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SUMMARY

This paper aims at extending the well known critical state concept, associated with quasi-static conditions,
by accounting for the role played by the strain rate when focusing on the steady, simple shear flow of a
dry assembly of identical, inelastic, soft spheres. An additional state variable for the system, the granular
temperature, is accounted for. The granular temperature isrelated to the particle velocity fluctuations and
measures the agitation of the system. This state variable, as is in the context of kinetic theories of granular
gases, is assumed to govern the response of the material at large strain rates and low concentrations.
The stresses of the system are associated with enduring, frictional contacts among particles involved in
force chains and nearly instantaneous collisions. When thefirst mechanism prevails, the material behaves
like a solid, and constitutive models of soil mechanics hold; whereas when inelastic collisions dominate, the
material flows like a granular gas and kinetic theories apply. Considering a pressure-imposed flow, at large
values of the normal stress and small values of the shear rate, the theory predicts a non monotonic behaviour
of the stress ratio at the steady state, which is likely to govern the evolution of landslides. Copyrightc© 0000
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the pioneering works of Roscoeet al.[1] and Schofield and Wroth [2], the critical state

concept in soil mechanics has been introduced as a limit state condition which isreached by means

of evolving loading paths. Experimental investigations,especially using straincontrolled triaxial

tests, have been performed to describe such an ideal condition, as well as many constitutive models

have been conceived by starting from such a theoretical definition [3, 4]. On the contrary, the most

of works published within the granular flow community (e.g., see [5]) deals withthe rheology of

granular materials at large strain rates and low to moderate concentration, far from the quasi-static
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2 D. VESCOVI ET AL.

conditions, and prevalently considers simple shear tests (rheometers) under steady conditions.

Within this community, kinetic theories [6, 7, 5], according to which the inelastic collisions

associated with the random motion of the grains represent the main mechanism todissipate the

energy of the system, have been developed. The theories take into consideration granular gaseous

or collisional states, in which force chains within the medium, forming the granular skeleton,

disappear.

There are several practical problems where the granular material encompasses a transition from a

solid to a more gaseous state, thus suggesting that a collaboration between thetwo above mentioned

communities would be fruitful. The landslide risk evaluation, requiring the modeling of both the

inception and the evolution of the gravitational collapse, is the tipical example. Moreover, the

increasing success of computational tools in handling large deformations suggests that such an

ambitious goal is now possible and stimulates the need for constitutive models capable of simulating

the mechanical response of granular materials under both quasi-static andcollisional conditions.

The first step in this direction is the extension of the critical state concept, interpreted hereafter as a

sort of limit condition for the steady state at vanishingly small strain rate, by employing the granular

temperature as in [8], as an additional state variable for the system. When thegranular temperature,

T , defined as the mean square of the velocity fluctuations, quantitatively describing the degree of

agitation of the system, is large, the stored energy of the system is prevalentlykinetic; whereas, at

smallT , the stored energy of the system is mainly elastic. In this perspective, a recent constitutive

model [9] for the granular material, valid under both quasi-static and collisional conditions, is

slightly modified, mechanically interpreted in the light of visco-plasticity and parametrically

discussed.

This paper wants to suggest a road map, allowing the Geotechnicians to get outside from their

“one-dimensional world” and discovering, as for the inhabitants of Flatland in the well-known

masterpiece of Abbott [10], the “marvelous” multi-dimensional state-variableuniverse.

2. THEORY

The Geotechnical community usually associates the concept of critical state with a non-evolving

state reached after a progressive increase in strain, at a vanishingly small strain-rate. At the critical

state, an ideal mechanism of yielding is assumed to develop within the specimen: the external work

is totally dissipated by frictional processes at the contact level (disregarding both crushing and

damage); the micro-structure does not evolve and, consequently, the void ratio,e, remains constant

(i.e., segregation is inhibited). Focusing on triaxial tests (recently also by means of distinct element

numerical simulations [11]), Geotechnicians have traditionally defined the locus of the critical state

using the void ratio, the effective pressure and the deviator (defined asthe difference between the

axial and radial stress). Conversely, only few works have dealt with simple shear flows (Fig. 1),

which instead represents the most studied configuration in determining the rheology of granular

gases [12, 13, 14, 15].
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Figure 1. Simple shear flow configuration.

