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Abstract

Transfer reinforcement learning (RL) methods leverageheneixperience col-
lected on a set of source tasks to speed-up RL algorithmsnplsiand effective
approach is to transfer samples from source tasks and im¢hein in the train-
ing set used to solve a target task. In this paper, we inastithe theoretical
properties of this transfer method and we introduce noggrithms adapting the
transfer process on the basis of the similarity betweencgoand target tasks.
Finally, we report illustrative experimental results inantinuous chain problem.

1 Introduction

The objective of transfer in reinforcementlearning (RL)][& to speed-up RL algorithms by reusing
knowledge (e.g., samples, value function, features, patens) obtained from a set of source tasks.
The underlying assumption of transfer methods is that tlheecsotasks (or a suitable combination
of these) are somehow similar to the target task, so thatansferred knowledge can be useful in
learning its solution. A wide range of scenarios and metHodsransfer in RL have been studied
in the last decade (see [12, 6] for a thorough survey). Inghjger, we focus on the simple transfer
approach where trajectory samples are transferred fromceddDPs to increase the size of the
training set used to solve the target MDP. This approach iigcpéarly suited in problems (e.g.,
robotics, applications involving human interaction) winéris not possible to interact with the envi-
ronment long enough to collect samples to solve the taskrat.Hasamples are available from other
sources (e.g., simulators in case of robotic applicatidhg) solution of the target task can benefit
from a larger training set that includes also some sourcekmnThis approach has been already
investigated in the case of transfer between tasks witkrdifft state-action spaces in [11], where the
source samples are used to build a model of the target tagkewbethe number of target samples is
not large enough. A more sophisticated sample-transfenadas proposed in [5]. The authors in-
troduce an algorithm which estimates the similarity betwseurce and target tasks and selectively
transfers from the source tasks which are more likely to idegamples similar to those generated
by the target MDP. Although the empirical results are enaginyg, the proposed method is based
on heuristic measures and no theoretical analysis of ifeeance is provided. On the other hand,
in supervised learning a number of theoretical works ingastd the effectiveness of transfer in
reducing the sample complexity of the learning processomain adaptation, a solution learned on
a source task is transferred to a target task and its perfare@epends on hosimilar the two tasks
are. In [1] and [8] different distance measures are propasedare shown to be connected to the
performance of the transferred solution. The case of teargfsamples from multiple source tasks
is studied in [2]. The most interesting finding is that thensfer performance benefits from using a
larger training set at the cost of an additional error duédéaverage distance between source and
target tasks. This implies the existence d¢famsfer tradeoffbetween transferring as many samples
as possible and limiting the transfer to sources which andasi to the target task. As a result, the
transfer of samples is expected to outperform single-tagkning wheneveanegativetransfer (i.e.,
transfer from source tasks far from the target task) is édhitv.r.t. to the advantage of increasing



the size of the training set. This also opens the questiorthehd is possible to design methods
able to automatically detect the similarity between tasidadapt the transfer process accordingly.
In this paper, we investigate the transfer of samples in Rinfa more theoretical perspective w.r.t.
previous works. The main contributions of this paper canumersarized as follows:

e Algorithmic contribution. We introduce three sample-transfer algorithms based el fitt
Q-iteration [3]. The first algorithmASTin Sec. 3) simply transfers all the source samples.
We also design two adaptive metho@AT andBTT in Sec. 4 and 5) whose objective is
to solve the transfer tradeoff by identifying the best camaltion of source tasks.

e Theoretical contributionWe formalize the setting of transfer of samples and we dexive
finite-sample analysis of AST which highlights the impodarof theaverageMDP ob-
tained by the combination of the source tasks. We also reperanalysis for BAT which
shows both the advantage of identifying the best combinatf@ource tasks and the addi-
tional cost in terms of auxiliary samples needed to comphéesimilarity between tasks.

e Empirical contribution. We report results (in Sec. 6) on a simple chain problem which
confirm the main theoretical findings and support the ideaghmple transfer can signifi-
cantly speed-up the learning process and that adaptiveoaietire able to solve the transfer
tradeoff and avoid negative transfer effects.

The proofs and additional experiments are available in [7].

