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Abstract

A high order optimal control strategy is proposed in this work, based on the

use of differential algebraic techniques. In the frame of orbital mechanics,

differential algebra allows to represent, by high order Taylor polynomials, the

dependency of the spacecraft state on initial conditions and environmental

parameters. The resulting polynomials can be manipulated to obtain the

high order expansion of the solution of two-point boundary value problems.

Since the optimal control problem can be reduced to a two-point bound-

ary value problem, differential algebra is used to compute the high order

expansion of the solution of the optimal control problem about a reference

trajectory. Whenever perturbations in the nominal conditions occur, new

optimal control laws for perturbed initial and final states are obtained by

the mere evaluation of polynomials. The performances of the method are as-

sessed on lunar landing, rendezvous maneuvers, and a low-thrust Earth-Mars
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transfer.
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1. Introduction

Nominal space trajectories are usually designed by solving optimal con-

trol problems that minimize the control action to meet mission constraints.

However, uncertainties and disturbances affect the spacecraft dynamics in

real scenarios. Moreover, state identification is influenced by navigation er-

rors; consequently, the spacecraft state is only known with a given accuracy.

Thus, after the nominal solution is computed, an optimal feedback control

strategy that assures the satisfaction of mission constraints must be imple-

mented. More specifically, given an initial deviation of the spacecraft state

from its nominal value or a perturbation on the nominal final target con-

ditions, the optimal control aims at canceling the effects of such errors by

correcting the nominal control law, while minimizing propellant consump-

tion.

Optimal feedback control was originally developed for linear systems. In

linear optimal control theory, the system is assumed linear and the feedback

controller is constrained to be linear with respect to its input [1]. The tech-

nological challenges imposed by the recent advances in aerospace engineering

are demanding stringent accuracy requirements and cost reduction for the

control of nonlinear systems. Unfortunately, the accuracy of linearized dy-

namics can drop off rapidly in nonlinear aerospace applications, affecting the

performances of linear optimal controller. Thus, nonlinear optimal feedback
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control theory has gained interest in the past decades.

Various aspects of nonlinear optimal control have been addressed. Sev-

eral techniques are available for solving control-affine problems, which are

mainly based on dynamic programming or calculus of variations. In Bell-

mans dynamic programming, the problem is approached by reducing it to

solving the nonlinear first-order partial differential Hamilton-Jacobi-Bellman

(HJB) equation [2]. The solution to the HJB equation determines the opti-

mal feedback control, but its use is very intricate in practical problems. An

alternative approach is based on the calculus of variations and Pontryagins

maximum principle, which show the Hamiltonian nature of the second or-

der information of the optimal control problem [3]. Within this frame, the

optimal control problem is reduced to a two-point boundary value problem

(TPBVP) that is solved, in general, by successive approximation of the opti-

mal control input using iterative numerical techniques. However, the solution

determined is only valid for one set of boundary conditions, which prevents

its immediate use for feedback control.

The complexity of finding the exact solution of the HJB equation has

motivated research for approximated methods that are able to supply sub-

optimal laws for the control of nonlinear systems about reference solutions.

In Bryson and Ho [2], an approximating technique is presented, based on a

second order expansion of the augmented performance index of the optimal

control problem, which is referred to as neighboring extremal paths com-

putation. The State-dependent Riccati equation (SDRE) control method is

among the more attractive tools to obtain such approximate solutions. It

was originally proposed by Pearson [4], and Wernli and Cook [5], and then

3



described in details by Mracek and Cloutier [6], and Beeler [7]. This method

involves manipulating the governing dynamic equations into a pseudo-linear

non-unique form in which system matrices are given as a function of the cur-

rent state and minimizing a quadratic-like performance index. An algebraic

Riccati equation using the system matrices is then solved repetitivily online

to give the optimal control law. Thus, the SDRE approach might turn out

to be computationally expensive when the solution of the Riccati equation

is not properly managed. This can prevent its use for real-time optimal con-

trol. A significant computational advantage can be obtained with the θ−D

technique [8]. Similarly to SDRE, the θ −D technique relies on an approxi-

mate solution to the HJB equation. However, it offers a great computational

advantage for onboard implementation without solving the Riccati equation

repetitively at every instant.

Recent advances have been made in the frame of variational approach to

optimal control theory. Second order methods were introduced by Bullock

[9] and then extended by Olympio [10] to space trajectory design. Based

on the Hamiltonian nature of the optimal control problem, the method com-

pute a linear control update iteratively using the gradient of the Hamiltonian

function. A higher order approach was introduced by Park and Scheeres [11]

through the theory of canonical transformations. More specifically, canonical

transformations solve boundary value problems between Hamiltonian coor-

dinates and momenta for a single flow field. Thus, based on the reduction of

the optimal control problem to an equivalent boundary value problem, they

can be effectively used to solve the optimal control problem analytically as a

function of the boundary conditions, which is instrumental to optimal feed-
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back control. The main difficulty of this approach is finding the generating

functions via the solution of the Hamilton-Jacobi equation. This problem

was solved by Park and Scheeres by expanding the generating function in

power series of its arguments.

