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1. Introduction

In the last years the capability of prediciting the behaviour of
unsaturated soils has been improved significantly, thanks to the
development of enhanced hydro-mechanical constitutive laws able
to account for strongly coupled non-linear and irreversible
features. Local integration of the constitutive laws, named stress
point algorithm, is a key component for successful implementation
of these models in numerical codes for the solution of engineering
problems. As the stress state is updated at each Gauss point several
times during the analysis, the stress point algorithm must be
accurate, robust and efficient in order not to undermine the results
of numerical approaches.

In the context of the most common formulation of coupled
finite element analysis, the integration is carried out at the Gauss
point level given the strain increment, directly calculated from
the displacement field, and the liquid and gas pressure increments.
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Alternative strategies may be pursued for the integration of stress
paths involving irreversible and non-linear changes of mechanical
and hydraulic conditions. Explicit integration schemes may prove
to be a valuable choice during the model development stage, as
they generally do not require heavy analytical effort. Adaptive sub-
stepping procedures are invoked to guarantee accuracy and error
control when they are adopted in finite element analysis. Explicit
schemes with adaptive subincrementation refer mostly to the
works of Sloan [1] and Sloan et al. [2]. Explicit methods applied
to unsaturated soils have been firstly discussed by Sheng et al.
[3,4], with emphasis on automatic substepping, and Sheng et al.
[5]. Numerical strategies for explicit algorithms to deal with non-
convexity of the yield surface at the transition between saturated
and unsaturated states have been tackled by Sheng et al. [6]. San-
chez et al. [7] have proposed a multi-mechanism generalisation of
Sloan’s integration scheme for generalised plasticity laws in the
implementation of a double structure model for expansive clays.
With reference to the Barcelona Basic Model (BBM) and related
constitutive models, Solowski and Gallipoli [8,9] have studied in
detail several Runge-Kutta methods, with particular attention on
efficiency and accuracy issues, and proposed a novel explicit inte-
gration scheme based on Richardson interpolation. Application of
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drift reduction procedures to the latter explicit stress point algo-
rithm has been proposed by Solowski et al. [10].

In view of the application of hydro-mechanical models to real
scale problems, implicit algorithms are usually preferred, due to
their higher efficiency. Implicit methods for unsaturated soil mod-
els have been discussed by Vaunat et al. [11], Zhang et al. [12],
Hoyos and Arduino [13], Zhang and Zhou [14] and Tamagnini
and De Gennaro [15].

Comparisons between refined explicit algorithms and implicit
ones have been discussed by Potts and Ganendra [16] and Abbo
and Sloan [17] on models for saturated soils. For unsaturated soils
a similar comparison has been presented by Hofmann et al. [18],
with reference to the BBM or similar models, in which the consti-
tutive equations are written as a function of net stress ¢ — uzé and
suction ug — u;, being o the Cauchy stress tensor, é the Kronecker
identity second order tensor, ug and u; the gas and the liquid pres-
sure, respectively. More recently, Gonzalez and Gens [19] have
examined the numerical performance of integration algorithms
also for models that take into account the degree of saturation in
the constitutive stress definition.

Several models characterised by different choices in terms of
constitutive variables, i.e. stress variables linked to the elastic
strain [20], have been presented in the literature. Inherent hydro-
mechanical coupling of the unsaturated behaviour is the main rea-
son which justified the introduction of constitutive stresses
including the degree of saturation Sr in the formulation of consti-
tutive models. In recent years, various authors adopted the so-
called average skeleton stress [21]

6 = (0 — Ugd) + Sr(ug — u;)d (1)

as constitutive stress. This choice, together with a retention model
dependent on void ratio, allows some aspects of hydro-mechanical
multi-phase coupling to be already embedded in the formulation.

In this paper the performance of an explicit and an implicit algo-
rithm are discussed with reference to the latter class of constitutive
models. Convergence and accuracy are analysed along different hy-
dro-mechanical paths for both algorithms. Numerical simulations
performed with the explicit algorithm are evaluated in terms of nor-
malised incremental work, which proves to be a measure of the po-
tential difficulties which the algorithm can suffer.