2 Preliminaries
In this section we introduce the notation and the transfellem considered in the rest of the paper.

We define a discounted Markov decision process (MDP) as & thpl= (X, A, R, P,~) where
the state spacd’ is a bounded closed subset of the Euclidean spacs a finite (A| < o0)
action space, the reward functi@ : X x A — R is uniformly bounded byR,,,., the transition
kernel P is such that for al: € X anda € A, P(-|z,a) is a distribution over¥, and~y €
(0,1) is a discount factor. We denote I8(X x A) the set of probability measures ov&rx A
and byB(X x A; Vipax = If"_];x) the space of bounded measurable functions with dorvain. A
and bounded if—Viax, Vinax]. We define the optimal action-value functié)* as the unique
fixed-point of the optimal Bellman operat@r : B(X x A; Viyax) — B(X x A; Vihax) defined as

(TQ)(z,a) = R(z,a) +v [, maxaea Q(y, a’)P(dyl|z, a).

For any measurg € S(X x A) obtained from the combination of a distributipne S(X') and
a uniform distribution over the discrete sdt and a measurable functigh: X x A — R, we
define theL,(u)-norm of f as|| |2 = I_jl\ > aca Jy f(2,a)?p(dz). The supremum norm of is

defined ag| f||c = sup,cx |f(x)|. Finally, we define the standadd,-norm for a vectorx € R¢
as|lal|? = 20, a2. We denote by(-,-) = (¢1(-,-), -, al, -))T a feature vector with features

0i + XxA — [-0C,C], and by F = {fu(-,-) = ¢(-,-)Ta} the linear space of action-value
functions spanned by the basis functionginGiven a set of state-action paif§X;, A;)}~ , let

® = [p(X1,A1)";...;6(X1, Ar) "] be the corresponding feature matrix. We define the orthdgona
projection operatoll : B(X x A; Vinax) — F asIIQ) = argminycr ||Q — f||,.. Finally, byT(Q)

we denote the truncation of a functihin the rangd—Vi,ax, Vinax]-

We consider the transfer problem in whid tasks{M,,,}}_, are available and the objective is
to learn the solution for the target tagk; transferring samples from the source tagkd,,, }M_,.
We define an assumption on how the training sets are generated

Definition 1. (Random Tasks Design) An input sef{(X;, 4;)}£ , is built with samples drawn from
an arbitrary sampling distribution, € S(X x A), i.e. (X;, A4;) ~ p. For each taskmn, one
transition and reward sample is generated in each of theessation pairs in the input set, i.e.
Y™ ~ P(| X1, 4)), andR* = R(X;, A;). Finally, we define the random sequercdé, } /-, where
the indexed\/; are drawn i.i.d. from a multinomial distribution with paraters(Ay, ..., A\x). The
training set available to the learner ig§ X;, A;, Y7, Rl)}lL:1 whereY; =Y y, andR; = Ry, .

This is an assumption on how the samples are generated buadtiqe, a single realization of
samples and task index§ is available. We consider the case in which< \,,, (m = 2,..., M).
This condition implies that (on average) the number of tasgenples is much less than the source



Input: Linear spaceF = spa{y;, 1 < i < d}, initial functionQ° € F
fork=1,2,...do
Build the training se{ (X;, A;, Y, R;) }/~, [according torandomtasks design]
Build the feature matrix® = [¢(X1, A1) ;... ;¢(Xz, AL) "]
Compute the vectgs € R” with p; = R; + vy maxare4 Q* (Y1, a')
Compute the projectiod” = (&7 ®)~'® " p and the functiorQ* = f.x
Return the truncated functiog* = T'(Q")
end for

Figure 1: A pseudo-code for All-Sample Transfer (AST) Fitt@-iteration.

samples and it is usually not enough to learn an accuratéiGolior the target task. We will also
consider thepure transfercase in which\; = 0 (i.e., no target sample is available). Finally, we
notice that Def. 1 implies the existence of a generative mhfudeall the MDPs, since the state-
action pairs are generated according to an arbitrary samgistributiony.

