 1962). R0 is the 
minimum distance between the well and the groundwater divide of the 
capture curve and the green line (thick horizontal line in the print ver-
sion) represents the parameter E. (b) A typical formation of a stagnation 
point where the water is rather still. (the vectors have different direction. 
By increasing flow rate, a unique piezometric depression is formed as 
the sum of all wells superposition).
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point becomes a stagnation point. Its location matches the dis-
tance R0 [m] from the well, which can be obtained from Bear 
(1979)’s relation. R0, is commonly defined ‘fictitious radius’ of 
the well. This relation is valid only for a single well because it 
does not take into account the superposition between the cones 
of depression produced by the simultaneous operation of two or 
more wells.

The calculation of stagnation points as a function of aquifer 
parameters and flow rate can in fact be applied only in the case of 
two wells extracting the same flow rate in a homogeneous aquifer 
(as shown in Fig. 1b). Each extraction well will have an associated 
stagnation point (Javandel 1986; Shan 1999; Christ & Goltz 2002; 
Christ & Goltz 2004). However, under particular conditions, such 
as in the presence of infiltration (Lu et al. 2009) with an increasing 
withdrawal (Colombo et al. 2012), the stagnation points converge 
to a single location.

Under those assumptions, the stagnation point is found at the con-
junction between the limits of the superposing cones of depression, 
as seen in Figure 1b which shows the output of a numerical model. 
The radius of influence of each of the wells, theoretically infinite, is 
in fact limited in real case by infiltration or recharge factors.

For a single well, the dimension E of the groundwater divide of the 
well shown in Figure 1a, is of great importance: it can be seen that 
only the water particles before the groundwater divide and at a dis-
tance not superior to the R0 (Reduced Radius of influence, Schoeller 
(1962) or fictitious radius of influence) are attracted by the well.

Schoeller (1962) has demonstrated that the length of the water 
supply front F is proportional both to the radius R0 and to the 
dimension E (Equation 6). In this case, using the Bear’s equation 
(1979) relating the geometry of the cone of depression in an 
inclined water table to the flow rate and the aquifer transmissivity.

R
Q

TJ

E F
0 2 2
= = =

π π π
(6)

where Q (m3/s) is the well flow rate, T (m2/s) is the aquifer trans-
missivity, J (-) is the groundwater natural gradient, E (m) is the width 
of the cone of depression. In Figure 1a, R0 is the minimum distance, 
measured along the x-axis, between the well and the limit of the cone 
of depression. In any case, when the flow rates are different for two 
different configuration (i.e Q1,Q2=2Q1), the stagnation point is still 

found at the crossing between the limits of the cones of depression, 
and it will be closer to the well pumping at the lower rate configura-
tion (Javandel & Tsang 1984; Strack 1989; Christ & Goltz 2002; 
Intaraprasong & Zhan 2007).

Figure 2 shows the geometry for the problem of two wells sepa-
rated by the distance 2C (Q being the flow rate extracted by each of 
the wells A and B). The angle β is formed between the line joining 
well A, the stagnation point and the horizontal line joining the wells. 
The intersection between the cones of depression of the two wells 
(circumferences) is the stagnation point which lies on the x-axis.

The β angle can be determined by applying Dupuit (1863)’s equa-
tion with the superposition of the groundwater direction J as follows
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where s [m] is the distance of stagnation point as shown in 
Figure 2 from the i-well and r [m] is the well radius, y-h [m] is the 
drawdown, J [-] is the groundwater natural gradient, T [m2/s] is the 
aquifer transmissivity and Q [m3/s] is the flow rate of each well. 
The intersection between two circumferences coincides with the 
maximum or the minimum of the function and is obtained deriving 
the Equation (7) with respect to x and equaling it to zero.
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Dividing Equation (8) by J, the first term is the expression of the 
fictitious radius R0 [m] Equation (6). Equation (8) can therefore be 
rewritten as follows:

s Rsinβ = 0 (8b)

Equation (8b) is verified with β = 0, where R0 equals zero.
Considering the Figure 2, the following equation:

tanβ =
R

C
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combined with Equation (6) gives the final form Equation (10) 
that predicts the precise location of the central stagnation point for 
two wells with the same flow rate where C is the half distance 
between the two wells.
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In fact, the β angle calculcated using Equation (10) allows one to 
identify the downstream point of the piezometric depression, which 
is located near the symmetric axis of the co-linear distance between 
wells. The methodology of triangle construction has been applied to 
a real case (Sicily, Italy) in order to confirm its usefulness in detect-
ing down-gradient influence of a hydraulic barrier in a polluted site.