2. Elastic-plastic constitutive formulation

To describe the soil response in unsaturated conditions, both
hydraulic and mechanical constitutive relationship must be intro-
duced. The hydraulic constitutive law, named water retention
curve, describes the dependence of the amount of water stored
in the soil pores as a function of suction. Limiting the attention
to a wide class of models relating the quantity of water in the pore
space, expressed for example in terms of water ratio e,, (i.e. the ra-
tio between the volume of water and the volume of solids), to the
suction s and to the void ratio e, the retention curve can be de-
scribed in the general form

ew = ey(s,e). (2)

For this class of retention models, the variation of water content
and of degree of saturation in the incremental step depend directly
on the suction increment and on the total volumetric strain incre-
ment. Being uncoupled from the plastic strain increment, the varia-
tion of degree of saturation can be calculated a priori by a suitable
integration method, before entering the mechanical constitutive
routine. Therefore, at the beginning of the latter numerical integra-
tion procedure, the total strain increment, the suction increment,
and the degree of saturation increment are known. The unknowns
are the updated constitutive stress and the updated plastic variables.

As for the mechanical part of the constitutive model, elasto-
plasticity with generalised hardening provides a suitable frame-
work for the stress-strain behaviour of unsaturated soils. Under
the hypothesis of small strain, the strain rate is decomposed addi-
tively in an elastic, reversible, part, &, and a plastic, irreversible,
one, &:

E= i+ 3)

The elasticity tensor D° links the constitutive stress rate to the
elastic strain rate:

6 =D =D& — &). (4)

In the following, the behaviour of the material inside the yield locus
is assumed to be hyperelastic, so that the relationship between &°
and ¢ is bijective. To complete the description of the actual state
of the unsaturated soil, a vector of internal variables q is introduced,
describing the effect of strain history, in terms of plastic strain &,
and of coupled variables on material response. Without loss of
generality, models adopting the degree of saturation, Sr, as
hardening variable are discussed henceforth. For any admissible
value of q, the stress state 6 is constrained to belong to the convex
set E,

Es = {(&7q)lf(6-1 q) < 0}7 (5)

where f is the yield function. The boundary of the set E, is called
yield surface, while its internal part is the elastic domain.

For the class of models investigated in this paper, the evolution
of plastic strain is defined prescribing the flow rule

#-iQ Q=2 (6)

where g is the plastic potential, and / a non-negative scalar named
plastic multiplier.

The evolution of the internal variables q is provided by a gener-
alised hardening law of the following type:

= h(6,q,5r) + Sry(6,q,57) @)

where h and 5 are the so-called hardening functions. The first term
describes the changes in the internal variables associated with plas-
tic strains, while the second term describes a reversible evolution of
the elastic locus with the hydraulic history, ruled by changes in the
degree of saturation.

The plastic multiplier 1 is subjected to the Kuhn-Tucker
conditions:

f(6,9) <0,  if(6,9) =0, 8)

stating that plastic strains may occur only for states on the yield
surface, and to the consistency condition

if =0, 9

which forces the state of the material to remain on the yield surface
during plastic loading. Let

of of
P=—" W=-—-
oo oq
denote the gradients of f with respect to ¢ and q. From the consis-
tency condition (9), the elastic law (4) and the flow rule (6), the fol-

lowing expression for the plastic multiplier in terms of & and Sr is
obtained:

;1

J. >0,

(10)

P-D°+W . 9Sr), (11)

provided that:
K,=P-D°Q-W-h>0. (12)



3. Stress point algorithms

The total load path is divided initially in a number of time steps
of size At;. Let At,+; be the time step bounded by t, and t,+;. The
state of the material (6,,q,,, &, &, Sr,) is assumed to be completely
known at time t,. Within the common framework for finite ele-
ment analysis involving unsaturated soils, the unknowns
6n:1,q,,, and & .1 are determined from the respective values at
time t, and from given increments Ag, Au; and Aug. As pointed
out before, for the class of retention models considered, the incre-
ment of water ratio Ae,, and of degree of saturation ASr in the time
step can be calculated before entering the mechanical constitutive
law routine:

enl = ey (e, Aug, Auy, Ag)Sr™" = Sr(Sr", Aug, Auy, Ag)

Ae,, =¥ — el ASr = Sr™! — Sp"

Therefore, at the beginning of the stress point algorithm rou-
tine, all the previous quantities are known.