3 All-Sample Transfer Algorithm

We first consider the case when the source samples are gahaaording to Def. 1 and the de-
signer has no access to the source tasks. We study the higardledAll-Sample Transfe(AST)
(Fig. 1) which simply runs FQI with a linear spageon the whole training seft( X;, 4;, Y}, B;)H- ;.

At each iteratiork, given the result of the previous iteratiQff—! = 7(Q*~1), the algorithm returns

L
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In the case of linear spaces, the minimization problem igesbin closed form as in Fig. 1. In the
following we report a finite-sample analysis of the perfont@of AST. Similar to [9], we first study
the prediction error in each iteration and we then propaij#teough iterations.

3.1 Single Iteration Finite-Sample Analysis

We define theaverageMDP M, as the average of th&/ MDPs at hand. We define its reward
functionR, and its transition kernegP, as the weighted average of reward functions and transition
kernels of the basic MDPs with weights determined by the priopns) of the multinomial distribu-

tion in the definition of the random tasks design (iR, = fo:l AmRm, Pr = 2%21 AmPm)-
We also denote by, its optimal Bellman operator. In the random tasks desigaatrerage MDP
plays a crucial role since the implicit target function oé tminimization of the empirical loss in

Eq.1lis indee(‘Tk@k_l. At each iteratiork, we prove the following performance bound for AST.
Theorem 1. Let M be the number of tasksM,,, }27_,, with M; the target task. Let the training

m=1’

set{(X;, A;,Y;, B;))}_, be generated as in Def. 1, with a proportion vector (A1, ..., Ay ). Let
for = OTIQF ! = arginf e 7 || f — T1Q*|,., then foranyd < 6 < 1, Q* (Eq. 1) satisfies

IT(QF) = TiQ M|, < 4llfur — TIQ Y| + 5/ Ex(QF1)

. [2 9 2 27(12Le2)2(d+1)
+24(Vmax+c||ai||) Zlogg +32‘/ma)(\/z IOg (%)

with probability1 — & (w.rt. samples), whergy;| | < C and&Ex(QF1) = ||(T1 — 7A)@k*1|\i.

Remark 1 (Analysis of the bound).We first notice that the previous bound reduces (up to cotstan
to the standard bound for FQI whéd = 1 [7]. The bound is composed by three main teriis:
approximation error(ii) estimation error, andii) transfer error. The approximation errof,» —

7’1@’“—1”“ is the smallest error of functions i in approximating the target functioh Q*~! and it
does not depend on the transfer algorithm. The estimation ghird and fourth terms in the bound)

is due to the finite random samples used to Ie@f‘mnd it depends on the dimensionalityf the
function space and it decreases with the total number of Esmhwith the fast rate of linear spaces



(O(d/L) instead ofO(/d/L)). Finally, the transfer erraof, accounts for the difference between
source and target tasks. In fact, samples from source taféieedt from the target might bia@*
towards a wrong solution, thus resulting in a poor approsioneof the target function; Q*—!. It

is interesting to notice that the transfer error dependsertifference between the target task and
the average MDPM , obtained by taking a linear combination of the source taskighted by the
parameters. This means that even when each of the source tasks is véeyedif from the target,

if there exists a suitable combination which is similar te thrget task, then the transfer process is
still likely to be effective. Furthermore, considers the difference in the result of the application

of the two Bellman operators to a given functi@’i*l. As a result, when the two operatdfsand
T » have the same reward functions, even if the transitionildigions are different (e.g., the total

variation|| Py (+|z, a) iﬁAHz, a)|[rv is large), their corresponding averages®f-! might still be
similar (i.e., [ max, Q(y, a’)P1(dy|z, a) similar to [ max. Q(y, a’)Pa(dy|z,a)).