Differential algebraic (DA) techniques [12] are used in this work to de-

velop an alternative approach to the generating function method. Differ-

ential algebra serves the purpose of computing the derivatives of functions

in a computer environment. More specifically, by substituting the classical

implementation of real algebra with the implementation of a new algebra of

Taylor polynomials, it expands any function f of v variables into its Taylor

series up to an arbitrary order n. DA techniques are used in this work to

represent the dependency of the spacecraft state on the initial conditions by

means of high order Taylor polynomials. Then, the resulting Taylor polyno-

mials are manipulated to impose the boundary and optimality conditions of

the optimal control problem. This enables the expansion of the solution of

the optimal control problem with respect to the initial conditions about an

available reference trajectory. The resulting Taylor polynomials can be eval-

uated for new solutions of the optimal control problem, so avoiding repetitive

runs of classical iterative procedures.

The paper is organized as follows. A brief introduction to differential

algebra is given in Sect. 2. Being at the basis of the proposed methods,

the possibility of expanding the flow of ODEs is presented in Sect. 3. The

optimal control problem and the algorithm for the high order expansion of its

solution are illustrated in Sect. 4 and Sect. 5, respectively. The application

of the algorithm to a rendezvous maneuver, a lunar landing, and a low-thrust

5



Earth-Mars transfer problem is addressed in Sect. 6.

2. Differential Algebra

DA techniques find their origin in the attempt to solve analytical prob-

lems by an algebraic approach [12]. Historically, the treatment of functions

in numerics has been based on the treatment of numbers, and the classical

numerical algorithms are based on the mere evaluation of functions at spe-

cific points. DA techniques are based on the observation that it is possible to

extract more information on a function rather than its mere values. The ba-

sic idea is to bring the treatment of functions and the operations on them to

the computer environment in a similar way as the treatment of real numbers.

Referring to Fig. 1, consider two real numbers a and b. Their transformation

into the floating point representation, a and b respectively, is performed to

operate on them in a computer environment. Then, given any operation ×

in the set of real numbers, an adjoint operation ⊗ is defined in the set of FP

numbers such that the diagram in figure commutes. (The diagram commutes

approximately in practice, due to truncation errors.) Consequently, trans-

forming the real numbers a and b in their FP representation and operating

on them in the set of FP numbers returns the same result as carrying out

the operation in the set of real numbers and then transforming the achieved

result in its FP representation. In a similar way, suppose two sufficiently

regular functions f and g are given. In the framework of differential algebra,

the computer operates on them using their Taylor series expansions, F and

G respectively. Therefore, the transformation of real numbers in their FP

representation is now substituted by the extraction of the Taylor expansions
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a, b ∈ R a, b ∈ FP

a× b

× ⊗

a⊗ b

T

T

f, g

f × g

× ⊗

T

T

F,G

F ⊗G

Figure 1: Analogy between the floating point representation of real numbers in a computer

environment (left figure) and the introduction of the algebra of Taylor polynomials in the

differential algebraic framework (right figure).

of f and g. For each operation in the function space, an adjoint operation

in the space of Taylor polynomials is defined such that the corresponding

diagram commutes. Extracting the Taylor expansions of f and g and op-

erating on them in the function space returns the same result as operating

on f and g in the original space and then computing the Taylor expansion

of the resulting function. The straightforward implementation of differential

algebra in a computer allows to compute the Taylor coefficients of a function

up to a specified order n, along with the function evaluation, with a fixed

amount of effort. The Taylor coefficients of order n for sums and product of

functions, as well as scalar products with reals, can be computed from those

of summands and factors; therefore, the set of equivalence classes of func-

tions can be endowed with well-defined operations, leading to the so-called

truncated power series algebra [13].

Similarly to the algorithms for floating point arithmetic, the algorithm for

functions followed, including methods to perform composition of functions,

to invert them, to solve nonlinear systems explicitly, and to treat common

elementary functions [12]. In addition to these algebraic operations, also
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the analytic operations of differentiation and integration are introduced, so

finalizing the definition of the DA structure. The differential algebra sketched

in this section was implemented by Berz and Makino in the software COSY-

Infinity [14].

3. High Order Expansion of ODE Flow

The differential algebra introduced in the previous section allows to com-

pute the derivatives of any function f of v variables up to an arbitrary order

n, along with the function evaluation. This has an important consequence

when the numerical integration of an ODE is performed by means of an

arbitrary integration scheme. Any explicit integration scheme is based on

algebraic operations, involving the evaluations of the ODE right hand side

at several integration points. Therefore, carrying out all the evaluations in

the DA framework allows differential algebra to compute the arbitrary order

expansion of the flow of a general ODE initial value problem.