The most common approaches for the integration of the elasto-
plastic constitutive Eqgs. (4)-(8) can be summarised as:

- explicit methods (e.g. Refs. [1,2,22]);
- implicit (backward Euler) methods (e.g. Refs. [23-25]);
- 0-methods (e.g. Ref. [26]).

A refined explicit algorithm of the Runge-Kutta family [1]
and a fully implicit backward Euler scheme [23] were imple-
mented in a constitutive driver, able to tackle any stress path
under general mixed static and kinematic control conditions
[27], to evaluate their performance along strongly coupled
hydro-mechanical paths.

3.1. Explicit method

The elastic trial solution is obtained by means of an explicit pro-
cedure. Afterwards the Kuhn-Tucker conditions are checked. If the
latter are violated a plastic integration step is performed.

3.1.1. Elastic predictor

Assuming that the step is completely elastic, the trial state, ob-
tained by freezing the plastic flow (i.e. 27 = 0), is calculated with
an explicit approach:

~rial _ srial _ el
6, = 6n+ A6 =6, +D(6,)Ae

(14a)

(14b)

The trial elastic solution is checked against a trial yield surface,
which might be different from the initial one, due to the updating
of the internal variables for degree of saturation changes. If

trial __ ~trial gytrial o o

gl — f (6t q) < 0, the trial state satisfies the Kuhn-Tucker
conditions (8) and it coincides with the converged solution in the
step. Otherwise, if f{ > 0, a plastic integration step must be
performed.

a7 = q, + ASr (60, q,, ST).

3.1.2. Intersection with yield surface

This step is necessary if the initial stress state is strictly inside
the yield locus, i.e. f, <0, and the intersection with the trial yield
surface must be found before starting the plastic integration step.
The problem of finding the stress and the internal variables at
the yield surface intersection is equivalent to the determination
of the scalar quantity o which satisfies the equation

f(6, + aD°Ag, q, + aASTH) = 0. (15)

The increment of degree of saturation is treated as an additional
strain component and the same value of « is adopted for both
increments.

To highlight the role of the increment of degree of saturation in
the intersection of the stress path with the yield surface, it is useful
to consider a hypothetical case involving null strain increment. An
increment in the degree of saturation reduces the size of the yield
surface, so that the initial stress state may fall outside (Fig. 1) the
updated trial yield surface. In this case, the value of « must be
found which satisfies:

f(6n,q, + aASTY) = 0. (16)

Until the yield surface reaches the stress state no plastic strain
will occur.

In general, Eq. (15) is non-linear with respect to the variable «
and can be solved by a variety of numerical methods, e.g. bisection,
Regula-Falsi, secant and Newton-Raphson. As o is bounded in the
interval 0 — 1, Regula Falsi procedure proves to be a valuable
choice [28].

3.1.3. Plastic integration step

Stress and internal variables on the yield surface become the
initial values at the beginning of the plastic integration step, which
consists in solving the non-linear system of ordinary differential
Egs. (4) and (7). The strain and degree of saturation increments
to consider in this step are:

Ae? = (1 - a)Ae (17a)

ASF® = (1 — 0))AST, (17b)

where ASr®? is that part of degree of saturation change which
contributes to irreversible strain.

Several methods have been proposed to integrate the non-linear
constitutive laws. All of them require a sub-stepping procedure, to
limit the integration error. Among them, the algorithms belonging
to the Runge-Kutta’s class, with automatic substepping and error
control, have proven to be reliable and efficient [2]. With this class
of algorithms the substep size is adapted to modify the substep size
by comparing two different order estimates of the solution. The Run-
ge—Kutta-Dormand-Prince algorithm was chosen here.