An application of the stagnation point 
theory to a hydraulic barrier

A hydraulic barrier has been designed to prevent the contami-
nated groundwater from flowing towards the Mediterranean sea, 

Fig. 2. Arrangement of two co-linear wells. It could be observed the for-
mation of a stagnation point. The distance 2C between the two wells lies 
on the y axis. PS is the stagnation point as an intersection between the 
two groundwater divide with the same pumping rate.
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at an industrial site along the Sicilian coast (Fig. 3a). After col-
lecting the necessary field data, a barrier of 12 wells, all pump-
ing the same flow rate, has been designed in order to avoid the 
advance of polluted particles in the sea (Fig. 3b). The effective-
ness of the solution has been assessed through the application of 
Equation (10).

Equation (10) can estimate the unknown vertex of the triangles 
formed for each couple of wells following the groundwater gradi-
ent direction, expressed by blue lines in Figure 3. As aforemen-
tioned, the vertex corresponds to that area where the aquifer 
velocity is nearly zero. In this area, the water polluted particles are 
almost static.

The parameters used for the computation are in Table 1 where J 
[-] is the mean groundwater natural gradient, Q [m3/h] is the flow 
rate barrier variable from 6 to 7 m3/h as a function of the location 
and the distance between wells; the flow rate Q is always constant 
for the two wells operating at the same time. T [m2/s] is the aquifer 
transmissivity in the studied area.

Equation (10) has been applied using the parameters shown in 
Table 1. The results are shown in Table 2.

The obtained β values allow the location of the unknown tri-
angle vertex to be calculated, with respect to the line linking 
wells A and B. These vertices are located downstream from the 

groundwater divide and hence it is possible to assess the effec-
tiveness of the barrier (it’s capturing all the up-gradient water). 
The line connecting the stagnation points represents the ground-
water divide drawn by the cones of depression of the barrier 
wells. Indeed the flow lines starting downstream from the line 
drawn by the stagnation points escape the wells capture. 
Furthermore, through the points located upstream of this line, the 
flow lines converge toward the wells.

Discussion of results
Equation (10) can be used to calculate the position of stagnation 
points, has been validated through comparison with the results 
of a model built with the numerical code Modflow (McDonald 
& Harbaugh 1984). For this purpose, a model has been designed 
using the same hydrogeological parameters listed in Table 3, 
which have been used in the analytical computation. The single-
layer model domain has been discretized by a grid of 204 rows 
and 363 columns with dimensions varying between 100 m and 
1 m, (the latter being the dimension in the well barrier area).

Constant head conditions have been applied at the Southern and 
Northern boundaries (122 m. a.s.l. at the Southern and 112.2 m a.s.l. 

(a)

(b)

Fig. 3. (a)  The studied area in Sicily. (b) The studied site: 12 wells hydraulic barrier located for defending Mediterranean sea by the pollution losses 
from reservoir located upstream the barrier.
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at the Northern) in order to obtain a hydraulic gradient of 0.001. 
Each of the two wells has been simulated by applying the same 
time-variant flux condition. Table 4 lists the results obtained by the 
application of the analytical computation and the numerical model.

The comparison between the β angle values resulting in differ-
ent settings highlights small differences in the range of about 1 to 
8 degrees. The difference is minimal at the highest flow rates (from 
8 to 15 l/s), as shown in Figure 4. This behaviour is due to the fact 
that at the lower flow rates, the barrier is ineffective as the cones of 
depression of the two wells become separated and two stagnation 
points are created by each well.

By increasing the well discharge, the two stagnation points 
start to converge into a unique point moving downstream, thus the 

effectiveness of the barrier is assured by the fact that the flow (or 
up gradient water) is completely captured by the wells. This 
behaviour is shown in Figure 5.

The location of stagnation points is independent from water 
density. The results of the computations (Fig. 5) highlight that the 
flow rate must be high enough to cause a sufficient superposition of 
the cones of depression (which can be measured in terms of the 
value of E as shown in Equation (6). The interpolation of the verti-
ces of all the triangles shows a complete water capture.