Remark 2 (Comparison to single-task learning).Let @’; be the solution obtained by solving one

iteration of FQI with only samples from the source task, tagfgrmance bounds a@’“ and@’;’ can
be written as (up to constants and logarithmic factors)

. ~ . 1 d
HT(Qk) - 7—1Qk 1Hu S ||fo¢’*C - 7—1Qk 1||M + (Vmax + CHOKEH)\/;‘F Vmax\/;—" gk )

~ ~ o 1 d
IT(@Q%) = TiQ™ Ml < Ilfax = THQ Ml + (Vinax + Cllal)y] 5= + Vimax\ 375
1 1

with N; = A\, L (on average). Both bounds have the same approximation &irermain difference

is thatQ* uses onlyV; samples and, as a result, has a much bigger estimation learot, which
takes advantage of all thesamples transferred from the source tasks. At the samedfsyffers
from an additional transfer error. Thus, we can concludé AR is expected to perform better
than single-task learning whenever the advantage of usioig mamples is greater than the bias
due to samples coming from tasks different from the target t@this introduces transfer tradeoff
between including many source samples, so as to reducetthetsn error, and finding source
tasks whose combination leads to a small transfer error.etn & we define an adaptive transfer
algorithm which selects proportionsso as to keep the transfer erégras small as possible. Finally,
in Sec. 5 we consider a different setting where the numbeairofdes in each source is limited.

3.2 Propagation Finite-Sample Analysis

We now study how the previous error is propagated througatitens. Letv be the evaluation norm
(i.e., in general different from the sampling distributign We first report two assumption’s.
Assumption 1. [9] Given 4, v, p > 1, and an arbitrary sequence of polici¢s, },>1, we assume
that the future-state distributiopP} - - ~P,1rp is absolutely continuous w.rtv. We assume that
c(p) = SUpry.cr, [|d(uP, -+ Pr ) /|0 SBliSTiEL),,, = (1 —77)* 35, py?~le(p) < oo
Assumption 2. LetG € R%*? be the Gram matrix withG;; = [ ¢i(z,a)p;(z, a)pu(dz,a). We
assume that its smallest eigenvalués strictly positive (i.e.w > 0).

Theorem 2. Let Assumptions 1 and 2 hold and the setting be as in Thm. dr. Kfiterations, AST
returns an action-value functio x, whose corresponding greedy policy satisfies

* _ oK 2y
Q" —@Q ||V§m\/cﬂ,v

Vinax. /2. 9K 2 27K (12Le2)2(d+1) Winax K
56(Vinax Zlog == + 32Vipaxt | = 1 .
+ (d+\/o_J)Log5+ a\/Log( 5 +m7

Remark (Analysis of the bound). The bound reported in the previous theorem displays few dif-
ferences w.r.t. to the single-iteration bound (see [7] fatHer discussion). The transfer error
sup, ||(T1 — Tx)T(fa)|l. characterizes the difference between the target and a&eltman op-
erators through the spadé As a result, even MDPs with significantly different rewaeshl tran-
sitions might have a small transfer error because of thetimmgin 7. This introduces a tradeoff

dsup inf ||f —Tiglly +5sup [[(To =TT (fa)ll,
ge}‘fe]'- o

1We refer to [9] for a thorough explanation of the concentighierms.



Input: SpaceF = spar{y;, 1 < i < d}, initial function Q° € F, number of samples
Build the auxiliary se{ (X, As, Ro.1,. .., Rer}ozy and{Y?,,..., Y}, for eachs
fork=1,2,...do

ComputeX* = arg minxea Ex(Q* 1)

Run one iteration of AST (Fig. 1) using samples generated accordingit’b
end for

Figure 2: A pseudo-code for the Best Average Transfer (BAgQr@thm.

in the design ofF between a “large” enough space containing functions abépproximate/;
(i.e., small approximation error) and a small function spatere the Q-functions induced Gy
andT » can be closer (i.e., small transfer error). This term alspldiys interesting similarities with
the notion ofdiscrepancyntroduced in [8] in domain adaptation.

4 Best Average Transfer Algorithm

As discussed in the previous section, the transfer €iyq@iays a crucial role in the comparison with
single-task learning. In particulaf, is related to the proportionsinducing the average Bellman
operator7 , which defines the target function approximated at eachtitera We now consider
the case where the designer has direct access to the sosksdita., it is possible to choose how
many samples to draw from each source) and can define areaylpnoportion\. In particular, we
propose a method that adaptat each iteration so as to minimize the transfer e€sor