The following procedure was implemented to integrate the
plastic step:

1. Set the step initial pseudo-time to T = ;=% =0.

2. Set the pseudo-time increment to AT=1 —T.

3. For each level i (with i ranging from 1 to p, where p is the order
of the Runge-Kutta method used):

(a) compute

i1 i-1
6'=6u+ Fulo'q =q,+ fiAd".
k=0 k=0

f(on,dn +aASTrn) =0
YIELD SURFACE -~ f(6nan) =0
AT INTERSECTION ~ ,/( INITIAL YIELD )

SURFACE

f(6nan+ASrn) =0—"
TRIAL YIELD
SURFACE

Fig. 1. Intersection due to degree of saturation.



(b) Compute the plastic multiplier

A;LiJr] _ l

p

(P- D ATAE? + WHATAST)

with
K, =P -D°ATQ — Wh,

where P, D°, W, 5 and h are evaluated using 6' and q'.
(c) Compute the stress and internal variables increments

A6 = D°(ATAe® — AJ1Q) (18)

A = AT+ ATAST . (19)
4. Calculate stresses and internal variables for the two Runge-
Kutta methods (denoted by the superscript ~ for order p and
— for order p — 1):
&nﬂ = 6'11 + CiA&i &nﬂ = a'n + EiA&i
(]nﬂ =q,+ CiAqi EInH =q,+ EiAqi-
5. Determine the relative error for the current substep:
16ni1 = niall [Gris — Fos |>
/ |qln+1 ‘
6. If ¢>TOL, the substep must be reduced and a smaller pseudo
time increment has to be set

¢ = max =
J 61l

(20)

¢ 1/p

AT:AT-O.Q(W) , (21)

then going back to step 3. The value 0.9 was assumed according to

Sheng et al. [3].

7. If £ < TOL, the substep is acceptable, and stresses, internal vari-
ables, degree of saturation and pseudo-time are updated:

Oni1 = Gni1Qyy = Que1STast = STn + ATASFPT = T + AT.

8. Check for pseudo-time T. If T is equal to 1, plastic step is com-
pleted. Otherwise, the remaining part must be still integrated
following the same procedure as before starting from point 2.

9. Check for the stress state to lie on the yield surface. If not, a
yield surface drift correction is necessary.

Table 1 reports the Butcher’s matrix for the coefficients used by
the Runge-Kutta-Dormand-Prince method.

3.1.4. Correction for yield surface drift

When an explicit algorithm is adopted, the plastic extension
does not force the stress state to lie on the yield surface. The con-
straint f,,+; = 0 has to be checked at the end of the plastic step and,
in case it was violated, consistency must be restored. Explicit stress
integration methods with reduced drift for the BBM class of models
have been recently proposed in the literature [10]. Here, for the
class of models investigated in the following, the classical method
proposed by Sloan [1] and Jakobsen and Lade [22] was adopted.

Table 1
Butcher’s matrix for Runge-Kutta-Dormand-Prince method [2].

Bro Pra Pra Brs Pra Ck Ck
_ _ _ _ _ 31 19
0 540 216
1 1 - - - - 0 0
2 3 9 - - - 190 1000
0 0 297 2079
3 3 _9 6 - - _ 145 _ 125
10 70 5 108 276
4 226 _25 880 55 - 351 81
72 27 729 729 220 88
5 _ 181 El _ 266 _91 189 1 5
70 3 297 27 55 20 36

Assuming that the internal variables q,.; remain constant dur-
ing the correction, the stress state is modified in order to restore
the consistency condition. A scalar g must be found, so that

. . 0.
Gy = Gn + 52| (22)

n+1

f(a.:urlﬁqm—]) = 07

where 6,1 is the stress state at the end of the explicit integration
procedure, and &;,, is the final corrected stress state, satisfying
the consistency condition, for the given internal variables. Eq. (22)
define a single non-linear equation of the form F(B) = 0, that must
be solved iteratively, for instance by a Newton-Raphson algorithm.

