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I. INTRODUCTION

D IGITAL phase-locked loops (DPLL) are recently finding
new applications into high-demanding contexts such as

frequency synthesis for communications and clock generation 
for data converters, where their performances may become 
competitive against those of their analog counterparts [1]–[5].
DPLLs entail the advantage of smaller area occupation thanks 
to their digital loop filter which scales down with new tech-
nology nodes and whose hardware can be easily adapted to
different needs by soft programming. The bottleneck of DPLLs 
is typically represented by design complexity and power con-
sumption of time/digital converters (TDCs), needed as phase
detectors. This limitation can be overcome by borrowing the 
use of single-bit (or bang-bang) phase detection from the field 
of clock-and-data-recovery applications [6].
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The strong nonlinearity of the phase detector complicates
significantly the analysis and design of bang-bang PLLs (BB-
PLLs). The oscillation period of the output signal is affected by
a quantization error introduced by the concurrent presence of the
bang-bang coarse quantization and the finite resolution of the
digitally-controlled oscillator (DCO).When period quantization
is much larger than random-noise fluctuations, the BBPLL vari-
ables tend to describe periodic or quasi-periodic orbits in the
state space. This behavior results into unwanted spur tones of
relevant peaking that deteriorate the output spectrum and in-
crease output jitter [7]–[10]. In principle, spur tones can be re-
duced or eliminated at all by progressively increasing the DCO
resolution and then exploiting some noise source of the PLL as
dithering signal. This concept has been quantitatively analyzed
in [11], where the component of DCO phase noise was
considered as dithering source.
However, achieving such a fine DCO period (or frequency)

resolution is extremely critical in practice and is paid heavily in
terms of larger area occupation, higher power consumption and
worse linearity. A more effective approach consists in relaxing
DCO granularity and adding a down-scaling factor and a quan-
tizer (typically a modulator) between the loop filter and the
DCO. This digital operation allows reducing the jitter induced
by the bang-bang coarse quantization, but it introduces a second
source of quantization noise. Although conventionally adopted
in the design of digital PLLs [12], the impact of this solution
on the generation of limit cycles in a bang-bang digital PLL has
never been analyzed. The analysis conducted in [10], which ac-
counts for both sources of quantization, allows predicting the
frequency of the limit cycle, but it is not suitable to estimate its
magnitude.
A second issue is related to the spectral content of DCO phase

noise. Accounting for just the component of phase noise
as in [11] is not realistic since especially in scaled CMOS pro-
cesses it exhibits a large spectral component which is due
to the up conversion of flicker noise sources. An analysis of
jitter which accounts for the actual shape of DCO phase noise
is lacking.
To address these gaps in the state-of-the-art theory of BB-

PLLs, we present in this paper a comprehensive jitter analysis
that, for the first time, considers (i) the presence of the addi-
tional quantization of the DCO and (ii) the actual spectral shape
of DCO phase noise. Thus, the following novel contributions
are provided over existing literature: (i) the derivation of closed-
form expressions for the quantization-induced jitter under mul-
tiple quantizations; (ii) the evaluation of random-noise-induced
jitter including flicker noise; (iii) the proof that an optimal set-



Fig. 1. Block diagram of a second-order digital bang-bang PLL.

ting of the loop parameters exists that eliminates spur tones
while minimizing total jitter; (iv) the demonstration of the pro-
posed design methodology in a practical BBPLL, fabricated in
a 65-nm CMOS process.
What remains of this paper is organized as follows: In

Section II, the analysis of quantization noise in first- and
second-order BBPLLs is first recalled, then extended to loops
with additional quantizations and relaxed DCO resolutions and
validated via numerical simulations. The presence of random
noise within the loop is taken into account in Section III,
where a closed-form expression of total jitter as a function of
noise and loop parameters is provided. Jitter minimization is
elucidated in Section IV, while Section V shows the practical
application of the proposed theory to the design of a 320-MHz
bang-bang PLL. The measured performance of the designed
PLL is reported in Section VI. Finally, conclusions are drawn
in Section VII.

II. QUANTIZATION-INDUCED JITTER

In the first subsection, we shortly review the basic results on
BBPLLs, whereas we present the novel analysis accounting for
DCO quantization in the remainder of this section.