Without loss of generality, consider the scalar initial value problem






ẋ = f(x)

x(ti) = xi.
(1)

Replace the point initial condition xi with its DA representative [xi], i.e.,

consider the variation [xi] = x0

i + δxi, where x0

i is the reference point for

the expansion. If all the operations of the numerical integration scheme are

carried out in the framework of differential algebra, the Taylor expansion of

the solution with respect to the initial condition is obtained at each step. As

an example, consider the forward Euler scheme

xk = xk−1 + ∆t · f(xk−1) (2)
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and analyze the first integration step; i.e.,

x1 = x0 + ∆t · f(x0), (3)

where x0 = xi. Substitute the initial value with [x0] = [xi] = x0

i + δxi in Eq.

(3) for

[x1] = [x0] + ∆t · f([x0]). (4)

If the function f is evaluated in the DA framework, the output of the first

step, [x1], is the Taylor expansion of the solution x1 at t1 with respect to the

initial condition about the reference point x0

i . The previous procedure can be

repeated for the subsequent steps until the last integration step is reached.

The result at the final step is the n-th order Taylor expansion of the flow

of the initial value problem (1) at the final time tf . Thus, the expansion of

the flow of a dynamical system can be computed up to order n with a fixed

amount of effort.

4. Optimal Control Problem

Suppose the spacecraft moves under the general dynamics

ẋ = f (x(t),u(t), t), (5)

where x = {x1, . . . , xv} is the state vector and u = {x1, . . . , xm} is the

control vector (m ≤ v). The optimal control problem aims at finding the m

control functions u(t) that minimize the performance index

J = ϕ(xf , tf ) +

∫ tf

ti

L(x(t),u(t), t) dt. (6)
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The initial state vector, xi, and the final state vector, xf , are not necessarily

fixed, as well as the final time tf . In addition to the previous statements,

boundary and path constraints can be imposed:

ψ(xf , tf) = 0 and C(u(t), t) ≤ 0, (7)

respectively, where ψ = {ψ1, . . . , ψp} and C = {C1, . . . , Cq}.

The above problem can be solved by reformulating it as a boundary value

problem on a set of differential algebraic equations (DAEs) [2]. To this aim,

the dynamics and constraints are added to the performance index J to form

the so-called augmented performance index

J̄ = ϕ(xf , tf) + νT ψ(xf , tf)+

+
∫ tf

ti
[L(x,u, t) + λT (f (x,u, t) − ẋ) + µT C(u, t)]dt,

(8)

where two kind of Lagrange multipliers are introduced:

• a p-dimensional vector of constants, ν, for the final constraints in (7);

• an n-dimensional and a q-dimensional vector of functions λ and µ for

the dynamics in (5) and the path constraints in (7), which are usually

referred to as adjoint or costate variables.

The optimal control problem is then reduced to identifying a stationary point

of the augmented performance index J̄ . This is achieved by imposing the

gradient of J̄ to be zero with respect to all optimization variables; specifically,

the state vector x and the control vector u, the Lagrange multipliers ν and

the costate variables λ and µ, the unknown components of the initial state

xi and the final state xf , and the final time tf . In particular, the optimality
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with respect to λ and x leads to the following relations:

∂J̄

∂λ
= 0 ⇒ ẋ = f (x,u, t)

∂J̄

∂x
= 0 ⇒ λ̇ = −

(

∂f

∂x

)T

λ−

(

∂L

∂x

)T

,

(9)

whereas ∂J̄/∂u = 0 yields

(

∂L

∂u

)T

+

(

∂f

∂u

)T

λ+

(

∂C

∂u

)T

µ = 0. (10)

Equations (9) and (10) together are usually referred to as Euler-Lagrange

equations. It is worth observing that the Euler-Lagrange equations form a

system of DAEs: the differential part is represented by Eq. (9), which defines

the dynamics for the state variables x and the costate variables λ; the role

of the algebraic constraint is played by Eq. (10). The previous system must

be coupled with the boundary conditions ensuing from the optimality condi-

tions with respect to the remaining optimization variables (see [2] for further

details). The optimal control problem is therefore solved as a boundary value

problem on a system of DAEs.

A particular optimal control problem is addressed in this work. The

dynamics is supposed to be affine in the control vector u; i.e.

ẋ = f (x,u, t) = f̃ (x, t) + B(x)u, (11)

where B(x) is a v×m matrix, whose elements do not depend on the controls.

Moreover the control functions are sought to minimize the performance index

J =
1

2

∫ tf

ti

uTu dt (12)
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and no path constraints are imposed. Based on the previous hypotheses, Eq.

(10) assumes the simpler form

u+ BT (x)λ = 0. (13)

Equation (13) supplies an explicit relation between the control functions u

and the costate variables λ, which can be substituted in Eq. (9). The original

system of DAEs of the Euler-Lagrange equations translates into the system

of ODEs

ẋ = f̃ (x, t) − B(x) BT (x)λ

λ̇ = −

(

∂f (x,λ, t)

∂x

)T

λ.
(14)

Therefore, the original optimal control problem reduces to a two-point bound-

ary value problem on the set of ODEs (14), where boundary conditions are

imposed on the initial and final values of the state and costate variables,

depending on the optimal control problem at hand.