Limiting the analysis, for the sake of simplicity, on the homogeneous simple shear of an assembly of

identical, dry spherical particles of diameterd and densityρp, the variables governing the problem

are the shear stressτ , the normal stress along the transversal direction,σ, the void ratio,e, or

alternatively, the concentrationν = 1/(1 + e), the shear strain, the strain rateγ̇ and the granular

temperatureT . In the realm of Geotechnique, the strain rate is usually taken to be zero, and therefore

disregarded, whereas the granular temperature is ignored. In the realmof granular flows, the shear

strain is infinite, as for classic fluids, therefore not influencing the problem. In our view, the two

realms are strictly connected, and the critical state, for which the shear strain is infinite and both the

strain rate and the granular temperature are zero, represents the boundary between them.

To merge the two approaches, it is quite useful considering the energy balance of the system. In

the simple shear flow, at the steady state, under the usual assumptions of constant shear and normal

stresses, the flux of energy is neglected, so that the energy created bythe work of the internal stresses

equals the dissipated energy.Γq being the rate at which energy is dissipated in frictional, enduring

contacts andΓc the energy dissipated by collisions, the balance of energy for the simple, shear flow

reduces to

τ γ̇ = Γq + Γc. (1)

As suggested by several authors [16, 17, 18, 19, 9], we assume to subdivide the granular stresses

into two contributions:
σ = σq + σc,

τ = τq + τc.
(2)

Here and in what follows, the subscriptq (quasi-static) andc (collisional) refer to quantities

associated with enduring, frictional contacts of particles involved in forcechains (soil skeleton)

and nearly instantaneous collisions, respectively. By substituting Eq. (2)into Eq. (1), we obtain

τqγ̇ + τcγ̇ = Γq + Γc. (3)
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4 D. VESCOVI ET AL.

Unlike suggested in other works [19], enduring contacts among particles inforce chains cannot

produce fluctuating energy. As a consequence, Eq. (3) reduces to

τqγ̇ = Γq,

τcγ̇ = Γc.
(4)

2.1. Quasi-static contribution

The quasi-static component of the shear stress is assumed to be proportional to the quasi-static

component of the normal stress through the tangent of the internal frictionangle at the critical state

φ′

ss, [2, 20]:

τq = σq tanφ
′

ss. (5)

φ′

ss being a function of both the inter-particle friction coefficientφµ and the simple shear constraints

[21].

For dimensional reasons, the critical state locus in theσ − ν plane can be written as

σq = f0
K

d
(6)

where the particle stiffnessK is equal toπdE/8 in the case of linear elastic contacts [22], withE is

the Young’s modulus, whereasf0 is solely a function of the concentration.

To be consitent with physical observations on granular packings, we assume that the functionf0
vanishes when the concentration is equal to the random loose packing value, νrlp, defined as the

minimum concentration at which a disordered packing exists [23]. In other words, at the random

loose packing, the granular material undergoes a phase transition to a purely collisional regime.

The concentration at random loose packing is a decreasing function of the inter-particle friction

coefficientφµ [23, 24, 25]. For frictionless particles, that is,φµ = 0, νrlp coincides with the random

close packing,νrcp = 0.636, defined as the densest possible disordered packing of identical spheres

[23]. On the other hand,f0 must diverge atνs, another critical value, at which the force chains span

the entire domain and a shear rigidity develops [26]. Therefore, we take

f0 =















a
ν − νrlp

νs− ν
if and only if ν > νrlp andνrlp < νs

0 otherwise

(7)

wherea is a dimensionless material coefficient [9].

Experimental investigations on the critical state of identical spheres are though rare. To our

knowledge, only Wroth [27] performed experiments on the critical state of 1mm stainless steel

spheres (K = 8.25 · 107 Pa m) using a shear cell [28]. The experiments confirm that the ratio ofτq

to σq is constant and thatf0 is a unique function of the concentration. In Fig. 2(a) the theoretical

expression of Eq. (7), withνs = 0.619, νrlp = 0.598 and a = 1.8 · 10−6, obtained from linear

regression, is drawn. The data of Fig. 2(a) are plotted in terms off0 against void ratio in Fig. 2(b).

