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1. Introduction 
Image Registration is the process of 
defin-ing the transformation between 
two images so that the coordinates in one 
image (mov-ing) correspond to those in 
the other (fixed). Deformable Image 
Registration (DIR) includes a model of 
deformation in the transformation, and 
it is widely used for the analysis of 
medical images. In a radiation therapy 
clinical workflow, DIR provides a 
framework to perform contour 
propagation, tumor tracking at planning 
or treatment stage, as well as 
deformation quantification at follow-up 
[1–7] and treat-ment volume margins 
customization to po-tentially reduce 
dose to healthy tissues. [8] 

The chosen similarity model between 
fixed and warped moving images should 
ensure the smoothness of final de- 
formation field (DF) [1– 8], as topology 
er-rors in the DF imply that the transfor 
-mation is not consistent with 
physiological/anatomical deformation. 
In order to com-pensate such 
irregularities, authors gen-erally 
introduce a regularization term in the 
cost function [9, 10] or post-process the 
calculated DF [11]. Consistent image 
registration is also often applied to allow 
simultaneous registration of images in 
two directions (direct and inverse). 

Sorzano et al. [12] used divergence 
and curl operators of the DF as the 
regulariza -tion function in 2D elastic 
registration for molecular-biological 
images along with Sum of Squared 
Difference (SSD) data term. Divergence 
(div) operator of a DF is used as a vector 
spline regularization func-tion to 
compensate the dilation/narrowing 
density of the field, and helps detecting 
sinks/sources emerged during the regis- 
tration process. Likewise, the curl 
operator 
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Summary 
Background: Similarity measures in medical 
images do not uniquely determine the corre- 
spondence between two voxels in deform- 
able image registration. Uncertainties in the 
final computed deformation exist, question- 
ing the actual physiological consistency of 
the deformation between the two images. 
Objectives: We developed a deformable 
image registration method that regularizes 
the deformation field in order to model a de- 
formation with physiological properties, rely- 
ing on vector calculus based operators as a 
regularization function. 
Method: We implemented a 3D multi-resol- 
ution parametric deformable image regis- 
tration, containing divergence and curl of the 
deformation field as regularization terms. Ex- 
ploiting a BSpline model, we fit the trans- 
formation to optimize histogram-based mu- 
tual information similarity measure. In order 
to account for compression/expansion, we 

extract sink/source/circulation components 
as irregularities in the warped image and 
compensate them. The registration perform- 
ance was evaluated using Jacobian determi- 
nant of the deformation field, inverse-con- 
sistency, landmark errors and residual image 
difference along with displacement field er- 
rors. Finally, we compare our results to a ro- 
bust combination of second derivative regu- 
larization, as well as to non-regularized 
methods. 
Results: The implementation was tested on 
synthetic phantoms and clinical data, leading 
to increased image similarity and reduced 
inverse-consistency errors. The statistical 
analysis on clinical cases showed that regu- 
larized methods are able to achieve better 
image similarity than non regularized meth- 
ods. Also, divergence/curl regularization im- 
proves anatomical landmark errors com- 
pared to second derivative regularization. 
Conclusion: The implemented divergence/ 
curl regularization was successfully tested, 
leading to promising results in comparison 
with competitive regularization methods. Fu- 
ture work is required to establish parameter 
tuning and reduce the computational cost. 
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2. Methods and Implemen- 
tation
2.1 Cost Function Definition 

Our multi-resolution registration scheme 
includes rigid and affine linear registration 
followed by a coarse and a fine BSpline 
nonlinear deformation stages. Coarse grid 
registration is performed by defining a 
12 ξ 12 ξ 12 BSpline grid of control 
points, which is increased to 30 ξ 30 ξ 30 
for the fine stage, thus decreasing the 
physical grid spacing accordingly. 

In each non rigid stage, we optimize the 
following cost function: 

C (x, y, z) = Esim + wdEdiv + wcEcurl (1) 

current voxel (i = 1 : N) and j the spatial 
component for each voxel ( j = 1 : M). 

Divergence and curl are defined as can 
be seen in Equation 4 and Figure 1. 

(4) 

Divergence and curl of a vector field quan- 
tify the total amount of deformation that is 
applied. Divergence operator is a scalar 
function (Eq. 4) and only specifies the 
changes in scale at each component of the 
DF, whereas the curl operator is a vector 
function and represents the circulation 
density of the DF. The magnitude and 
direction of Curl T (Eq. 5) represent, 
respectively, the speed of rotation and the 
trajectory of the deformation. 