5. High Order Optimal Feedback

Suppose the problem of transferring a spacecraft from a fixed initial state

to a fixed final state with fixed ti and tf is of interest; i.e., boundary conditions

assume the simpler form






xi = xi

xf = xf .
(15)

The optimal control problem is then reduced to the problem of solving Eq.

(14) subject to the boundary conditions in Eq. (15).

Several techniques are available in the literature to solve the previous

problem for assigned xi and xf , like the simple and multiple shooting schemes
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or difference methods [15]. This means that, given xi and xf , the previous

techniques are applied to compute the initial values of the costate variables

that solve the TPBVP, which will be indicated as λ0

i . The solution is then

uniquely identified by the initial state and costate vectors, xi and λ0

i respec-

tively.

Assume now a reference solution λ0

i is available and suppose the Taylor

expansion of the solution of the optimal control problem with respect to

the initial state and the final state is of interest. Differential algebra can

effectively serve this purpose. To this aim, initialize both the initial state xi

and the initial costate λi as DA variables. This means the variations

[xi] = xi + δxi

[λi] = λ0

i + δλi

(16)

with respect to the fixed initial state xi and the reference solution λ0

i are

considered.

Using the techniques introduced in Sect. 3, the solution of Eq. (14) at

tf is expanded with respect to the initial state and costate vectors. More

specifically, the dependence of the final state and costate vectors on their

initial values are obtained in terms of the high order polynomial map





[xf ]

[λf ]



 =





xf + δxf

λ0

f + δλf



 =





xf

λ0

f



+





Mxf

Mλf









δxi

δλi



 , (17)

where xf and λ0

f are the constant part of the map (i.e., the reference solution

flowing from xi and λ0

i under the ODEs (14)), whereas all higher order terms

are included in Mxf
and Mλf

.
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Subtract now the constant part from Eq. (17) for




δxf

δλf



 =





Mxf

Mλf









δxi

δλi



 . (18)

Then, extract Mxf
from Eq. (18) and consider the map




δxf

δxi



 =





Mxf

Ixi









δxi

δλi



 , (19)

which is built by concatenating Mxf
with the identity map for δxi, Ixi

.

Using inversion techniques for high order polynomials [12], the map in

Eq. (19) is inverted to obtain




δxi

δλi



 =





Mxf

Ixi





−1



δxf

δxi



 . (20)

Consider now the components of map (20) for δλi, which will be indicated

as

δλi = Mλi
(δxf , δxi). (21)

The polynomials in (21) are the arbitrary order Taylor expansion of the

solution of the optimal control problem with respect to the initial and final

states. More specifically, given any perturbation δxi and δxf of the initial

and final state from their reference values xi and xf , the mere evaluation of

the polynomials in Eq. (21) delivers the high order correction δλi to λ0

i to

obtain the corresponding solution of the optimal control problem from the

perturbed initial state xi + δxi to the perturbed final state xf + δxf .

It is worth observing that a possible alternative approach to address the

previous problem consists in solving the TPBVP for the new solution λi us-

ing classical techniques. The main disadvantage of this approach is that a
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new TPBVP must be solved for each displaced initial and final states. This

involves running through the iterative procedures of the classical TPBVP

solvers. Each iterative procedure is able to deliver one solution, whose valid-

ity is limited to one specific δxi and δxf . Consequently, the classical TPBVP

solvers should be applied for each new δxi and δxf . The Taylor expansion

of the optimal control problem supplies an effective alternative method to

overcome this issue. First of all, analytical information is gained, which can

supply a valuable insight on the underlying dynamics. Moreover, for any δxi

and δxf , the same polynomial map is evaluated to compute the optimal con-

trol law connecting the displaced initial state to the displaced target state.

This means that the high order map in Eq. (21) must be computed only

once for all possible offsets, and the optimal control laws are then obtained

through the evaluation of the same polynomials, so avoiding the use of it-

erative algorithms. Nevertheless, the polynomial relation between δλi, and

δxi and δxf given by Eq. (21) is accurate up to the order of the DA-based

computation.

6. Applications

The performances of the high order optimal feedback control method

introduced in Sect. 5 are investigated on three test cases: a rendezvous

maneuver, the landing of a probe on Moon’s surface, and a continuously pro-

pelled Earth-Mars transfer. The effectiveness of the control corrections, as

well as the accuracy of the polynomial expansions, and the computational

efficiency of the method are assessed. The three test cases favor the illustra-

tion of the performances of the method and have been taken from relevant
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literature [17]. Large perturbations on boundary conditions are considered

to magnify nonlinearities and properly compare the high order solutions with

those attained using classical nonlinear methods such as simple shooting.