A. Second-Order Digital Bang-Bang PLL

The block diagram of a second-order BBPLL in its simplest
form is shown in Fig. 1. The distinct feature of BBPLLs over
conventional digital PLLs [12] is the use of the binary phase
detector (BPD), which provides an indication of the phase dif-
ference between the reference clock and the feedback clock in
a binary form or in other words with 1-bit resolution.
In practice, the BPD compares the rising edges of the refer-

ence clock (whose time instants can referred to as ) with those
of the divided clock (whose time instants can be referred to as
) and produces a binary time-error information . If the di-

vided clock leads the reference, is mapped to a 1, otherwise
it is mapped to a 1. Mathematically, is given by ,
where the time error is . The hard nonlinearity in-
troduced by the BPD makes the loop behavior inevitably non-
linear.
The BPD output is fed to a digital loop filter (DLF), which

consists of a proportional and of an integral path with gain co-
efficient and , respectively. Pipeline stages that may be intro-
duced in the actual implementation of the filter are modeled by
the block, being the number of reference clock delays.
Loop stability necessitates that the proportional path has a much
higher gain than the integral path (i.e., ) and that, as
loop latency is increased, the ratio must be increased. As

it will be derived in the following, a value of equal to 32
guarantees good stability margin for loop latency .
The filter output controls the frequency of a digitally-con-

trolled oscillator (DCO); this frequency is divided by and the
resulting signal is fed back to the BPD. The DCO can be mod-
eled as a linear block that provides a clock signal with a period
which is given by

(1)

where is free-running period of the DCO and is the
sensitivity of the DCO period.
In practice, being the DCO a digital-to-analog converter from

its input digital word to its period , is the weight of the
least-significant bit (LSB) of the converter. In order to prevent
the DCO to add another quantization error into the loop, the
parameters of the loop filter ( and ) must be chosen so that
the minimum increment/decrement of the DCO input word
is 1. This occurs for and , where
guarantees thus stable loop for latency .
At the -th reference cycle, the time occurrence of the

DCO rising edges is the accumulation of the period or it is
equivalently given by the following finite-difference equation

(2)

where is the division factor of the feedback divider.
Assuming no latency of the frequency divider, the time oc-

currence of the rising edges of the divider output is identical
to . Hence, the time error at the BPD input is given by

(3)

where is the difference between the reference
clock period and the DCO free-running period multiplied by .
In this system, we are interested in deriving the expression of

the absolute jitter , which is given by the standard deviation of
the time occurrences of the output edges with respect to those
of an ideal clock. Neglecting the jitter of the reference clock,
this jitter coincides with the standard deviation of the delay
between the two inputs of the BPD, i.e.,

(4)

In the ideal case of no random noise source in the system, the
time error varies periodically or in other words the BBPLL
exhibits a limit cycle, as it happens in any quantized system.
This phenomenon can be described easily in the case of a

first-order system (i.e., ), with a zero-latency loop filter
(i.e., ) [9]. In this case, has only two possible values
, and, in order for the PLL to reach lock, must be chosen

in the interval . If , the filter output
is equal to and the increment of the time error given

by (3) is . Thus, reaches its maximum value
at when .

Similarly, the minimum (negative) value is equal to
, which is reached at when .

The resulting peak-to-peak value of is therefore given by

(5)



Fig. 2. Second-order bang-bang PLL with down-scaling of the digital filter
output and quantization.

If the ratio is assumed to be irrational,
is uniformly distributed over the interval.

Thus, the standard deviation of and in turn the PLL jitter
component associated to quantization are given by

(6)

The latter result can be extended to the second-order BBPLL
for any latency . Assuming and taking an irra-
tional , it can be shown that the peak-to-peak value of the
time error is equal to and its stan-
dard deviation is [9]

(7)

Equation (7) reveals that DCO frequency granularity pro-
duces quantization noise and that the larger is the LSB of the
DCO , the larger is the standard deviation of the resulting
quantization noise at the input of the BPD and at the output of
the PLL. Additionally, (7) suggests that quantization noise in-
creases as , a parameter which cannot be reduced below a cer-
tain value for loop stability. Thus, the minimum achievable
jitter related to quantization noise is obtained by substituting
with in (7).