Theoretically div/curl operators should 
be computed at each voxel, but in order to 
be able to combine these with an image 
similarity term, we propose to evaluate 
their L2 norm on the regions correlated to 

reduces the rotation in a field and quan- 
tifies changes in orientation and vorticity in 
a DF. The framework was further ex- 
tended to encompass an inverse consisten- 
cy term in the cost function [13]. 

In this paper, we focus on compensating 
irregularities detected in the DF by exploit- 
ing divergence and curl operators as a regu- 
larization function. We extended the pre- 
vious method by Sorzano [12] by imple- 
menting a multi-resolution 3-dimensional 
parametric deformable registration, charac- 
terized by cubic BSpline transformation, 
using a combination of Mutual Information 
(MI) [14] as similarity metric and div-curl 
regularization term, simultaneously opti- 
mized using ITK libraries [15]. Regulariza- 
tion based on divergence and curl has been 
applied so far on biological binary 2D im- 
ages, not appropriate for histogram-based 
similarity metric, and for accurate quanti- 
tative evaluation [12]. Our method is mod- 
eled to mostly focus on anatomical areas 
where undesired compression/expansion
irregularities in the vector field may  signifi- 
cantly alter the smoothness of physiological 
motion and compromise clinical use. At 
each stage, optimally weighted div and curl 
parameters are provided to balance each 
term contribution in the cost function. The 
implemented registration framework is ap- 
plicable to multi-modal registration, as no 
constraints exist on the absolute intensity 
values in the images to be registered. 

To prove the performance of our appli- 
cation, we tested the proposed approach on 
a 3D CT of a head and neck phantom and 4D 
lung CT clinical images. We exploited land- 
mark error evaluation as the most reliable 
metric in registration assessment [16], along 
with MI, jacobian determinant, inverse con- 
sistency and displacement field errors to 
demonstrate that the final DF reduced mis- 
alignment errors, leading to an overall regis- 
tration improvement. Eventually, we com- 
pared our method with a publicly available 
regularization method [17], as well as with 
non-regularized only-MI registration. 

Figure 1 Definition of curl operator 

where Esim is the similarity between 
fixed and moving image (MI), and Ediv 
and Ecurl rep-resent div and curl of the 
current DF as the regularization term, 
weighted by wd and wc (see Section 
2.2). Esim is increased during the 
optimization process performed by 
gradient descent, whereas the 
regularization term  is decreased until 
violating one of the stopping criteria 
(gradient magnitude tolerance and 
minimum step length are set to 0.0001 
and maximum number of iterations at 
500). 

The implementation of our cost 
func-tion requires the definition of a 
new strat-egy to combine a term 
directly dependent on image 
intensities (Esim) and a weighted sum 
of derivatives of the current DF at 
each voxel (Ediv and Ecurl). 

2.2 Embedding Divergence and Curl 
into the Cost Function 
In Equation 1, we define 

 (2) 

 (3) 

where T is the DF characterized by the 
BSpline control point coefficients, i is the 

BSpline grid control points, separately for 
each component direction. 

Therefore, in order to compute the di- 
vergence term at each iteration of the op- 
timizer, we proceed as follows: 
1. Split the components of DF at the pre- 

vious iteration.
2. Compute the necessary directional

derivatives  ,  and

by using the central finite difference
scheme.

3. Combine the vector gradient compo- 
nents together to construct

4. Calculate divergence as the L2 norm of
the gradient magnitude of each vector
component.

5. Apply user-defined weight wd to balance
the divergence contribution in the final
cost function value.

An analogous workflow is followed for the 
calculation of the curl term. 

The final cost function equation be- 
comes therefore as can be seen in Fig- 
ure 2, which is the multi-modal extension 



Figure 2 Final cost function equation 

of the 2D volume described in [12]. H(If), 
H(Im) denote entropies for fixed and mov- 
ing images and the minus sign before MI 
accounts for the fact that the similarity 
metric must be maximized, as opposed to 
the regularization term. 

2.3 Image Dataset 

We first tested our approach on an image 
of a RANDO® (The phantom laboratory, 
Salem, NY) dosimetric phantom acquired 
on a clinical CT scanner (GE Medical Sys- 
tem Light Speed, Fairfield, CT), using su- 
pine setup and clinical acquisition proto- 
cols. The volume acquired features 512 ξ 

scribe the different aspects of deformable 
registration in both datasets, as proposed 
also by [20]. 