As mentioned above, the accuracy of map (21) depends on the compu-

tation order. Within the radius of convergence of the Taylor expansion, the

order necessary to meet a given accuracy level can be selected by assessing

the error of the polynomial approximation. The error of a Taylor expansion

of order n over the set of all admissible perturbations can be estimated by

computing the range of the polynomial of all n + 1-st order terms over the

same set. This can be done using polynomial bounders available in COSY-

Infinity [14]. The same technique can be adopted to estimate the level of

uncertainty that can be managed for a given expansion order and desired

accuracy. This procedure was adopted to select the expansion order used in

the lunar landing test case. On the other hand, the dependency of the error

on the expansion order is studied in the rendezvous and Earth-Mars transfer

test cases.

6.1. Rendezvous Maneuver

A rendezvous maneuver is analyzed as the first test case for the high

order optimal feedback technique introduced in Sect. 5. The study of this

problem is motivated by the work of Park, Guibout and Scheeres based on the

alternative approach of generating functions [17, 11]. The space rendezvous is

a maneuver which takes two spacecraft, originally moving on different orbits,

to the same final reference orbit, matching their positions and velocities.

Referring to Fig. 2, this rather general case can be focused on the problem of

a spacecraft (referred to as chaser) targeting an object (referred to as target)
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chaser

target

x

y

chaser ≡ target

x

y

⇒⇒

titf

Figure 2: Rendezvous maneuver.

on its orbit.

A continuously propelled rendezvous maneuver is considered. The target

is supposed to move on a circular orbit of radius R, whereas the chaser is

assumed to be subject to a controlled two-body dynamics. In this framework,

the rendezvous maneuver is classically designed in a non-inertial reference

frame that is centered at the target position, with x-axis constantly aligned

with the orbital radius, y-axis directed towards the target orbital velocity,

and z-axis chosen to form a right-handed coordinate system with x and y

(see Fig. 2). Thus, the non-inertial reference frame rotates along the circular

target orbit with constant angular velocity ω and the chaser is subject to the

relative dynamics

ẋ = vx, ẏ = vy, ż = vz

v̇x = 2ẏ − (1 + x)(
1

r3
− 1) + ux

v̇y = −2ẋ− y(
1

r3
− 1) + uy

v̇z = −
1

r3
z + uz ,

(22)

where lengths and time are normalized using R and 1/ω, respectively; u =

(ux, uy, uz) is the control vector; and r =
√

(1 + x)2 + y2 + z2.
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The chaser is supposed to have initial offsets from the target in both

position and velocity, which are denoted by δri and δvi respectively. The

optimal control problem is solved to design the control law u that takes the

chaser from its displaced initial state to the fixed target state (i.e., to the

origin of the rotating frame with zero velocity) in a given time tf − ti. The

relative dynamics (22) is affine in the control vector u. Thus, the optimal

control problem can be reduced to a TPBVP with fixed initial and final states

for the chaser.

First, a reference solution of the optimal control problem must be iden-

tified before applying the high order DA-based technique. To this aim, it is

worth observing that the relative dynamics in Eq. (22) satisfies f (x=0,u=

0, t )=0, with x = (x, y, z, vx, vy, vz). This means that x(t) = 0 and u(t) = 0

for any t is a trivial solution of the optimal control problem that is used as

reference solution for the high order expansion.

The performances of the high order optimal feedback control algorithm

are now investigated. The chaser is supposed to have a displaced initial po-

sition δri = (0.2, 0.2, 0) and a displaced initial velocity δvi = (0.1, 0.1, 0).

The rendezvous maneuver is designed to take the chaser to the target state

in 1 time unit. The exact solution of the optimal control problem is first

identified by solving the associated TPBVP using a simple shooting tech-

nique. The result is reported in Figs. 3-5 in terms of position, velocity, and

control profile, respectively. It is worth observing that the relative dynamics

in Eq. (22), together with Eq. (13), yields u = −λ4,5,6, so that λ4 = −ux,

λ5 = −uy, and λ6 = −uz. For the sake of completeness, Fig. 6 illustrates

the reference profile of the first two components of the costate vector, λ1,2.
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Figure 3: Rendezvous maneuver: position.
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Figure 4: Rendezvous maneuver: velocity.

Figures 3 and 4 show that the exact solution takes the chaser to the tar-

get state in the assigned time. The exact solution is then compared with the

trajectory, control, and costate profiles obtained using the DA-based optimal

feedback control algorithm introduced in Sect. 5, using different expansion

orders. As can be seen, the low accuracy of the 1-st order correction is sig-

nificantly improved using 4-th and 6-th order expansions. This is confirmed

in Figs. 7 and 8, which illustrate the profiles of the error of the DA-based

approximation with respect to the exact solution along the maneuver at dif-

ferent expansion orders. The error is computed as the norm of the difference

vector between the DA-based approximation of u and λ1,2,3, and their exact

counterparts.