3.2. Implicit method

Following [24], the classical elastic-plastic operator split [23] of
the original problem (OR) may be extended to generalised harden-
ing rules, dependent on both plastic strains and degree of satura-
tion, as the sum of an elastic predictor (EP) and a plastic
corrector (PC):

OR = EP + PC
#=i-Q P PR
q=/h+Sry q=">Sm q=/h

As in the case of the explicit scheme, the elastic predictor prob-
lem is solved and a trial elastic state is obtained. Then, the con-
straint f" < 0 is checked, and if it is violated, the trial state is
taken as the initial condition for the plastic corrector problem.
Otherwise the trial state coincides with the converged solution in
the step.

3.2.1. Elastic predictor
Trial values are calculated solving the elastic predictor problem:

61 = 67 + D (6n11)Ae (23a)

Qi = q, + AST (67, 4 (SThen))- (23b)
Eq. (23b) must be solved by iteration, and a suitable accurate proce-
dure must be envisaged, as the accuracy of the elastic prediction af-
fects significantly the final accuracy of the integration. If possible, a
closed form evaluation of "% is strongly suggested, especially for
large increments of the degree of saturation.

3.2.2. Plastic corrector
If firidl > O the trial state lies outside the yield locus, and consis-
tency needs to be restored. The trial state is the initial condition for
the following system:
trial P
8$I+l = (8%+1) - A}W% n+1
Qo1 = 47 + AR(Gn1, G, 4)
f(&rHl ) qn+]) = 0

il .
where (£2,,)"" = & + A&,.; the unknowns are &, ,,q,,; and AZ
The algebraic system (24) is non-linear and is solved via Newton'’s

method.

4. Numerical implementation of the constitutive model

The two integration algorithms were implemented in a consti-
tutive driver, in which the momentum balance, the water mass
balance and the air mass balance are solved simultaneously at
the representative elementary volume level. The transition be-
tween a two phase (saturated or dry) system and the general



Table 2
Parameters of the retention model.

Parameter Main wetting Main drying Scanning
b 12 6.5 -
sy, (MPa) 24 6.7 -
n 1.34 1.34 -
m 0.254 0.254
Smax (MPa) 500 500 -
ks (MPa™1) - - 0.02
Table 3
Mechanical parameters.
K G 2 M & b, b, (o)
- (MPa) - - - - - -
0.03 40 0.115 0.87 1.484 0.6 6.6 120

three-phase system is tackled with a physically based approach, by
including water vapour and dissolved gas in the formulation [27].

4.1. Model equations

The hydro-mechanical model proposed by Romero and Jommi
[29], which proved able to reproduce quite well a series of typical
tests involving compacted clayey soils, is adopted in the following
to describe the stress-strain behaviour of unsaturated soils. Basi-
cally, its formulation is an extension to unsaturated conditions of
the mixed isotropic-rotational hardening model proposed by Daf-
alias [30] for saturated soils, adopting the average soil skeleton
stress as constitutive stress. The relevant constitutive equations
are summarised in Appendix A, for axisymmetric stress and strain
paths only, adopting the usual geotechnical triaxial variables.

As for the retention domain, the model proposed by Della Vec-
chia et al. [31] was adopted. The model stems from the work of
Romero and Vaunat [32], who evidenced the different mechanisms
dominating water retention behaviour at the intra-aggregate and
at the inter-aggregate structural levels in compacted clays. The
conceptual model by Romero and Vaunat distinguishes between
an intra-aggregate retention region, which is not affected by mac-
roscopic void ratio, and an inter-aggregate one, depending on the
void ratio through a linear scaling law. On this basis, Della Vecchia
[33] and Romero et al. [34] proposed an enhanced retention model
accounting for activity of the clay aggregates by means of an evo-
lution law for the intra-aggregate void ratio, e;,.

(@ 1Y\
1004 & O  exp. data e=0.9
® exp. data e=0.63
~ 104
©
o
=
=
2 14
o
3
%)
0.1+
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Water ratio, e,

4 —— numerical simulation ’
-G - experimental data ’

volumetric strain, ¢, (-)

0.12 L—

10 100
suction (kPa)

Fig. 3. Experimental results and numerical simulations for the volumetric strain
along a wetting—drying-wetting path at constant net pressure.