B. BBPLL With Down-Scaling and Quantizer

TheBBPLL schematic in Fig. 2 relaxes DCO resolutionwhile
maintaining same jitter and stability margin (i.e., same ).
The LSB of the DCO is scaled up by a factor with respect
to the standard BBPLL in Fig. 1. This new value of the LSB
can be denoted as . Concurrently, the filter output is
scaled down by via a digital shift operation and quantized
by means of a quantizer , so that the minimum increment/
decrement of the DCO input word is still 1.
For analogy to the quantization introduced by the BPD, the

block can be implemented as a mid-rise quantizer, whose
input/output relationship is

(8)

Starting our analysis from the first-order-loop case
with zero latency , the quantizer input toggles between
two possible values, i.e. .
If we first consider the case for , the quantizer

output given from (8) will toggle between 0.5 and 0.5 (or be-
tween two adjacent output levels, in a second-order loop). The
peak-to-peak in this case can be derived, following the same
reasoning used previously in the plain loop, i.e.,

(9)

For a uniformly-distributed , the standard deviation is
given by

(10)

Similarly to the previous case, the latter result can be ex-
tended to the general case of the second-order loop and with any
loop latency by modifying the expression of the peak-to-peak
deviation to

(11)

and the resulting output jitter is therefore

(12)

If we now consider the other case for , the quantizer
output will span over a range wider than 0.5. Therefore, for
very large values of , the presence of the quantization block
can be neglected, thus falling back to the case of the plain

system. The standard deviation of associated to the quanti-
zation of the DCO can be therefore approximated as

(13)

In general, for any value, the jitter will be given summing
quadratically the two contributions in (12) and (13), i.e.,

(14)

The modified and the plain loops can be compared each other
by calculating the ratio of the jitter of the modified system
given by (14), (12), (13) and the minimum jitter of the plain
BBPLL given by (7) with , i.e.,

(15)

The latter equation shows that the same absolute jitter as in
the plain case can be achieved, if the second term in (15) is
negligible, i.e. if . For instance, if and if the
DCO LSB is increased by a factor , worsens by only
10% over . Thus, a negligible degradation of jitter allows us
to save up to about 4 equivalent bits in the DCO.



Fig. 3. Second-order digital bang-bang PLL with down-scaling of the digital
filter output and first-order modulator.

C. BBPLL With Down-Scaling and Modulator

A second modified scheme of BBPLL which allows us to fur-
ther relax DCO intrinsic resolution is shown in Fig. 3. It is ob-
tained by employing an up-sampled first-order modulator
in place of the mid-rise quantizer used in the previous case. The
up-sampling of the modulator input is performed at the max-
imum rate available in the system, that is the output clock rate.
The quantizer block within the modulator is assumed to
have the same characteristic as in (8).
Similarly to the previous case, the weight of the LSB of the

DCO is scaled up by , with respect to the DCO LSB
of the plain system, i.e. . At the same time, the filter
output is scaled down by the same factor and quantized
by means of the digital , so that the minimum increment/
decrement of the DCO input word is 1.
In this system, the finite-difference equation in (3) is modified

as follows

(16)

to take into account the accumulation of the up-sampled
performed by the DCO. The main implication of (16) is that
the time delay measured by the BPD after one reference-clock
cycle depends on the decimated moving average of the
modulator output [13]. This operation is also known as accu-
mulate-and-dump.
If we first consider the case for , we fall again

back to the case of the plain loop system. In fact, under this
condition, the output of the modulator averaged over the
-th reference cycle (i.e. samples of output)

(17)

is equal to its input, that is . Thus, following the same rea-
soning of the case of the plain loop, we obtain the following ex-
pression of the peak-to-peak component associated to DCO
quantization

(18)

and its standard deviation

(19)

Fig. 4. Output of modulator over two reference clock periods.

Fig. 5. BPD characteristic and evolution of the time error at BPD input
over two reference clock periods starting from .