In order to assess the smoothness of DF 
in the synthetic dataset, Root Mean Square 
(RMS) of the difference between the syn- 
thetic (ground-truth) and the obtained DF 
is calculated. Normalized Mutual Informa- 
tion (NMI) between the fixed and warped 
images is computed for both datasets, as a 
residual image difference. 

For clinical cases, where we are not sup- 
plied with the synthetic DF, we verified the 
average 3D displacement between land- 
marks individuated on each fixed and 
moving image of the clinical dataset, which 

(tx, ty, tz) second derivatives, which is com- 
puted as shown in Figure 3. 

Therefore, we applied the registration 
on the same clinical dataset using the same 
registration parameters i.e. Bspline grid 
points, subsampling resolution and 
number of iterations applied on our regis- 
tration to compare the warping per- 
formance according to all the evaluation 
metrics.

3. Results
3.1 Synthetic Phantom 
For this dataset, we obtained the smoothest 
DF and the best similarities of fixed and 512 ξ 123 voxels and [0.94, 0.94, 3] mm 

el-ement  spacing,  which  we subsample is considered the most robust evaluation metric [16]. warped images using wd and wc both set to
by a factor of 2. We applied three synthetic 
non-rigid deformations, specifically 
designed for head-neck district, to the 
images. This was achieved by 
superimposing three dif-ferent Gaussians, 
as described in [18]. The obtained DF is 
then used to evaluate the registration 
error. 

Our method is also applied to five clini- 
cal datasets obtained from (www.dir-lab. 
com) belonging to different patients. Since 
the datasets are provided with pathology 
approved landmarks on extreme phase 
im-ages, we used them as a robust 
benchmark to evaluate our application. 
Image charac-teristics of the clinical 
studies are summar- 
ized in Table 1. ClinicCase1 represents 
minimum deformation, whereas Clinic- 
Cases4 and 5 stand for the largest de- 
formation, as demonstrated by the average 
landmark displacement column. Subsam- 
pling resolution applied for each volume is 
also presented. 

2.4 Evaluation Methods 

Evaluation of non-rigid image 
registration algorithm is a hard task, 
since point-wise correspondence between 
two registered images is typically not 
known [19]. We used a combination of 
metrics to better de- 

We further verified the inverse consist- 
ency of our method on the clinical dataset, 
along with the jacobian determinant of the 
transformation for both datasets, in order 
to ensure the bijective mapping (non-sin- 
gularity/invertibility) and indicate irregu- 
larities in the transformation. 

2.5 Plastimatch regularization method 

We compared our method with Plastim- 
atch [17] BSpline registration application, 
featuring MI as similarity metric and a sec- 
ond derivative of the DF as a robust regu- 
larization term [21]. The regularization 
used here is the squared of the DF t = 

Figure 3 Plastimatch regularization term 

0.1 for coarse stage and 0 for wd and wc in 
the fine stage respectively. 

The RMS displacement when optimum 
weights are used is 4.69 mm, whereas 
MI-only with no regularization reaches
5.09 mm residual error.

Minimum jacobian of our Synthetic- 
Case is as high as 0.79 ( Table 2), suggest- 
ing that refinement of irregularities during 
the registration process done by our 
method resulted in a smoother DF com- 
paring to 0.73 for the original ground- 
truth synthetic DF. In Table 2 final 
registration results of our DivCurl 
method, compared with non regularized 
MI-only registration for synthetic cases
and Plastimatch (PLM) method for
clinical cases are reported.



Table 1 Specification of the clinical cases, selected to test our registration framework sulted in a less smooth DF, as testified by a 
higher inverse consistency error (>3 mm) 
as well as NMI which is small as 0.58. For 
ClinicCase5, regularization weights larger 
than 0.1 produced a negative minimum jac- 
obian value, i.e. a non-smooth DF: similar 

results were achieved by all other methods. 
For qualitative evaluation, in Figure 4 

we present the final DF overlaid on a slice 
belonging to both synthetic and clinical 
cases. Figures in first row of panel (a) show 
fixed and moving images belonging to syn- 

3.2 Real Patient Clinical Cases 

Quantitatively, DivCurl and PLM did not 
show large appreciable differences in terms 
of image similarity. For instance in Clinic- 
Case1, PLM resulted in NMI image simi- 
larity values as high as 0.60 (of 1), whereas 
0.64 NMI was measured for DivCurl. Re- 
sidual errors between the fixed and warped 
landmarks were statistically compared rely- 
ing on the non parametric Friedman test 
(at 