Following [32], the portion of the water retention domain,
which describes the retention mechanism of the inter-aggregate
pore space, may be scaled in the range e > e,, > e;;,. According to
Della Vecchia et al. [31], e, is continuously adjusted following
the relationship:

em = €5, + Blew —€}) for e, > €5, (25)

where the parameter f quantifies the swelling and shrinking poten-
tial of the aggregates. Explicit introduction of the intra-aggregate
void ratio e, and of its evolution in the phenomenological retention
equations characterises multi-scale interaction at the hydraulic level.

In the region bounded by the main drying and the main wetting
curves, the hydraulic response of the material, i.e. the so called
scanning curves, is assumed to be reversible. The constitutive equa-
tions of the hydraulic model are reported in Appendix A.

4.2. Parameter calibration

In the comparison presented in the following, the parameters of
the adopted model were chosen in order to be in the representative
range for Boom clay, from Romero and Jommi [29] for the mechan-
ical part of the model, and Romero et al. [34] for the hydraulic one.
The calibrated model parameters are summarised in Tables 2 and
3, while examples of the calibrated model performances are

(b)

100

104

Suction (MPa)

0.1+

001 T T T T
0.0 0.2 04 0.6 0.8 1.0 1.2

Degree of saturation, Sr

Fig. 2. Main drying retention curves for the retention model at two void ratios, e = 0.92 and e = 0.63: (a) water ratio vs. suction, (b) degree of saturation vs. suction.
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Fig. 4. Numerical solutions of the explicit algorithm with substepping for the evolution of volumetric strain and degree of saturation for the isotropic test, with steps of

different size.
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Fig. 5. Numerical solutions of the explicit algorithm with substepping for the evolution of vertical net stress and volumetric plastic strain for the isochoric test, obtained with

steps of different size.

reported in Figs. 2 and 3. In Fig. 2, simulations of the main drying
branches of the water retention domain for two different constant
void ratios of e =0.90 and e = 0.63 are reported. In Fig. 3, data are
reported of volumetric strain experienced by a sample of Boom
clay anisotropically compacted under unsaturated conditions and
subjected to a wetting-drying-wetting cycle performed at con-

stant applied isotropic net stress.

The tests refer to samples of Boom clay initially prepared by
compaction in oedometer, on the dry side of the optimum Proctor,
at a water content of w = 0.15 and at a dry density of p; = 1.37 Mg/
m>. Oedometer compaction gave the soil an anisotropic structure,
described by an initial surface rotated with respect to the hydro-
static axis. The three paths analysed in the following describe:

e [sotropic test: wetting-drying-wetting cycle of a sample

Material, sample preparation and experimental procedures of
this and other tests may be found in [29,31], where the experimen-
tal data are discussed in more detail.

mounted in a controlled suction triaxial cell and previously
compressed to an isotropic external confining stress
p =600 kPa.

e Isochoric test: wetting in a cell which prevents volumetric strain
of an as-compacted sample.

o Constant water content test: isotropic compression of a sample
previously brought to a water content of w = 0.17 after compac-
tion by means of vapour transfer technique.

5. Evaluation of the performance of the algorithms

The simulations presented in the following are aimed at
evaluating the performance of the explicit and implicit
algorithms. To this aim, paradigmatic loading paths were con-
sidered, involving hydromechanical coupling and different
kinematic conditions.

Details on experimental results of the three tests can be found
in Romero [35] and Della Vecchia [33]. These three tests have been
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chosen to cover several aspects of hydromechanical coupling,
including plastic deformation due to either suction variations at
constant stress, suction variations at constant volume or net stress
variations at constant water content. The paths chosen allow also
to cover different external control conditions, including stress con-
trolled and kinematically controlled tests, with imposed suction or
water content. To evaluate the performance of the two algorithms,
a set of analyses was performed on an Intel” Core™?2 Duo proces-
sor (E7200 at 2.53 GHz). The reference numerical solutions were
obtained by either the explicit or the implicit algorithm subdivid-
ing the whole stress paths in a huge number of steps (of the order
of 10,000 for both algorithms) with an error tolerance of 10~° (Eq.
(20)). (see Fig. 4).