We consider the case in which is fixed as a parameter of the algorithm akd = 0 (i.e.,
no target samples are used in the learning training set). adh éterationk, we need to esti-

mate the quantityy(Q*~'). We assume that for each task additional samples availalode.
{(XS,AS,RSJ,...,RsM)}f:1 be anauxiliary training set wherd X, A;) ~ p and R, =
Rm(Xs, As). In each state-action pair, we generditenext states for each task, that}i’§m ~
P (| Xs, As) witht = 1,...,T. Thus, for any functior) we define the estimated transfer error as

M T M

S 2
:é Z 1= > AR + 2 Z (maxQ(Viia)= 3" An “}I%XQ(Yf,m,a’))} @
s=1 t=1 m=2

At each iteration, the algorithnBest Average Transfe{BAT) (Fig. 2) first computesik =
argminyecy £x(QF1), where A is the (M-2)-dimensional simplex, and then runs an itera-
tion of AST with samples generated according to the propnstﬁk. We denote by\ =
arg minyep &(@k—l) the best combination at iteratién

Theorem 3. Let Q%! be the function returned at the previous iteration a@@AT the function
returned by the BAT algorithm (Fig. 2). Then for ahy: § < 1, Q& o7 satisfies

17(Q8an) = Tl < 4| far = THQ* M |lu + 51/ Exe (QF1)

)1 5 log 8GN /6
+ 5\/2Vmax< Sog 85/ ) + 20vmax\/%
2 1 2 4(12Le2)2(d+1)
+ 24(Vinax + Clla1]) 7 log ; " 32‘/'“”\/3 log (%)

with probabilityl — ¢

Remark 1 (Comparison with AST and single-task learning) The bound shows that BAT outper-
forms AST whenever the advantage in achieving the smaltesgiple transfer erraf,, is larger
than the additional estimation error due to the auxiliagyning set. When compared to single-task
learning, BAT has a better performance whenever the besbication of source tasks has a small
transfer error and the additional auxiliary estimatioroeis smaller than the estimation error in
single-task learning. In particular, this means t&tA7/S)'/*) + O((1/T)*/?) should be smaller
thanO((d/N)'/?) (with N the number of target samples). The number of calls to thergtve



Table 1: Parameters for the first set of tasks Table 2: Parameters for the second set of tasks

tasks p l n Reward tasks p l n Reward

M; 09 1 01 41lin[-11,-9]U][9,11] Mi 09 1 01 H41lin[-11,-9JU]9,11]
My 09 2 01 —5in[-11,-9]U[9,11] Ms 07 1 0.1 41lin[-11,-9JU]9,11]
Mz 09 1 01 +5in[-11,-9]U9,11] M7z 01 1 01 +1lin[-11,-9]U9,11]
My 09 1 0.1 +1in[—6, —4] U [4, 6] Ms 09 1 01 =5in[=11,-9]U]9,11]
Ms 09 1 0.1 —1in [—6, —4] U [4, 6] Mo 0.7 1 05 +5in[—11,-9] U9, 11]

model for BAT isST'. In order to have a fair comparison with single-task leagnire setS = N2/3
andT = N1/3, then we obtain the conditioh/ < d2N~%/3 that constrains the number of tasks to
be smaller than the dimensionality 5 We remark that the dependency of the auxiliary estimation
error onM is due to the fact that the vectors (over which the transfer error is optimized) belong
to the simplexA of dimensionalityM/-2. Hence, the previous condition suggests that, in general,
adaptive transfer methods may significantly improve thagfer performance (i.e., in this case a
smaller transfer error) at the cost of additional sources s which depend on the dimensionality
of the search space used to adapt the transfer processs(catie)\).

5 Best Transfer Trade-off Algorithm

The previous algorithm is proved to successfully estimagedombination of source tasks which
better approximates the Bellman operator of the target tdsketheless, BAT relies on the implicit
assumption that, samples can always be generated from any sourcé st it cannot be applied

to the case where the number of source samples is limitece Werconsider the more challenging
case where the designer has still access to the source tatskalp a limited number of samples
is available in each of them. In this case, an adaptive tearaforithm should solve a tradeoff
between selecting as many samples as possible, so as te ribduestimation error, and choosing
the proportion of source samples properly, so as to cortimtriansfer error. The solution of this
tradeoff may return non-trivial results, where source sasiknilar to the target task but with few
samples are removed in favor of a pool of tasks whose avecamghly approximate the target task
but can provide a larger number of samples.