If we now consider the case for , the output of the
modulator averaged over a single reference cycle

cannot equal its input. It equals the input value , only if it is
averaged over a certain number of reference cycles or, in other
words, if the average is extended to a multiple number of
samples.
Let us consider, for instance, the case , and

. The sequence which is schematically shown in
Fig. 4 has zero average over the first reference cycle. By con-
trast, the average is equal to 1/8 over the second cycle. In prac-
tice, the output is equal to its input , only if the
average is extended over two consecutive reference cycles.
On the basis of this consideration, we can apply to this ex-

ample the same argument used above in the plain loop for the
determination of the maximum value for . With the help of
Fig. 5, if we start from a negative time error , the
BPD output is 1, therefore the input is equal to
and the first increment of given by (16) is being nil the
sum in (16). The increment of becomes instead
in the subsequent cycle at , since the sum in (16) is
equal to 1. Thus, the time error reaches its maximum value

at starting from .
To extend the latter result to any value lower than ,

we should note that the averaged output of the first-order
modulator over the -th cycle is always equal to 0 for

consecutive cycles (where is an integer
number), and it is equal to during the subsequent cycle. In
this way, the average over consecutive cycles will be
equal to the input , as expected.
Hence, on the basis of (16), we can derive maximum and

minimum values of the time error, i.e.,

(20)



(21)

and the resulting peak-to-peak value of is therefore given by

(22)

For a uniform distribution of , the standard deviation of
associated to modulator is still given by

(23)

Then, summing quadratically the contribution arising from
DCO quantization in (19) and the one arising from quanti-
zation in (23), we get the total quantization-induced jitter

(24)

To get a quantitative comparison between this BBPLL with
first-order and the plain BBPLL, we compute the ratio be-
tween the jitter expression in (24) and the minimum jitter of the
plain loop in (7) for , i.e.

(25)

Thus, same absolute jitter can be achieved in the two systems,
if the second term in (25) is negligible, i.e. if .
For instance, for , , , if the DCO LSB
is increased by a factor of , jitter worsens by only
10% compared to . Thus, in this case, accepting a negligible
degradation of jitter, we can save up to about 7 equivalent bits
of the DCO. The improvement increases to about 8 equivalent
bits if the loop latency is zero.

D. Simulation Results

To assess the theoretical results so far achieved, the equations
describing the three schemes of BBPLL have been numerically
solved for different values of loop parameters.
Fig. 6 shows the normalized jitter of the BBPLL in

Fig. 3 as a function of values for loop latencies: and
, when . The theoretical results given by (24), (19),

(23), represented as solid lines, agree very well with simulation
results (shown as circular and square dots).
Fig. 7 shows a plot of the normalized jitter given by

(15) for the quantizer-based BBPLL and given by (25)
for the -based BBPLL (solid lines), with , ,

. The dots in the same plot obtained from numerical
simulations of the two systems for different values of closely
match theoretical estimations.
For very large values of , the jitter of the modified BBPLLs

compared to the plain loop worsens, since DCO resolution is
proportionally relaxed. However, for lower values of , both
modified systems can reach the same jitter of the plain system
with relaxed DCO-resolution requirement. Employing the first-
order modulator in place of the mid-rise quantizer allows a
larger reduction of DCO resolution, since its jitter is practically

Fig. 6. Quantization-induced jitter (normalized to DCO LSB ) of the im-
proved BBPLL with modulator as a function of : from simulations
(markers) and Eq. (24) (solid lines).

Fig. 7. Jitter of the two improved systems and (normalized to jitter of
plain system ) as a function of : from simulations (triangles for the system
with quantizer and squares for the system with modulator) and from Eqs.
(15) and (25) (solid lines).

identical to that of the plain system for values up to about
a decade higher.
Further reduction of DCO resolution while maintaining same

output jitter is possible by cascading a reconstruction filter to the
modulator. For instance, considering a low-pass filter with

a single pole at about one 30-th of the PLL output frequency and
, same jitter can be obtained even choosing .

III. RANDOM-NOISE-INDUCED JITTER

We have so far analyzed the plain BBPLL and the improved
versions neglecting the presence of any random noise source.
We intend to consider now the presence of noise arising from
physical thermal and flicker sources.
With regard to the system in Fig. 3, in the presence of a

random component of the time error larger than the quantiza-
tion-induced one, the loop works in the so-called random-noise
regime [5], [11] and the analysis can rely on the linearized equiv-
alent model shown in Fig. 8 [14]. For input signals around its
threshold, the BPD can be modeled as a block of gain plus
an additive quantization error [15]. Note, however, that the
BPD gain dependents itself on the distribution of its
input variable and thus the system in Fig. 8 is actually nonlinear



in that it does not satisfy superposition principle. Under the hy-
pothesis of Gaussian distribution of , the gain results to
be [16]

(26)