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(0000)
Prepared usingnagauth.cls DOI: 10.1002/nag



FROM SOLID TO GRANULAR GASES: THE STEADY STATE FOR GRANULAR MATERIALS 5

0.59 0.60 0.61 0.62 

0.2

0.4

0.6

0.8

x 10
−5

ν

f 0

1.0

0.0

(a)

0.62 0.64 0.66 0.68 0.70

0.2

0.4

0.6

0.8

x 10
−5

e

f 0

1.0

0.0

(b)

Figure 2. Experimental (circles, after [27]) and theoretical (solid line) coefficientf0 for steel spheres as
function of (a) concentration and (b) void ratio.

2.2. Collisional contribution

The constitutive relations for the collisional stresses and the rate of dissipation of fluctuating energy

are those proposed by Garzó and Dufty [29], as modified by Jenkins and Berzi [26],

σc = ρpf1f4T, (8)

τc = ρpdf2f4T
1/2γ̇, (9)

and

Γc = ρp
f3
L
f4T

3/2. (10)

Functionsf1, f2 and f3, reported in Tab. I, are solely dependent on the concentrationν and ǫ.

The latter is an effective coefficient of restitution which depends on (i) thenormal coefficient of

restitution (ratio of precollisional to postcollisional relative velocity between colliding particles in

the normal impact direction), (ii) the tangential coefficient of restitution in a sticking collision, and

(iii) the Coulomb friction coefficient characterizing sliding collisions [30]. Inthe elastic limit, that is,

whenǫ = 1, νs equalsνrcp [31]. In Eq. (10),L is the correlation length, accounting for the decrease

in the rate of collisional energy dissipation due to the correlated motion of particles that is likely to

occur when the flow is dense [32, 33, 26]. In its expression, reportedin Tab. I,c is a dimensionless

material coefficient of order unity.

The functionf4, not present in the constitutive relations of Jenkins and Berzi [26], takes into

account the influence of the particle stiffness on the collisions, and explicitlydepends on both the

concentration and the granular temperature. By following [34],

f4 =

[

1 + 2
d

s

(

ρpT

E

)1/2
]

−1

, (11)

wheres is the mean separation distance among particles. At equilibrium, the latter can be identified

as the mean free path (mean distance traveled by a particle between two successive collisions). In
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6 D. VESCOVI ET AL.

Table I. List of expressions for the collisional contribution to the stresses.

f1 = 4νGF

f2 =
8J

5π1/2
νG

f3 =
12

π1/2

(

1− ǫ2
)

νG

G = νg0

g0 =















(2− ν)

2 (1− ν)3
ν ≤ 0.49

5.69(νs− 0.49)

νs− ν
ν > 0.49

F =
1 + ǫ

2
+

1

4G

J =
1 + ǫ

2
+

π

32

[5 + 2(1 + ǫ)(3ǫ− 1)G] [5 + 4(1 + ǫ)G]
[

24− 6 (1− ǫ)2 − 5(1− ǫ2)
]

G2

L

d
= max

[

1,

(

1

2
c
G1/3

T 1/2
dγ̇

)]

the context of classic kinetic theories [35],

s =

√
2

12

d

G
. (12)

By using Eqs. (2), (6) and (8),

T =
σ − f0K/d

ρpf1f4
. (13)

And also, from Eq. (13) and Eq. (11),

1

f4
− 2

d

s

√

π

8f1

(

σd

K
− f0

)

1√
f4

− 1 = 0, (14)

that gives

f4 =
2

2 +A+
√
A2 + 4A

, (15)

where

A =
36πG2

f1

(

σd

K
− f0

)

. (16)

As expected,f4 tends to one asK tends to infinity.

It is important to notice that taking into account the role of particle stiffness onthe duration of

a collision, the collisional contributionsσc, τc andΓc depend not only on the concentration, the

granular temperature and the shear rate, as in classic kinetic theories, butalso on the ratio between

the normal stress and the particle stiffnessσ/(K/d).
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FROM SOLID TO GRANULAR GASES: THE STEADY STATE FOR GRANULAR MATERIALS 7

2.3. Constitutive relationship

By substituting Eqs. (9) and (10) into (4), and using the constitutive expression forL of Tab. I, the

granular temperature results an algebraic function of the shear rate,

T = d2f5γ̇
2 (17)

with

f5 =
L

d

f2
f3

, (18)

and
L

d
= max

[

1,

(

c2G2/3f3
4f2

)1/3
]

. (19)