Here we introduce th8est Tradeoff Transfe(BTT) algorithm. Similar to BAT, it relies on an
auxiliary training set to solve the tradeoff. We denoteMy, the maximum number of samples
available for source task. Let3 € [0, 1] be a weight vector, wherg,, is the fraction of samples
from taskm used in the transfer process. We denotefpy(€;) the transfer error (the estimated
transfer error) with proportionswhere\,,, = (8, Nm)/ ..., (Bm Nm/). At each iteratiork, BTT
returns the vectas which optimizes the tradeoff between estimation and tearefrors, that is

. ~ o~ d
F—arg min (&Q"NH47, | ——), 3
B =arg min (£5(Q"7) S ) 3)

wherer is a parameter. While the first term accounts for the traresfer induced bys, the second
term is the estimation error due to the total amount of saspéed by the algorithm.

Unlike AST and BAT, BTT is a heuristic algorithm motivated the bound in Thm. 1 and we do not
provide any theoretical guarantee for it. The main tecHmifficulty is that the setting considered
here does not match the random task design assumption ($e&)Bice the number of source
samples is constrained ly,,,. As a result, given a proportiok, we cannot assume samples to be
drawn at random according to a multinomial of parameleM/ithout this assumption, it is an open
guestion whether a similar bound as AST and BAT could be ddriv

6 Experiments

In this section, we report preliminary experimental resoltthe transfer algorithms. The main ob-
jective is to illustrate the functioning of the algorithmedecompare their results with the theoretical
findings. We consider a continuous extension of the chaik walblem proposed in [4]. The state
is described by a continuous variabland two actions are available: one that moves toweftéind
the other towardight. With probabilityp each action makes a step of lengtaffected by a noiss,

2If A\, = 1 for taskm, then the algorithm would generate all theéraining samples from task.
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Figure 3: Transfer frord\,, M3, M4, M5. Left: Comparison between single-task learning, AST
with L = 10000, BAT with L = 1000, 5000, 10000. Right: Source task probabilities estimated by
BAT algorithm as a function of FQI iterations.

in the intended direction, while with probability- p it moves in the opposite direction. In the target
task M, the state—transition model is defined by the following paeterspp = 0.9,/ = 1, andn is
uniform in the interva[—0.1, 0.1]. The reward function provides1 when the system state reaches
the regiong—11, —9] and[9, 11] and0 elsewhere. Furthermore, to evaluate the performance of the
transfer algorithms previously described, we considergldtesource task$ Mo, ..., Mgy} whose
state—transition model parameters and reward functiensegorted in Tab. 1 and 2. To approximate
the Q-functions, we use a linear combination of 20 radialdfasctions. In particular, for each ac-
tion, we considep Gaussians with means uniformly spread in the intefv&0, 20] and variance
equal tol 6, plus a constant feature. The number of iterations for thiegigdrithm has been empiri-
cally fixed to13. Samples are collected starting from the state- 0 with actions chosen uniformly
at random. All the results are averaged ol&b runs and we report standard deviation error bars.

We first consider theuretransfer problem where no target samples are actually nsbeé iearning
training set (i.e.A\; = 0). The objective is to study the impact of the transfer ernge tb the use
of source samples and the effectiveness of BAT in finding tablé combination of source tasks.
The left plot in Fig. 3 compares the performances of FQI witl aithout the transfer of samples
from the first four tasks listed in Tab. 1. In case of singkgktizarning, the number of target samples
refers to the samples used at learning time, while for BAEjiresents the siz& of the auxiliary
training set used to estimate the transfer error. Thusawhisingle-task learning the performance
increases with the target samples, in BAT they just makenesion of £, more accurate. The
number of source samples added to the auxiliary set for eagettsample was empirically fixed
to one (" = 1). We first run AST withL, = 10000 and X2 = A3 = Ay = A5 = 0.25 (which
on average corresponds to 2500 samples from each sourcé)caksbe noticed by looking at the
models in Tab. 1, this combination is very different from theget model and AST does not learn
any good policy. On the other hand, even with a small set ollianxtarget samples, BAT is able to
learn good policies. Such result is due to the existencaneélicombinations of source tasks which
closely approximate the target tagkl, at each iteration of FQI. An example of the proportion
coefficients computed at each iteration of BAT is shown inrilgat plot in Fig. 3. At the first
iteration, FQI produces an approximation of the reward fianc Given the first four source tasks,
BAT finds a combinationX ~ (0.2,0.4,0.2,0.2)) that produces the same reward functiori&s
However, after a few FQI iterations, such combination is raremable to accurately approximate