The other blocks of the loop are ideally linear and thus
they can be described in the frequency domain, as reviewed
in Appendix A. Combining those results and assuming that
the loop is properly designed to have safe stability margin, the
open-loop gain can be well approximated by

(27)

where

(28)

is the unity-gain frequency, whereas and
are the oscillation period and the period sensitivity of the

DCO, respectively.
In our analysis, we account for the DCO phase noise origi-

nating from white and flicker physical noise sources. In general,
the power spectral density (PSD) of the output-referred DCO
noise can be therefore written as [17], [18]

(29)

where and are proper noise coefficients.1

The injection of this noise source into the loop induces noise
at BPD input. Relying on the linear loop model in Fig. 8, the
spectrum of the time error is given by

(30)

and its variance reads

(31)

We note here that the quantization noise term has not been
accounted for in the calculation of in the random-noise
regime, since its contribution to is low-pass filtered by the
loop, and the resulting contribution to is negligible.
Hence, in view of (27), the integral in (31) transforms to:

(32)

where with , is the zero of DLF
transfer function described in Appendix A. Substituting (29) in

1The PSD of DCO time noise associated to is related to the typical oscil-
lator phase noise as follows: , where .

(32) and following the derivations reported in Appendix B, we
are able to achieve a closed-form expression for the variance of
, i.e.

(33)

where the parameter (with ) is set by the
loop-stability margin.
The latter result leads us to the conclusion that the variance of

the random component of jitter at BPD input (or in turn at PLL
output if we neglect the presence of reference noise) increases
as the unity-gain frequency of the loop, which is roughly equal
to loop bandwidth, is reduced. Besides, as loop bandwidth is
narrowed, the contribution of the DCO noise component
on BPD input jitter increases faster than the contribution of the

component.
Finally, plugging the expression of in (28) and the expres-

sion of in (26) into (33), we get the following equation

(34)

which can be solved for the variable.
Being the standard deviation of a random variable
, the resulting closed-form expression of the BBPLL random-
noise-induced jitter in the presence of and noise of
the DCO is therefore given by

(35)

with .
We end this section by showing how the analysis of noise-

induced jitter (35) and that of quantization-induced jitter (24)
provided in previous section can be joined together to achieve a
comprehensive description. To this aim, the nonlinear difference
equations describing the digital BBPLL in Fig. 3 are simulated
numerically. In simulations we assume the loop parameters
, , , and while

the DCO noise model has constants and
.

The jitter values obtained from simulations for different
values of are shown as circles in Fig. 9. In this plot,
the quantization-induced-jitter expressions in (24) and the
noise-induced-jitter (35) (dash-dotted and dashed lines, respec-
tively) are also reported along with their sum (solid line). The
following observations are in order. Closed-form expressions
(24) and (35) match with good accuracy simulated jitter in deep
limit-cycle regime and deep random-noise regime, respectively.
Most importantly, the sum of the two theoretical contributions
matches closely the simulated total jitter over all regimes and
leads us to the following expression for the total absolute jitter2:

(36)

2Jitter variance is not obtained by summation of the variances of the two pro-
cesses [11].



Fig. 8. Linearized model of the digital BBPLL.

Fig. 9. Quantization-induced component from (24) (dash-dotted line),
noise-induced component from (35) (dashed line) and sum of the two latter
terms (solid line). Simulated output jitter as a function of (circles).
Settings (a) and (c) correspond to deep random-noise and limit-cycle regimes,
respectively, while setting (b) corresponds to an intermediate regime.

This final equation in combination with (24) and (35) provides
an estimation of the total output jitter as a function of the loop
parameter and DCO phase noise.

IV. OPTIMIZATION OF TOTAL JITTER

While quantization-induced jitter grows as the loop pa-
rameter , the noise-induced jitter decreases as .
As a result, the total jitter given by (36) exhibits a minimum.
Thus, an optimum exists and it can be calculated from the
previous closed-form equations.
The optimum is found when the two terms on the right

hand side of (36) are equal, or in other words when the jitter in-
duced by quantization equals the jitter induced by random noise,
i.e.,

(37)

where is chosen to be low enough for the term in (24)
to be negligible.
The minimum total jitter is found from (36) substituting

with the expression of and it is

(38)