By introducing Eq. (17) into Eqs. (8) and (9), the expressions for the total stresses in steady, simple

shear flows read















σ =
K

d
f0 + ρpd

2f1f4f5γ̇
2 (20a)

τ =
K

d
f0 tanφ

′

ss + ρpd
2f2f4f

1/2
5

γ̇2, (20b)

Eqs. (20) represent an extension in a four dimensional space of the critical state condition to

nonzero values oḟγ (or T ). A graphycal illustration of such a locus is reported in Fig. 3, where the

different lines in theτ − σ − e space correspond to different values ofT . The material parameter

values employed to obtain the curves coincide with those in Sect.3.2. An alternative way of writing
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Figure 3. Evolution of the steady state locus as a function ofthe granular temperatureT .
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Eqs. (20) is the following:



















1− K

σd
f0 −

γ2

1

γ2

2

( τ

σ
− tanφ′

ss

)

= 0 (21a)

τ

σ
− tanφ′

ss −
t2m
γ2

1

γ̇2 = 0 (21b)

where tm = d (ρpν/σ)
1/2 is the microscopic time scale associated with the rearrangement of

particles [13], and

γ1 =





ν

f4

(

f2f
1/2
5

− tanφ′

ssf1f5

)





1/2

,

γ2 =

[

ν

f1f4f5

]1/2

.

(22)

Eq. (21b) provides

γ̇ =
γ1
tm

( τ

σ
− tanφ′

ss

)1/2

, (23)

that can be interpreted, in the visco-plastic framework, as

γ̇ = γ̃Φ(F) , (24)

whereΦ(F) is the viscous nucleus function of the yield locusF [36]. In this case,

Φ(F) = (F)
1/2

, (25)

and

F =
τ

σ
− tanφ′

ss. (26)

In Eq. 24,γ̃ is the fluidity parameter,

γ̃ =
γ1
tm

, (27)

that is not constant, unlike commonly assumed in the literature.

The model parameters which affect the constitutive relations (21) can be subdivided into (i)

micro-mechanical parameters, characteristics of the single particle (i.e.,ρp, d, K, φµ and ǫ); (ii)

macro-mechanical parameters, characteristics of the “continuum” medium (i.e., νrlp, νs, tanφ′

ss,

a and c). As previously mentioned, micro and macro-mechanical parameters are related to each

other; for instance, the inter-particle friction coefficient affects the concentration at random loose

packing and the critical friction angle, and the coefficient of collisional restitution influences the

concentration at which the shear rigidity develops. Alsoǫ and φµ are not, in principle, totally

independent.
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FROM SOLID TO GRANULAR GASES: THE STEADY STATE FOR GRANULAR MATERIALS 9

3. DISCUSSION AND RESULTS

In this section, the aforementioned constitutive relationship is theoretically discussed by (i)

introducing a phase diagram, (ii) commenting the role played by the normal stress for pressure-

imposed flows, (iii) highlighting the occurence of a non-monotonic behaviourof the stress ratio for

large values ofσ and (iv) solving the relationship for (iv-a) concentration and (iv-b) stress ratio-

imposed flows.

3.1. Phase diagram

From (20a), because the second term on the right hand side is always positive, it must be that

1− K

dσ
f0 ≥ 0. (28)

By substituting Eq. (7) into Eq. (28), for positive values off0, we obtain

ν ≤ νm (29)

where

νm =
aνrlp

a+ σd/K
+

νs

1 + a(σd/K)−1
(30)

represents the maximum concentration that can be achieved under steady conditions, for a fixed

value ofσ, when the shear rate vanishes.

Fig. 4 shows the qualitative phase diagram in the plane concentration-normal stress. For large

values ofσd/K, νm approachesνs; on the other hand,νm tends toνrlp whenσd/K is sufficiently

small. Then, the range of coexistence of quasi-static and collisional stresses, said “transitional

regime”, depends on the imposed normal stress.
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+ collisional
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ν m

Figure 4. Phase diagram for steady, simple shear flow of inelastic spheres in the planeσ − ν.

Analogously, in Fig. 5 the qualitative phase diagram in the planeφµ − ν for the steady, simple shear

flow of inelastic spheres, that is,ǫ < 1 andνs < νrcp, for an imposed value of the normal stress, is
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10 D. VESCOVI ET AL.

illustrated.