As already mentioned in Sect. 5, the main advantage of the high order

optimal feedback control algorithm is that map (21) must be computed only

once for all possible offsets: for any initial offset of the chaser with respect

to the target, the same polynomial map is evaluated to compute the corre-

sponding optimal control law. Then, moving to the real scenario, once the
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Figure 5: Rendezvous: control.
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Figure 6: Rendezvous: λ1,2.
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Figure 7: Rendezvous: control error with

respect to the exact solution.
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Figure 8: Rendezvous: λ1,2,3 error with re-

spect to the exact solution.

offset is measured, the corresponding optimal control can be computed by

evaluating map (21) instead of using iterative techniques. This feature is

exploited in Fig. 9 and Fig. 10: a set of 20 perturbed positions distributed

over a circle of radius 0.2 in the rotating frame is selected. For each sample,

a 6-th order correction is computed using the polynomial map (21). Clearly,

the chaser is always moved to the origin of the reference frame.
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The advantages of the high order optimal feedback with respect to clas-

sical simple shooting is now assessed. The computational time required to

evaluate the 6-th order map (21) at all perturbed positions is 7.18 · 10−3 s

on a Intel Core i5 2.4 GHz, running Mac OS X 10.7.5. This value can be

compared with the time required to obtain the exact solution for all per-

turbed positions using classical simple shooting. Using ballistic motion to

compute the first guess for the initial costate vector, the iterative procedure

to solve the optimal control problem for all perturbed initial positions using

simple shooting takes 13.62 s on the same machine. Although more efficient

procedures might be used to identify first guesses for the initial costates,

the significant difference in computational time highlights the advantage of

high order optimal feedback control with respect to classical simple shooting.

The time required to compute the 6-th order map (21) is 5.75 s. However,

as mentioned above, it must be computed only once for all possible offsets,

which is performed offline.

The radius of convergence of the Taylor expansion is investigated in Figs.

11 and 12. More specifically, a radial displacement of the chaser initial po-

sition of the form δri = (r, 0, 0) is imposed, whereas the initial velocity is

set to its reference value (i.e., δvi = (0, 0, 0)). The error of the DA-based

approximation with respect to the exact solution is computed as the norm

of the difference vectors between the associated initial values of u and λ1,2,3.

The errors on u and λ1,2,3 are reported in Figs. 11 and 12 respectively, for

different expansion orders. As expected, the error of the DA-based approxi-

mation tends to increase with the distance r from the reference position. The

convergence radius can be estimated as the maximum r for which the error
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ries for initial positions lying on a circle of

radius 0.2.
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Figure 11: Rendezvous: error of the DA-

based approximation on the initial control

vs. distance from reference point.
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Figure 12: Rendezvous: error of the DA-

based approximation on the initial λ1,2,3 vs.

distance from reference point.

tends to decrease for increasing expansion orders. It can be approximated to

about 0.35 in this test case.
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6.2. Lunar Landing

The optimal feedback control of a probe landing on Moon’s South pole is

addressed in this section. The control profile is designed in the frame of the

controlled two-body problem. Referring to Fig. 13, the lander is supposed to

originally move on an elliptical polar descent orbit, taking it from an altitude

of 100 km (apocenter) to an altitude of 20 km (pericenter). The landing phase

is supposed to start at the pericenter of the descent orbit. Final conditions

are imposed to put the lander over Moon’s south pole at an altitude of 2 m,

with a downward velocity of 3 m/s, from which the final phase of the landing

maneuver is supposed to start. A Cartesian reference frame is selected to

describe the dynamics: the y-axis is aligned with Moon’s South pole; the x-

axis lies on Moon’s equatorial plane, pointing towards the orbital descending

node; the z-axis is selected to form a right-handed reference system. The

landing dynamics is described by the set of ODEs:

ṙ = v

v̇ = −
µ

r3
r + u,

(23)
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in which r and v are the probe position and velocity, respectively; r = ||r||;

µ is Moon’s gravitational parameter; and u is the control vector. As from

Eq. (23), the dynamics is affine in the control vector u. Thus, Eq. (14) holds

for the problem at hand and the optimal control problem is then reduced to

a TPBVP with fixed initial and final states for the landing probe.

A reference solution of the optimal control problem is first identified by

solving the resulting TPBVP. The initial time is chosen to be zero, whereas

the landing duration is set to 31 min. A simple shooting technique is used

to solve the TPBVP and to compute the reference trajectory reported in

Fig. 14. Figure 15 illustrates the corresponding reference control profile in

terms of histories of its components. Due to the symmetry of the problem,

the reference trajectory lies on the x-y plane. Similarly to the rendezvous

test case, within the dynamics of Eq. (23), Eq. (13) yields u = −λ4,5,6,

where λ4,5,6 are the last three components of the costate vector. Thus, Fig.

15 is also representative of the reference profile for λ4,5,6. For the sake of

completeness, Fig. 16 illustrates the reference profile of the remaining three

components of the costate vector, λ1,2,3, which can be shown to equal the

first derivative of the control profile [16].