functions7:Q. In fact, the state—transition model of tasgKs is different from all the other ones
(the step length is doubled). As a result, the coefficlentirops to zero, while a new combination
among the other source tasks is found. Note that BAT sigmifigémproves single-task learning, in
particular when very few target samples are available.

In the general case, the target task cannot be obtained aoarhination of the source tasks, as it
happens by considering the second set of source tasks (M7, Mg, My). The impact of such
situation on the learning performance of BAT is shown in tfé plot in Fig. 4. Note that, when
a few target samples are available, the transfer of samples & combination of the source tasks
using the BAT algorithm is still beneficial. On the other hathe: performance attainable by BAT is
bounded by the transfer error corresponding to the bestedask combination (which in this case
is large). As a result, single-task FQI quickly achieves tdbgerformance.
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Figure 4: Transfer frora\g, M~, Mg, Mg. Left: Comparison between single-task learning and
BAT with L = 1000, 5000, 10000. Right: Comparison between single-task learning, BAT with
L = 1000, 10000 in addition to the target samples, and BTAd £ 0.75) with 5000 and 10000
samples for each source task. To improve readability, thieiptruncated at 5000 target samples.

Results presented so far for the BAT transfer algorithm mgsthat FQI is trained only with the
samples obtained through combinations of source taskee @inumber of target samples is already
available in the auxiliary training set, a trivial improvent is to include them in the training set
together with the source samples (selected according t@nbgortions computed by BAT). As
shown in the plotin the right side of Fig. 4 this leads to a Bigant improvement. From the behavior
of BAT it is clear that with a small set of target samples, ib&tter to transfer as many samples as
possible from source tasks, while as the number of targeplesmcreases, it is preferable to reduce
the number of samples obtained from a combination of soastestthat actually does not match the
target task. In fact, fol. = 10000, BAT has a much better performance at the beginning but it is
then outperformed by single-task learning. On the othedhfor . = 1000 the initial advantage

is small but the performance remains close to single-tagkf&iQarge number of target samples.
This experiment highlights the tradeoff between the neeshaiples to reduce the estimation error
and the resulting transfer error when the target task cammekpressed as a combination of source
tasks (see Sec. 5). BTT algorithm provides a principled wagddress such tradeoff, and, as shown
by the right plot in Fig. 4, it exploits the advantage of tf@ngng source samples when a few target
samples are available, and it reduces the weight of the sdasks (so as to avoid large transfer
errors) when samples from the target task are enough. Itaseisting to notice that increasing the
number of samples available for each source task 566 to 10000 improves the performance
in the first part of the graph, while keeping unchanged thd fieeformance. This is due to the
capability of the BTT algorithm to avoid the transfer of sceisamples when there is no need for
them, thus avoidingegative transfeeffects.

7 Conclusions

In this paper, we formalized and studied the sample-transfeblem. We first derived a finite-
sample analysis of the performance of a simple transferighgo which includes all the source
samples into the training set used to solve a given targlkt tasthe best of our knowledge, this
is the first theoretical result for a transfer algorithm in Biowing the potential benefit of transfer
over single-task learning. When the designer has direesscto the source tasks, we introduced
an adaptive algorithm which selects the proportion of sediasks so as to minimize the bias due
to the use of source samples. Finally, we considered a maléenhing setting where the number
of samples available in each source task is limited and atfd8etween the amount of transferred
samples and the similarity between source and target tasiks Ine solved. For this setting, we
proposed a principled adaptive algorithm. Finally, we réjpodetailed experimental analysis on a
simple problem which confirms and supports the theoretiodlrigs.
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