99% confidence). Residual errors were sig- 
nificantly different in all clinical cases. The 
post-hoc comparison highlighted that PLM 
had significantly larger errors in 4 out of 5 
cases, if compared to the DivCurl and MI 
methods (group H in the last column of 
Table 2). No appreciable difference was 
obtained in inverse consistency error for 
both methods, which measured 2.87 mm 
for DivCurl and 2.9 mm for PLM. MI-only 
non-regularized registration method re- 

thetic case respectively, and images in bot- 
tom row show warped images belonging to 
Only-MI and DivCurl method with opti- 
mum weights. Bold white arrows indicate 
the most discriminative areas in each 
image, corresponding to large irregularities 
that were compensated during the regis- 
tration with DivCurl. In panel (b), first row 
represents fixed and moving images for 
ClinicCase1, whereas the bottom row pre- 
sents deformed moving images for Div- 

Table 2 A Quantitative registration results belonging to both synthetic 
and clinical cases are presented along with the assigned weights for our div- 
curl method, plastimatch (PLM) and only-mi method. Here the only best case 
resulting from tuning the weights of div/curl are presented. For the synthetic 
cases we are not provided by the landmark features on the images, likewise 
the clinical cases are not supplied with the synthetic DF to calculate the avg 

3D RMS displacement. Moreover, the inverse consistency is only evaluated 
on the clinical cases. Group (H) in the landmark error evaluation denotes the 
methods with significantly higher residual errors measured on the land- 
marks. (Wdc, Wcc = div/curl weight in coarse stage, Wdf, Wcf = div/curl weight 
in fine stage, (H) significantly different) 

Cases/metrics [Wdc, Wcc, Wdf, 
Wcf] 

Iterations 
[Coarse, Fine] 

NMI 
(of 1) 

RMS disp. 
field (mm) 

Min. 
Jacobian 

Inverse 
cons. (mm) 

Landmark 
error fixed, 
moving (mm) 

Landmark error 
fixed, warped 
(mm) 

SyntheticCase-DivCurl [0.1, 0.10, 0] [217,32] 0.68 4.69 0.79 – – – 

SyntheticCase-MI – [145,16] 0.65 5.09 0.78 – – – 

ClinicCase1-DivCurl [0.5, 0.50.5, 0.5] [401,78] 0.64 - 0.44 2.87 3.89 1.42 

ClinicCase1-PLM – 0.60 - 0.69 2.90 3.89 1.68 (H ) 

ClinicCase1-MI – [291,41] 0.58 - 0.33 3.22 3.89 1.36 

ClinicCase2-DivCurl [1, 10, 0] [500,305] 0.53 - 0.11 0.94 9.83 2.80 

ClinicCase2-PLM – 0.50 - 0.53 0.95 9.83 4.07 (H ) 

ClinicCase2-MI – [320,186] 0.50 - 0.05 1.27 9.83 2.97 

ClinicCase3-DivCurl [0.1, 0.10, 0] [500,500] 0.53 - 0.01 1.8 7.48 3.57 

ClinicCase3-PLM – 0.48 - 0.37 2.2 7.48 4.14 (H ) 

ClinicCase3-MI – [500,263] 0.48 - –0.07 2.97 7.48 3.52 

ClinicCase4-DivCurl [0.1, 0.10, 0] [500,496] 0.53 - 0.24 2.60 11.03 4.40 (H ) 

ClinicCase4-PLM – 0.50 - 0.70 2.64 11.03 3.69 

ClinicCase4-MI – [500,234] 0.50 - 0.30 3.78 11.03 4.38 (H ) 

ClinicCase5-DivCurl [0.1, 0.10, 0] [500,500] 0.49 - –0.22 3.56 14.99 4.47 

ClinicCase5-PLM – 0.48 - –0.01 4.09 14.99 5.53 (H ) 

ClinicCase5-MI – [500,346] 0.47 - –0.20 4.34 14.99 5.00 

Cases Image dimension Voxel dimension 
(mm) 

Avg landmark dis- 
placement (mm) 

Subsampling 
res. 