The initial probe position and velocity, ri and vi respectively, are now

supposed to be affected by errors. The high order optimal feedback control

algorithm introduced in Sect. 5 is applied to optimally correct the control

law in order to reach the reference final state. More specifically, the reference

trajectory in Fig. 14 is used as reference solution for the Taylor expansions.

The algorithm is then applied to compute the polynomial map (21) for the

problem at hand using third order expansions. Thus, given any perturbation
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Figure 16: Lunar landing: reference λ1,2,3

profile.

δri and δvi, the polynomial map is evaluated by setting δxi = (δri, δvi) and

δxf = (0, 0). The corresponding optimal value of λi is computed.

The performances of the procedure are studied hereafter. A maximum

position error of 1 km and a maximum velocity error of 5 m/s are supposed to
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affect each component of the initial lander position and velocity, respectively.

The final dispersion at landing is then investigated. First of all, for the

sake of a more complete analysis, given any perturbed initial conditions,

no corrections to the nominal costate variables (and, consequently, to the

control) are applied. In particular, 100 samples are randomly generated

within the initial uncertainty box with uniform distribution. Each sample is

then propagated using the nominal guidance law. The resulting maximum

and minimum lander altitudes at each integration time are computed over the

propagated set. Figure 14 shows the resulting altitude dispersion throughout

landing. The figure illustrates how initial conditions corresponding to both

impacts on Moon’s surface (lower area of the strip) and trajectories moving

away from the landing site (higher area of the strip) are included in the initial

error box.

The high order optimal feedback is then applied. The third order cor-

rections are computed using Eq. (21): for the same random samples of Fig.

14, the errors on the initial state are computed and the map is evaluated to

correct the reference λ0

i . The resulting set of trajectories is reported again in

Fig. 14 for the sake of comparison. The corrected optimal control laws take

the probe to the final desired conditions and the resulting final dispersion is

drastically reduced. This is better illustrated in Figs. 17 and 18, where the

fulfillment of the requirements on the final state vector is investigated. For

each sample, the error of the corresponding trajectory with respect to the

reference one is evaluated in terms of displacements of the position and ve-

locity vectors from their reference values. More precisely, at each integration

time, the position and velocity errors are computed as maximum norms of
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Figure 17: Lunar landing: position error.
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Figure 18: Lunar landing: velocity error.

the associated difference vectors. Thus, the maximum position and velocity

errors are evaluated at each integration time over the propagated set. The

resulting curves are used to identify the areas reported in Figs. 17 and 18.

The maximum errors for the uncorrected reference control law (light grey) are

compared with those achievable using the corrected costate variables (dark

grey). Using the control corrections, the final position error is reduced to a

maximum value of about 0.5 · 10−1 m, to compare to a maximum value of

about 20 km without corrections. Similar results hold for the velocity error,

which is reduced to a maximum value of about 1 · 10−4 m/s instead of a

maximum value of 23 m/s. It is worth observing that, despite the small final

errors, the displacements along the maneuver turn out to be large. This is a

fair result, as constraints are imposed only on the final conditions.

The control corrections are analyzed in Fig. 19. For each component of

the control vector u, the maximum control correction is evaluated among the

random samples, and the resulting curves are reported in figure. A maximum

control correction of about 0.016 m/s2 is required for the given error box. The
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corrections.

same approach is used to assess the maximum corrections to the reference

values of λ1,2,3. The resulting profiles are reported in Fig. 20.

Despite the optimality of the feedback strategy, the value of the perfor-

mance index in Eq. (12), as well as fuel consumption, varies depending on

the control profiles. Table 1 compares the reference value of the performance

index with its minimum and maximum values assumed over all the samples.

The same comparison is carried out on the mass fraction

mf

mi

= exp

(

−

∫ tf

ti
‖u‖ dt

Isp g0

)

, (24)

where mi and mf are the initial and final probe mass, respectively; g0 is the

standard gravity; Isp is the specific impulse of the thrusters, which is assumed

to equal 317 s.

6.3. Earth-Mars Transfer

The last test problem concerns a low-thrust Earth-Mars transfer. The

transfer is designed in the frame of the controlled two-body problem. Con-
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Table 1: Lunar landing: performance index and mass fraction range over all samples.

Parameter Nom. value Min. value Max. value

Performance index [m2/s3] 1124.300 1122.828 1126.148

Mass fraction mf/mi 0.48126 0.48045 0.48210

sequently, the spacecraft motion is modeled in the inertial ecliptic reference

frame by the six first order ODEs

ẋ = vx, ẏ = vy, ż = vz

v̇x = −
µ

r3
x+ ux

v̇y = −
µ

r3
y + uy

v̇z = −
µ

r3
z + uz,

(25)

where r =
√

x2 + y2 + z2, µ is Sun’s gravitational parameter, u = {ux, ux, uz}

is the control acceleration. Boundary constraints are imposed at the begin-

ning and the end of the transfer. Specifically, the spacecraft is constrained to

leave the Earth with Earth’s velocity at time ti = 1213.789 MJD2000 and to

match Mars’ position and velocity at time tf , where the transfer time tf − ti

is set to 513.210 days. Similarly to the previous test cases, the dynamics (25)

is affine in the control. Thus, the optimal control problem can be reduced to

a TPBVP with fixed initial and final states.