ν
s

φ

collisional regime

0

ν
m

ν
rcp

ν
rlp

µ

quasi-static

+ collisional

ν

Figure 5. Phase diagram for the steady, simple shear flow of inelastic spheres at imposed value ofσ.

For a given value of the inter-particle frictionφµ, the concentration decreases as the shear rate

increases (as already mentioned, the maximum value is whenγ̇ = 0, i.e., at the critical state, when

the collisional stresses vanish). For small values ofφµ, νrlp is greater thanνs (here assumed to be

constant, in absence of clear evidences of its possible dependence onφµ), so that the quasi-static

stresses are zero: the maximum concentration therefore coincides withνs and the steady, simple

shear flow is always in the collisional regime. At largerφµ, νrlp is lower thanνs: the concentration

at the critical state isνm, and quasi-static and collisional stresses coexist in the range between

νrlp ≤ ν ≤ νm. At the value ofγ̇ which corresponds to a concentration equal toνrlp, the quasi-static

stresses vanish and the material undergoes a phase transition to the collisional regime. The range

of coexistence of quasi-static and collisional stresses depends on the ratio σd/K, which affects the

value ofνm. In particular, for small values ofσd/K, i.e., small values of the total normal stress or

large values of the particle stiffness,νm approachesνs, as already mentioned, thus reducing the

range of influence of quasi-static stresses on the flow.

3.2. Pressure-imposed flow

Steady, simple shear flows can be physically and numerically simulated (i) by imposing the normal

stress, and measuring the concentration (or alternatively the void ratio) and the shear stress as

functions of the shear rate (pressure-imposed); (ii) by imposing the concentration (void ratio), and

measuring the normal and shear stress as functions of the shear rate (concentration-imposed); (iii)

by imposing the stress ratio, and measuring the concentration and the shear rate as functions of

the normal stress (stress ratio-imposed). The results of the three configurations are equivalent, if

dimensionless quantities are employed [14]. In this section, we will consider pressure-imposed

flows, commonly taking into consideration in the Geotechnical community, which can be considered

as a mixed-control test.

All the results illustrated in Fig. 6 refer to an ideal granular material which should somehow mimic
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FROM SOLID TO GRANULAR GASES: THE STEADY STATE FOR GRANULAR MATERIALS 11

the behaviour of sand. Hence, we take:d = 1 mm; ρp = 2600 kg/m3; K = 2.8 · 104 kPa m (from

the Young’s modulus for quartz);ǫ = 0.6 and c = 0.5 (as appropriated for glass spheres, [26]);

a = 1.8 · 10−6, andνs = 0.619 (from Wroth’s experiments on stainless steel spheres, see section

2.1); tanφ′

ss = 0.5 (the tangent of the angle of repose obtained by Forterre and Pouliquen [37] for

0.8 mm sand);νrlp = 0.55 (as appropriated for very frictional particles, [24]). Fig. 6(a) and 6(b)

show respectively the stress ratio and the concentration as a function of the shear rate for four

different values of the imposed normal stress.
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Figure 6. Theoretical (a) stress ratio and (b) concentration as a function of the shear rate for 1 mm sand, at
different values of the applied normal stress.
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Figure 7. Theoretical (a) stress ratio and (b) concentration as a function of the shear rate for 1 mm sand,
at different values of the applied normal stress, when quasi-static stresses are ignored (purely collisional

model).

Fig. 6a shows that, in purely collisional regime, whenτ/σ reaches the maximum value (0.562), all

the curves exhibit a peak. The subsequent deacreasing behaviour inthe purely collisional regime

seems to be confirmed by numerical simulations on unbounded shear flows [15]. If the applied

normal stress is sufficiently large (solid line in Fig. 6a) the present theory predicts an additional
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12 D. VESCOVI ET AL.

reduction in the stress ratio occuring in the transitional regime, when both collisional and quasi-

static stresses coexist. Here, the steady flow is characterized by the condition

τ

σ
< tanφ′

ss. (31)

This peculiarity of the mechanical response will be discussed in detail in the next sections.

Fig. 7 shows the results of the present theory when the quasi-static contributions are ignored. The

comparison of Fig. 7 with Fig. 6 allows to emphasize some key predictions of the theory: (i) the

value of the concentration foṙγ → 0 would be independent onσ in a purely collisional model; (ii)

a purely collisional model cannot predict the asymptotic approach of the stress ratio to the critical

friction angle forγ̇ → 0 [14].