ClinicCase1 256 x 256 x 94 0.97 x 0.97 x 2.5 4.01 [1 1 1] 

ClinicCase2 256 x 256 x 99 1.13 x 1.13 x 2.5 9.42 [1 1 1] 

ClinicCase3 256 x 256 x 106 1.10 x 1.10 x 2.5 7.10 [1 1 1] 

ClinicCase4 512 x 512 x 136 0.97 x 0.97 x 2.5 11.59 [2 2 1] 

ClinicCase5 512 x 512 x 128 0.97 x 0.97 x 2.5 15.16 [2 2 1] 



Figure 4 One slice of warped images belonging to the synthetic cases and 
ClinicCase1 are overlaid on final DF for each method. Panel (a): first row rep- 
resents fixed and moving image from left to right respectively for synthetic 
case, while the bottom row shows warped images belonging to only-MI and 
DivCurl method from left to right. The critically discriminative parts are repre- 

sented by bold white arrows, to show the different behavior. Panel (b): first 
row shows the fixed and moving images, while the bottom row presents DF 
overlaid on warped images belonging to DivCurl, PLM and MI-only regis- 
trations aligned from left to right. 

Figure 5 Landmark visualization in coronal view, where only landmarks in 
the current slice are shown for each method. Left image represents the align- 
ment of reference landmarks (squares) and target landmarks (triangles) on 
fixed image of ClinicCase1 before the registration, while next middle-left 
image shows the warped landmarks for Only-MI method. In middle-right the 

reference landmarks (squares) and the warped landmarks (triangles) are 
overlaid after the registration for DivCurl method, whereas in the right image 
the landmark correspondence for PLM is illustrated. Circles are depicted 
around landmarks that are not registered due to inaccurate compensation. 

Curl, PLM and Only-MI method respec 
-tively. Both PLM and DivCurl resulted in
a smoother deformation field, as
demon-strated by the distribution of
the vector field in the liver region. The
MI method ex-hibited physiologically
inconsistent de-formation in the liver
due to the lack of regularization in a
homogeneous region.

Finally, registration running time con- 
sidering the ClinicCase1, for MI-only 
method is about 420 sec, whereas PLM 
method requires 1400 sec and DivCurl 
takes 3100 sec, due to additional com- 
putation of div and curl regularization 
terms at each iteration. 

3.3 Landmark Errors Evaluation 
We measured the average 3D Euclidean 
distance between reference manual land- 
marks and warped landmarks after regis- 
tration ( Table 2). In Figure 5, 2D visu- 
alization of this approach is presented for 
the sake of qualitative evaluation. The left 



Figure 6 Weight assessment with respect to different test cases. (a) represents min. jacobian value evaluation for synthetic, ClinicCase1 and 
ClinicCase2, whereas (b) shows NMI values both with respect to combination of different specific weights. (w1 = [0.1, 0.1, 0,0], w2 = [1, 1, 0, 0], w3 = 
[0.5, 0.5, 0.5, 0.5], w4 = [0, 0, 1, 1], w5 = [4, 0, 4, 0], w6 = [0, 1, 0, 1]). 

image illustrates the reference landmarks at 
inhale (squares) and target landmarks at 
exhale (triangles) on the fixed image of 
ClinicCase1 before the registration, fol- 
lowed by the same overlay resulting from 
the presented  methods (Only-MI, DivCurl, 
PLM). In Figure 5, circles around some 
local points which are not registered due to 
misalignment during the optimization pro- 
cess comparing to before registration are 
shown. If we now concentrate on the regu- 
larized methods, it is possible to see how 
local discontinuities have been compen- 
sated in both regularized methods. 

4. Discussion
We successfully implemented a multi- 
modal and multi-stage registration frame- 
work to obtain regularized deformable 
image registration of 3D medical images 
based on divergence/curl regularization 
(DivCurl). This was tested in synthetic and 
clinical cases to show the performance of 
the proposed method, to be compared with 
non regularized (Only-MI) registration 
and alternative regularization strategies 
(PLM). 

4.1 Optimal Div-curl Weights 
Different performance was achieved by 
varying the weights assigned to div/curl 
operators for each dataset. Specific studies 
are required to determine the optimal 
weights for specific registration problems, 
in terms of images anatomical site and ex- 
pected deformation amplitude. A general 
behavior was highlighted in the dataset 
available for this work, which might serve 
as the starting point for future investi- 
gations. Figure 6a and Figure 6b show 
combination of different weights to evalu- 
ate the smoothness of DF as well as residual 
intensity difference for Synthetic, Clinic- 

Figure 7 a) Box plot represents distribution of the landmark errors on all the clinical experiments for each method. b) Average NMI values for each 
method, demonstrating higher image similarity by DivCurl. 