According to the model, the presence of a very low seepage 
velocity areas - immediately downstream of the groundwater 
divide - is sharp, as shown in Figure 6 for the case of a withdrawal 
of 15 l/s per well. The yellow area is broadly extended down-
stream from the groundwater divide involving a portion of aquifer 
outside of the wells capture area. As computed in Table 4, in 
Figure 6 only two wells have been represented with the same dis-
charge rate (PS4 and PS5); if all the well barriers discharge simul-
taneously, the superposition could be located more downstream 
the zero-velocity area.

Figure 6 shows the low velocity areas corresponding to the tri-
angle vertex calculated using Equation (10). The area can also be 

(a)

(b)

Fig. 4. (a) Behavior of angle in function to the extraction flow rate from 
the two wells (the blue line (online version only) is the analytical solu-
tion and the red (online version only) is the numerical one). (b) Correla-
tion coefficient between analytical angle and numerical one.

Table 1. Hydrogeological parameters used to compute stagnation point 
with Equation (10)

PARAMETERS

Natural gradient j (-) 0.001
Flow rate Q (m3/s) From 0.0018 to 0.0021 for each couple of wells
Transmissivity T (m2/s) 1.83E-03

Table 2. Ro (m) and β values computed for each couple of wells of the 
hydraulic barrier

Wells Q(m3/s) β(RAD) Ro(m) β(°)

PS39-PS50 0.0020 0.98 173.70 56.237151
PS50-PS51 0.0018 1.03 151.99 59.197976
PS51-PS52 0.0018 0.99 151.99 56.698709
PS52-PS53 0.0021 0.96 182.39 55.273983
PS53-PS54 0.0021 0.98 182.39 56.394239
PS54-PS55 0.0021 1.07 182.63 61.392909
PS55-PS40 0.0018 1.04 152.23 59.672126
PS40-PS41 0.0018 1.08 151.99 61.854897
PS41-PS42 0.0021 0.98 182.39 56.019716
PS42-PS43 0.0021 1.13 182.39 64.757617

Table 3. Hydrogeological parameters of the studied area

kJ (-) 0.001

K (m/s) 0.001
B (m) 40

Table 4. Comparison between analytical model and numerical one

Flow rate [l/s] β 
(analytical)

β  
(numerical)

Numerical-Analytical 
differences

8 65 57 −8
9 67 62 −6
10 69 66 −4
11 71 69 −3
12 73 71 −3
13 74 73 −2
14 75 74 −1
15 76 75 −1
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extended downstream from the watershed up to a distance of about 
15 m, which is half the distance between the wells.

Conclusions
The identification and study of the formation of stagnation point 
is an important field of research with the application in design-
ing optimal distance of well barriers.

The aim of this paper has been to provide a simple analytical 
relationship in order to identify the position of stagnation points 
for a two wells setting. In fact, Equation (10) allows the second-
ary stagnation point to be calculated, appearing along an equidis-
tant line from two wells extracting the same flow rate in a 
homogeneous and isotropic aquifer. The stagnation point is the 

locus of equilibrium between the flow component due to well 
withdrawal and the natural flow.

Stagnation points can only develop along the equidistant lines 
between two wells and at a distance equal to the fictitious radius of 
influence. As secondary stagnation points belong to the limit of the 
capture area, the calcualtions presented in this study are useful in 
order to assess the effectiveness of a hydraulic barrier. Analyzing the 
velocity distribution, an area of stagnation (rather than a unique stag-
nation point) can be found in certain cases. The dimensions of the area 
are usually less than the half distance between the wells and their 
locations are generally downstream from the limit of the capture area.

Acknowledgements. The authors wish to thank I. G. Formentin 
for revision and advice and for his suggestions and critical review.

Fig. 5.  Computation of triangle in the industrial site. The figure suggests that the flow rate is at least large enough to ensure water capture by 
superposition of groundwater divide.

Fig. 6. Iso-velocity curves and stagnation point of the barrier. The low area velocity can be also more downstream than stagnation point itself (the 
grey area).
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Appendix
Dividing Equation (4) by the Darcy velocity and introducing 

the fictitious radius R0 (m), the potential function of geometry co-
linear wells w can be obtained as follow:
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derivative of above equation becomes

dw

dz
e R

z z a ib z a

z a ib z

i A B C

D E

= +









 +

− −( )
+

−( )
+

+ −( )
+

+

− α
0

1 1 1

2

1 1

2aa( )





















= 0

By calculating the sum of the fraction in the previous equa-
tion, and rearranging the governing equation, Equation (5) can be 
obtained.
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