3.3. Nonmonotonic behaviour in the transitional regime

The condition for the occurence of a minimum forγ̇ 6= 0 and τ/σ < tanφ′

ss, in the transitional

regime, (Fig. 6a) can be derived from Eq. (23). Indeed, for the shear rate being a real number,

τ/σ − tanφ′

ss

f4

(

f2f
1/2
5

− tanφ′

ssf1f5

) > 0. (32)

Hence, condition (31) can occur if

f2f
1/2
5

− f1f5 tanφ
′

ss < 0, (33)

given thatf4 is always positive. By using the expressions of Tab. I, Eq. 33 gives

ν > ν∗, (34)

where

ν∗ = νs
B9(tanφ′

ss)
−9

B9(tanφ′

ss)
−9 + 5.69 (νs− 0.49)

, (35)

with

B =

[

48

5π(1 + ǫ)2

]1/2
[

(

1− ǫ2
)2

J4

15c2

]1/6

, (36)

whereJ andF are calculated from Tab. I in the dense limit, that is, forG → ∞ [26].

If νm is larger thanν∗, the material exibits a non-monotonic behaviour in the whole range of

concentration betweenν∗ andνm. In contrast, ifνm < ν∗, theτ/σ trend is monotonically increasing.

By using Eq. 30, the conditionνm > ν∗ corresponds to

σ > σ∗, (37)

where

σ∗ = a

(

ν∗ − νrlp
)

(νs− ν∗)

K

d
. (38)

Copyright c© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech.(0000)
Prepared usingnagauth.cls DOI: 10.1002/nag



FROM SOLID TO GRANULAR GASES: THE STEADY STATE FOR GRANULAR MATERIALS 13

The dependence ofνm on σ and the values ofν and σ satisfying conditions (34) and (37) are

depicted in Fig. 8.

ν
s

ν
rlp

σ [Pa]

quasi-static

+ collisional

regime

collisional regime

10

Non-monotonic

behaviour
ν*

σ*
10

2
10

4
10

0
10

6
10

8

0.60

0.58

0.56

0.54

0.52

0.50

0.64

ν ν m

Figure 8. Maximum concentration attained in the steady, simple shear flow of 1 mm sand as function of the
applied normal stress. The

✿✿✿

darkgray area represents the range of existence of the non monotonic behaviour
for τ/σ when both collisional and quasi-static stresses coexist.

For ν > ν∗, the aforementioned visco-plastic interpretation previously suggested (Eq. 23) still

holds, if the fluidity parameter is allowed to be an imaginary number. The dependence of the

fluidity parameter on the concentration for different values ofσ is depicted in Fig. 9. The gray area

represents the range of concentration for whichγ̃ is imaginary. This condition can not be a priori

excluded but it must be further investigated by using either experimental ornumerical tests. In

fact, this unexpected trend could be a misleading consequence of the use of unphysical constitutive

parameters as well as of having assumedǫ to be constant, that is, independent on bothσ and the

relative velocity among colliding particles.

0.50 0.52 0.54 0.56 0.58
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Figure 9. Fluidity parameter as a function of the concentration for different values of the normal stress.
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3.4. Concentration ans stress ratio-imposed flows

In order to highlight the nature of the constitutive relationship, and in particular the meaning of

condition (31), or, equivalently, (34) and (37), in this section the steadystate condition will be

discussed with reference to (i) concentration and (ii) stress ratio-imposedflows. Here, all the graphs

are obtained by employing the parameters previously defined.

(i) The concentration-imposed flow is a kinematic-control test where stresses are computed as a

function of the two kinematic variables: concentration and shear rate. In thisconfiguration, by using

Eq. (20), the stress ratio is given by

τ

σ
=

K

d
f0 tanφ

′

ss + ρpd
2f2f4f

1/2
5

γ̇2

K

d
f0 + ρpd2f1f4f5γ̇2

(39)

where functionf4 is computed by substituting Eq. (17) into Eq. (11) as a function of the shear rate

and of the imposed concentration.

Figures 10(a) and Fig. 10(b) show the results in terms of stress ratio versus shear rate and normal

stress versus shear rate, respectively, for different values of theconcentration.
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Figure 10. Theoretical (a) stress ratio and (b) normal stress as functions of the shear rate for 1 mm sand, at
different values of the applied concentration.