Case1 and ClinicCase2 by using min. 
Jacobian (a) and NMI (b). Combinations 
are presented in the caption of Figure 6. 
Based on Figure 6, it is possible to ob-serve 
that we obtained smoother final DF for the 
cases where the coefficients in coarser grid 
are larger than in the fine grid (w1, w2), 
especially in terms of minimum jacobian 
value. Conversely, the use of a single 
regularization function (either div or curl) 
led to sub-optimal results (w5, w6). The 
latter fact is proved on phantom cases, 
where the smoothest DF was obtained 
when the fine stage coefficients were set to 
zero. Figure 6 proves that w1 fits the best 
for synthetic case and w3 and w2 are the 
most optimal weights for clinic cases 1 and 
2 respectively, in terms of both metrics. 
This weight combination might be used for 
any type of dataset, but the optimal con- 
figuration is intrinsically case dependent. 

4.2 Comparison with Non- regularized 
Methods 
As can be conceived by the cost function 
(Figure 2), the combination of probabil-ity 
density based MI metric and the direct 
voxel-intensity based div/curl regulariz- 
ation term is not trivial. Both in [12] and 
[13], the author use SSD of the intensities to 
adjust the similarity between the images, 
restricting the applicability of their method 
to mono-modal cases with equal gradient 
scales. Our method instead has the poten- 
tial to address the problem of non-physical 
registration compensation also in multi- 
modal image applications. 

As visible from Table 2, we obtained 
smoother final DF with less irregularity, 
along with an enhanced image similarity 
compared to non-regularized registration 
method. For the synthetic cases, we re- 
ported 8.5% of improvement in terms of 
RMS displacement field, compared to the 
MI-only method. In the clinical dataset,
NMI values for the DivCurl method were 
consistently larger than Only-MI regis- 
tration, thus proving that the use of regu- 
larization function is able to achieve better
similarity than unconstrained (i.e. non
regularized) methods. Similar consider- 
ations can be extended to the inverse con- 
sistency and landmark error evaluation. 
Improvements of DivCurl with respect to

Only-MI in clinical cases were as high as 
39% (ClinicCase3) for inverse consistency 
and 11% (ClinicCase2) for the landmark 
error evaluation. 
4.3 Comparison with Plastimatch 
We compared our results with a Bspline 
based Plastimatch method where the regu- 
larization term is used during the optimi - 
zation at each iteration, in opposition to 
other algorithms where regularization is 
achieved through a smoothing term ap- 
plied after optimization. In this perspec- 
tive, the selected method is analogous to 
DivCurl implementation, which differs in 
terms of selected quantities for regular - 
ization. The box plot in Figure 7a sum- 
marizes the distribution of the landmark 
errors for each method, quantified on the 
clinical dataset. PLM resulted in signifi- 
cantly higher errors, as confirmed by the 
statistical analysis (3.8 mm for PLM, versus 
3.3mm for DivCurl and 3.4mm for Only- 
MI). In Figure 7b, we report the distribu- 
tion of NMI values for each method, show- 
ing that higher similarity was obtained by 
DivCurl compared to PLM. Statistical 
analysis (non parametric Friedman test) 
revealed that NMI values are statistically 
different at 99% confidence. The post-hoc 
comparison highlighted that DivCurl fea- 
tures significantly higher NMI values com- 
pared to the MI method, whereas no sig- 
nificant difference exist with the PLM algo- 
rithm. As for inverse consistency errors, it 
is clearly visible from Table II that the Div- 
Curl method yielded consistently reduced 
errors in all clinical cases, if compared to 
PLM. 
5. Conclusion
We achieved successful integration of di- 
vergence and curl regularization terms in a 
multi-resolution deformable image regis- 
tration method using ITK libraries. The 
method was tested both on 3D CT cervical 
synthetically deformed phantom images 
and 4D CT pulmonary patient images. 

After registration, we compared our 
method with another regularization strat- 
egy based on second derivatives, as well as 
with non-regularized method. As a result, 

statistical analysis performed on two evalu- 
ation metrics (i.e. Landmark Registration 
Error and NMI) revealed significantly 
higher values for our implementation with 
respect to both methods. 

Future work will consist in the develop- 
ment of an automatic strategy for deriving 
optimal registration parameters for each 
patient case, as well as porting the method 
to GPUs, in order to reduce the computa- 
tional cost. 
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