For the optimal design setting (37), noise-induced jitter is ex-
pected to destroy the periodicity which underlies limit cycles
so that the output power spectrum will be cleaned by unwanted
spur tones. We verify this point by simulations. Fig. 10 reports
the simulated output spectra and trajectories in the state
plane for the three parameter settings (a), (b) and (c) which

correspond to random-noise regime, optimal design, and limit-
cycle regime, respectively (already highlighted in Fig. 9). For
setting (c), the trajectory tends to describe closed orbits in the
state plane (i.e. limit cycles) which correspond to unwanted spur
tones in the output spectrum. By contrast, both settings (a) and
(b) are able to eliminate spur tones but only parameter setting
(b) allows us to do that while achieving minimum jitter.
We end this section by evaluating the relative weight between
and DCO spectral component on the output jitter.

This can be outlined by recasting (38) as a function of the corner
frequency of DCO spectrum , i.e.,

(39)
Fig. 11 shows the BBPLL minimum output jitter as a

function of the DCO corner frequency for different values of
the noise parameter . The right vertical axis also reports the
corresponding values of the optimum gain . The solid
lines given from (39) closely match the circular markers ob-
tained from numerical simulations, assuming , ,

, , . This result confirms the va-
lidity of the proposed analysis. In the same figure, with broken
lines we also report the minimum jitter values predicted with
the analysis in [11] which did not include DCO flicker noise.
We see how jitter values predicted with [11] become unrealistic
as corner frequency increases.
The optimum value of parameter given by (37) corre-

sponds also to an optimum value of the unity-gain frequency,
and in turn of loop bandwidth, which minimizes total jitter. This
value obtained from (28) after imposing (37) and (38) is

(40)

which results to be equal to about for and
for (being ).
The expression of permits us to find the parameter to

be used into (37)–(39), i.e.,

(41)

Once the optimum product has been determined, we
need to know how to set the two parameters individually. If we
choose the lowest acceptable value of , we relax the require-
ment on the DCO LSB . However, a minimum value of is
dictated by loop stability.
Referring to the model in Fig. 8 [11] and imposing the phase

margin , we find

(42)

Substituting the expression of the optimum unity-gain fre-
quency (40) into (42), we derive the minimum which guar-
antees the given phase margin, i.e.

(43)



Fig. 10. Simulated spectra and orbits for (random noise), (optimum resolution) and (limit cycle).

Fig. 11. Minimum output jitter and corresponding gain as a
function of the noise corner for different values of noise parameter:
simulated dots (circles) and theoretical results from (39) and (37).

For , guarantees 66-deg phase margin and the
from (41) is equal to about 10.

V. PLL DESIGN

In this section, we show how to design a PLL following the
results of the proposed analysis. The PLL is intended to syn-
thesize a 320-MHz clock from a 40-MHz reference crystal os-
cillator, with a targeted absolute jitter of about 11 ps. On the
basis of these values, the division factor of the divider is
and the DCO period is . We adopt the PLL
block schematic with the modulator, shown in Fig. 3. The
implementation of the DLF block together with the gain block

and the first-order in standard-cell digital logic intro-
duces one-cycle latency into the loop. Thus, the parameter is
equal to 1.
The setting of the loop parameters will be based on the fol-

lowing procedure:

• Stability: imposing phase margin of 60 deg in (43)
and taking the next power of 2 of the result lead to

.
• Jitter: when the minimum jitter value of is
imposed in (39), an equation containing the two unknowns

and is obtained. If we set so that the second term
in (39) is negligible compared to the first term (for instance,
only 10%), i.e.,

(44)

we can solve the equation for , i.e.,

(45)

or equivalently at 1 MHz.
• DCO period sensitivity: Substituting the value of and

in (37) and neglecting the second term, we get the pa-
rameter .

• DCO quantization: imposing that the quantization
[i.e., second term in (25)] is only 10% of the quantization of
the bang-bang PD [i.e., first term in (25)], we get .
This can be increased to inserting a pole at

between andDCO, as discussed in
Section II-D. In practice, the period sensitivity of the DCO
can be set to , or equivalently its fre-
quency sensitivity to .

Adopting this parameter setting, the BBPLL jitter estimated
by (36) is plotted as a function of in Fig. 13 (solid line).
The absolute RMS jitter is minimum at and it is

, as expected.
Based on the specifications so far derived, the DCO is de-

signed as a ring-type voltage-controlled oscillator (VCO) driven
by a passive DAC. The delay stages of the ring oscillator have



Fig. 12. Schematic of the ring-type VCO.