Fig. 10(a) highlights the difference between the purely collisional and the transitional regime.

Indeed, when the imposed concentration is lower than the random loose packing (collisional

regime), the stress ratio is constant, as is predicted by the kinetic theory, whereas, in the transitional

regimeτ/σ is affected by the shear rate. The different shape of the normal stressin the two regimes

is also evident in Fig. 10(b).

Furthermore, when the concentration is lower thanν∗, the stress ratio is an increasing function of

γ̇, otherwise it presents a decreasing behaviour as a consequence of condition (34). The limit case

is ν = ν∗, where the stress ratio is constant and equal totanφ′

ss for all the values of the shear rate.
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(ii) A stress ratio-imposed flow is obtained by keeping constant the stress ratio τ/σ and measuring

the shear rate and the concentration as a function of the normal stress.

In the transitional regime, i.e, whenν > νrlp, by using Eq. (39) and (20a), the relation between the

concentration and the normal stress reads

f0



1 +
f1f5

(

tanφ′

ss −
τ

σ

)

f1f5
τ

σ
− f2f

1/2
5



 =
d

K
σ (40)

and the shear rate is given by

γ̇ =

√

√

√

√

σ − K

d
f0

ρpd2f1f4f5
, (41)

wheref4 is computed by using Eq. (15).

In the collisional regime (ν < νrlp), the concentration is imposed by the stress ratio through

f2

f1f
1/2
5

=
τ

σ
(42)

and it does not depend on the normal stress. Then, the shear rate reduces to

γ̇ =

√

σ

ρpd2f1f4f5
. (43)

The threshold between the two regimes is the stress ratio value associated with the random loose

packing concentration,(τ/σ)rlp (by employing the previously defined material parameters it is

0.558).

In Fig. 11(a) and 11(b) the concentration and the shear rate versus thenormal stress, respectively,

for different values of the imposed stress ratio, are plotted. The curvesof Fig. 11(a) represent the

iso-stress ratio lines in the phase diagram plane mentioned in Sect.3.1.
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Figure 11. Theoretical (a) concentration and (b) shear rateas a function of the normal stress for 1 mm sand,
at different values of the applied stress ratio.
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The two solid lines in Fig. 11(a) represent the limit caseτ/σ = tanφ′

ss = 0.5. From Eq. (39), by

imposingτ/σ = tanφ′

ss, we obtain:

(

f2f
1/2
5

− f1f5 tanφ
′

ss

)

γ̇2 = 0, (44)

which leads to two solutions:

1. γ̇ = 0: it is the so called critical state, where the collisional contribution vanishes and the

concentration is equal toνm (30).

2. f2f
1/2
5

− f1f5 tanφ
′

ss = 0: implying a concentration not depending onσ and equal toν∗, as

was stated in Eq. (35), and a shear rate defined, as usual, by Eq. (41).

When the normal stress reaches theσ∗ value (corresponding toνm = ν∗), the steady flow undergoes

a loss of uniqueness of the solution in terms of the two kinematic variables,ν andγ̇.

This loss of uniqueness of the solution characterizes also all the curves at imposed stress ratio lower

thantanφ′

ss. Furthermore, whenτ/σ < tanφ′

ss, there is only a limited range of the normal stress

for which the steady state is possible, and, in this range, there are alwaystwo concentrations and

two shear rates for a given value ofσ. The range of existence of the steady state (range of possible

normal stresses) increases accordingly to the imposed stress ratio, so theminimum normal stress

moves on the left and tends toσ∗ asτ/σ tends totanφ′

ss. Then, all the curves characterized by an

imposed stress ratio lower thantanφ′

ss are included between the two solid lines atτ/σ = tanφ′

ss,

corresponding to the dark gray area of the phase diagram in Fig. 8.

Both the theoretical concentrations are larger thanν∗, as was predicted by Eq. (34), and so both

the steady states are in the transitional regime. In Fig. 12 a curve at applied stress ratio lower than

tanφ′

ss is discussed.
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Figure 12. Theoretical (a) concentration and (b) shear rateas a function of the normal stress forτ/σ = 0.48.