A reference optimal transfer is first identified by solving the TPBVP with

a simple shooting technique. The resulting optimal transfer is illustrated in

Fig. 21 in terms of a two-dimensional projection of the optimal trajectory

on the ecliptic plane. The reference optimal control magnitude profile is

reported in Fig. 22.

29



−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x [AU]

y 
[A

U
]

SunMars

Earth

Figure 21: Reference optimal trajectory for

the Earth-Mars transfer problem.
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Figure 22: Reference optimal control for the

Earth-Mars transfer problem.

The problem of targeting a perturbed final state is now addressed. The

third order Taylor expansion of the solution of the optimal transfer problem

with respect to the final state is computed with the algorithm introduced in

Sect. 5 to obtain a third order polynomial map (21). Then, the final position

of the transfer is supposed to be affected by a maximum measurable error of

0.1 AU on each component. Thus, given any perturbation δrf of the final

position from its reference value, the polynomial map (21) is evaluated at

δxf = (δrf , 0) and δxi = (0, 0). The corresponding optimal value of λi is

computed. Then, starting from the reference initial spacecraft state and the

new initial costates, a forward point-wise integration of the state and costate

dynamics delivers the optimal control law and transfer trajectory from the

reference initial state to the perturbed final target position.

The performances of the procedure are studied hereafter. A maximum

perturbation of 0.1 AU is imposed on the x and y components of the final
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Figure 23: Earth-Mars transfer problem:

trajectories for third order corrections.

−1.9 −1.8 −1.7 −1.6 −1.5 −1.4

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x [AU]

y 
[A

U
]

Figure 24: Earth-Mars transfer problem:

detail of Fig. 23 at arrival.

target position. The boundary of the corresponding square is sampled uni-

formly. For each sample, the associated δrf is computed and the map (21)

is evaluated to obtain the new optimal trajectory. The resulting transfers

are reported in Fig. 23: starting from the reference initial position, the new

trajectories move away from the reference one along the transfer and reach

the imposed position on the final square (see Fig. 24 for a detail at arrival).

Figure 25 plots the resulting optimal control magnitude profiles. Once again

it is worth highlighting that, thanks to the third order optimal feedback, the

computation of each optimal control law is reduced to the evaluation of a

polynomial. Similarly to the lunar landing case, the perturbed solutions are

studied in Table 2 in terms of performance index and mass fraction mf/mi.

More specifically, the table compares their reference values with the minimum

and maximum values assumed over all the samples.

The dependence of the accuracy of the polynomial map (21) on the order
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Figure 25: Earth-Mars transfer problem: control magnitude profiles resulting from third

order corrections.

Table 2: Earth-Mars transfer problem: performance index and mass fraction range over

all samples.

Parameter Nom. value Min. value Max. value

Performance index [m2/s3] 1.48390·1013 1.43055·1013 2.80070·1013

Mass fraction mf/mi 0.80655 0.74538 0.81984

is investigated in Fig. 26, Fig. 27, and Fig. 28. More specifically, the imposed

square at arrival is compared with the actual final positions obtained with

first, second, and third order control corrections, respectively. The figure

shows the evident inaccuracy of first order corrections, which are typical of

classical linear feedback control algorithms. Higher order corrections drasti-

cally reduce the final error.
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Figure 26: Comparison between imposed

square at arrival and actual final positions

from first order corrections.
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Figure 27: Comparison between imposed

square at arrival and actual final positions

from second order corrections.
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Figure 28: Comparison between imposed square at arrival and actual final positions from

third order corrections.

7. Conclusion

A method for the computation of optimal feedback control laws based

on differential algebra has been introduced, with applications to lunar land-

ing, rendezvous maneuvers, and Earth-Mars transfers. The method relies
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on the high order expansion of the solution of the optimal control problem

about a reference trajectory. Thus, it improves the results of classical tech-

niques based on the linearization of the dynamics. Moreover, the method

reduces the computation of new optimal control laws to the mere evaluation

of polynomials. This is a valuable advantage over the conventional nonlinear

optimal control strategies, which are mainly based on iterative procedures.

However, the method is not free of limitations. More specifically, it is only

applicable to the class of optimal control problems in which the system equa-

tions are affine in the control vector. In addition, it can not include control

saturation constraints in the version presented in this paper. Finally, this

work focused on the problem of transferring a spacecraft from an initial fixed

state to a final fixed state, thus omitting the imposition of soft constraints on

boundary conditions. Ongoing work is focused to address such limitations.
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