Fig. 14. Die photograph.

Fig. 13. BBPLL output jitter as function of from eq. (36) (solid line) and
from measurements (squares).

a differential topology (also shown in Fig. 12 which provides
better immunity to supply disturbances and their delay is regu-
lated by means of MOS varactors. Coarse tuning is obtained by
driving a bank of varactors by means of a digital word CTW.
Instead, fine tuning is achieved by means of a single couple of
varactors controlled by the DAC through a low-pass RC filter.

VI. EXPERIMENTAL RESULTS

In order to verify experimentally the closed-form expressions
and the jitter minimization method proposed in this paper, the
BBPLL designed in the previous section is fabricated in a 65-nm
CMOS process. The die photo of the chip is shown in Fig. 14.
The phase noise spectra of the PLL is measured at different

settings of and the absolute jitter are calculated as the inte-
gral of the measured spectra from 1 kHz to 10 MHz. The jitter
values are plotted as square dots in the same graph in Fig. 13.
Measurements follow closely the theoretical curve and confirm

Fig. 15. Simulated and measured phase-noise spectra for optimum design
.

Fig. 16. Simulated and measured phase-noise spectra when the limit cycle
dominates over random noise ( ).

Fig. 17. Simulated andmeasured phase-noise spectra when random noise dom-
inates over the limit cycle ( , ).

the existence of a minimum jitter. The measured minimum jitter
is 13.5 ps, which is very close to the estimated value.
The measured spectra relative to , , and

are shown in 15, Figs. 16, and 17, respectively. The close
matching of measured spectra to those obtained from numerical
simulations and shown in the same plots demonstrates the accu-
racy of the BBPLL model adopted in simulations and confirms
the validity of the theory provided in this paper.



VII. CONCLUSION

In this paper, we have provided an analytical expression for
the output jitter of a digital BBPLL as a function of the loop pa-
rameters and of the thermal and flicker noise sources. The anal-
ysis has taken into account typical variants of the plain BBPLL
loop, in which the DCO resolution is relaxed by means of addi-
tional quantizers. The jitter analysis revealed the existence of a
minimum, suggesting an optimum design criterion. This prop-
erty has been demonstrated in a 320 MHz PLL fabricated in 65
nm CMOS.

APPENDIX A

In this Appendix, we derive the frequency responses for the
blocks in the linearized model shown in Fig. 8 as in [11]. The
DLF is described in the z-transform domain by the transfer func-
tion

(46)

and its frequency response can be derived by using the variable
substitution

(47)

Assuming that , which is valid in almost any practical
case to guarantee loop stability, the resulting expression can be
found

(48)

which holds within the range (i.e. up to Nyquist fre-
quency).
The first-order modulator following the DLF has a uni-

tary signal transfer function and it can be modeled as a uni-
tary gain block. The DCO acts as a sampled integrator, whose
rate is different from that of the loop filter and it is given by
the DCO frequency . Its transfer function is

, where . The frequency
response can be obtained by substituting with and by
approximating for

(49)

The open-loop gain is thus found to be

(50)

For frequencies higher than the frequency of the zero of
located at with , the loop
filter response can be approximated as the proportional gain .
Thus, since loop stability demands for a unity-gain frequency
greater than , the loop filter response at , can be considered

. After imposing , the unity-gain
frequency can be obtained:

(51)

If the loop is designed to have safe stability margin, the open-
loop gain for frequencies higher than can be ap-
proximated as in (27).

APPENDIX B

In this Appendix, we derive (33) starting from (32) that we
repeat here for the reader’s convenience,

(52)

Exploiting the linearity of the integral operator in (52), we
split the variance into the two following contributions

(53)

The first integral in (53) gives

(54)

Similarly, the second integral in (53) gives

(55)

An insightful closed-form expression for can be derived
making a reasonable hypothesis on the ratio . Loop
stability demands that the unity-gain frequency is much
greater than the frequency of the zero (i.e. ). In such
a case, we can neglect the inverse tangent term in (54) and
approximate the logarithm in (55) as . Thus, rewriting
the full expression of the variance, we get

(56)

where is set by the required loop-stability margin.
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