Here, pointA corresponds with the minimum normal stress possible at the steady state, whereas

B represents the minimum shear rate achievable. Given these two points, we can distinguish three

zones:
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zone a.: where the shear rate is an increasing function of the normal stress whereas

concentration is deacresing;

zone b.: where the concentration increases and the shear rate decreases for increasing normal

stresses;

zone c.: where both the shear rate and the concentration increase with the normal stress.

When the imposed stress ratio is greater than the tangent of the critical frictionangle,τ/σ > tanφ′

ss,

the steady state is possible for all values ofσ. Furthermore, the loss of uniqueness of the solution

can still occur depending on the value ofτ/σ. If the applied stress ratio is lower than(τ/σ)rlp,

there is always a solution in the transitional regime, characterized by an increasing shear rate

given by Eq. (41), and an increasing concentration (40), which varies with σ between the random

loose packing and the valueν∗. Another solution can be found in the collisional regime. Here the

concentration is constant as stated by Eq. (42), and the shear rate increases with the normal stress

(43).

Given that, in the collisional regime, the minimum stress ratio,(τ/σ)
min

, is reached forν ≈ 0.26

and can be larger thantanφ′

ss, there is a range ofτ/σ where the steady state can not be reached in

the collisional regime and the stress ratio-imposed flow solution is unique. For this particular ideal

granular material, the minimum stress ratio in the collisional regime is(τ/σ)
min

≈ 0.513, then for

all the imposed stress ratio in the range0.5− 0.513 the solution, in terms ofν andγ̇, is unique and

is in the transitional regime.

In contrast, when(τ/σ)
min

< τ/σ < (τ/σ)rlp, there is at least another concentration, lower than

νrlp, and another shear rate solving the problem. The additional collisional solution can be one or

more depending on the the imposed stress ratio since the kinetic theory predictsa non monotonic

trend of the stress ratio versus concentration curve (Eq. 42). Referring to Fig. 11(b), forτ/σ equal

to 0.52 there are three possibleγ̇, and also three concentrations, one in the transitional regime and

two, constants, beneathνrlp (in Fig. 11(a) only one of these twoν is plotted, the other one is lower

than 0.3).

Finally, when the applied stress ratio is larger than the threshold(τ/σ)rlp, there are no possible

solutions in the transitional regime, and the concentrations and shear rates solving the stress

ratio-imposed flow have to be sought in the collisional regime (Eq. 42-43).

It is worth noting that when stress ratio exceedstanφ′

ss there is only one solution in the transitional

regime and, if the loss of uniqueness occurs, the other solutions are in the purely collisional regime.

On the other hand, the loss of uniqueness of the solution in the transitional regime is possible only

if the imposed stress ratio is lower thantanφ′

ss (condition 31), corresponding to the dark gray area

of Fig. 8.

4. CONCLUDING REMARKS

This work has provided a theoretical framework, in which both standard Geotechnical constitutive

models, based on the critical state theory, and kinetic theories of granular gases are merged. In

particular, the steady state condition of a granular material under simple shear has been analyzed by

employing a constitutive approach recently proposed by the authors, where both enduring contacts
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among particles involved in force chains and nearly instantaneous collisionsare considered. The

interpretation of the constitutive relationship in the light of standard visco-plasticity is a first

step towards an evolving constitutive model capable of describing the mechanical behaviour of

granular material under both solid-like and fluid-like conditions. Three flowconfigurations have

been considered: pressure, concentration and stress ratio-imposed flows. Accounting for the stiffness

of the particles allows to highlight the occurence of the limit conditionτ/σ = tanφ′

ss, which

produces a peculiar behaviour of the variable’s profiles in the three considered flow conditions.

Indeed, in the pressure-imposed flow, the stress ratio curves become non monotonic in the range of

concentration betweenν∗ andνm, where the fluidity parameter gets imaginary. At the same time,

in the concentration-imposed flow, theτ/σ function changes from an increasing to a decreasing

dependence on the shear rate. Finally, the occurence of the same condition generates in the stress

ratio-imposed flow a loss of uniqueness of the solution in the transitional regime, associated

with a limited range of normal stresses at which steady state is possible. All the assumptions

introduced to conceive the constitutive relationship (the restitution coefficient independent on both

the normal stress and the relative velocity among colliding particles; the shearrigidity concentration

independent on the friction coefficient; both the collisional and the quasi-static normal stresses

diverging at the same concentration) have to be confirmed. This paper is thus to be interpreted

as a theoretical stimulus for further experimental/numerical researches.
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