5.1. Explicit algorithm

For the three tests introduced, the explicit algorithm has been
used to integrate the paths with a sequence of increments of
increasing size. Fig. 4 a and b shows the performance of the explicit
algorithm in the &,, —s and Sr—s planes with respect to the

(a) 0.1 7
4 — — isotropic test
P isochoric test 4
j 0.08 | ——— constant water content test
g /
.% /
= 0.06 —
(2]
RS d
2 . /
[oN
o 004 /
o
3 / LT
S 002 P
] ’/_ il
47
0 = 1 | T | T |
0.4 0.6 0.8 1

degree of saturation, Sr (-)

simulation of the isotropic test. The tolerance used to perform
these analysis was set equal to 107>, Thanks to the substepping
procedure, the algorithm is always convergent, although inaccura-
cies arise during the integration of the first wetting path, for large
initial step size in terms of As. The effectiveness of the substepping
procedure is demonstrated by the fact that, independently from
the As initially chosen, the total number of substeps needed for
the integration of the whole path where plastic strains are involved
is approximately the same for each simulation. As expected, no
inaccuracy issues arise in the Sr — s plane. In fact, as described in
Section 3, the degree of saturation increment is calculated before
entering the mechanical constitutive law routine as a function of
the increments of suction and void ratio.

The results of the simulations for the isochoric test are shown in
Fig. 5a and b. The algorithm proved to be very efficient, although
some inaccuracies are evidenced for increasing integration step
size both in terms of net vertical stress and, more significantly, in
terms of volumetric plastic strains. Also in this case the total num-
ber of substeps required for the integration of the whole plastic
path was found to be independent from the initial integration step
size chosen.

The results are in accordance to those of Solowsky and Gallipoli
[8], who have shown that the absolute error tends to grow as the
integration step size increases. However, some inaccuracy may
also be related to a detail of the strategy used to extend the sub-
stepping algorithm to the class of constitutive model for unsatu-
rated soils considered in the paper. During the substepping
procedure, the same reduction AT is applied to both Ae and ASr
(Eq. (19)), following the criterion proposed in Eq. (21). A possible
alternative would be to apply the reduction AT to the suction
increment As, hence recalculating the corresponding ASr at each
substep.

No appreciable error can be noticed in the numerical simulation
of the constant water content test, presented in Fig. 6 in terms of
evolution of volumetric strain with net average stress p”:=p — ug,
irrespective of the size of the integration step.

The different performance of the explicit algorithm along the
hydromechanical paths analysed, may be preliminary evaluated
with reference to the evolution of plastic volumetric strain as a
function of degree of saturation (Fig. 7a) and of net vertical stress
(Fig. 7b). A sub-vertical path in the &) , — Sr plane implies that plas-
tic strain develops mainly due to variations of mechanical condi-

tions, as well as a sub-vertical path in the & — ¢’ plane
A1
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Fig. 7. Evolution of volumetric plastic strain along the hydro-mechanical paths.
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Fig. 9. Numerical solutions of the implicit algorithm for the evolution of volumetric
strain along the wetting-drying-wetting of the isotropic test, obtained with
different integration step size.

indicates that plastic strain takes place mainly due to changes in
water content. The comparison between these three tests suggests
that the accuracy is a function also of the hydro-mechanical path
followed. Integration of paths along which plastic strains are in-
duced by variations of the hydraulic conditions (e.g. the controlled
suction isotropic test) appears to be more challenging from the
numerical point of view. Viceversa, when volumetric plastic strain
is mainly a consequence of mechanical loading (e.g. the constant
water content test), the performance of the algorithm increases.

5.2. Implicit algorithm

Results of the parametric analyses performed on the isochoric
test for the implicit algorithms are reported in Fig. 8, performed
also with As =60 kPa and 238 kPa. The implicit algorithm proved
to be unconditionally stable and a reliable solution was obtained
also with large integration step size, both in terms of net stress
and plastic strain evolution. All the analyses presented in this sec-
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Fig. 10. Isochoric test: integration error vs. CPU time.

tion were performed expressing the dependence of the internal
variables on the degree of saturation in a closed form.

Also in this case the performance of the algorithm is dependent
on the hydro-mechanical path followed by the test. A clear exam-
ple is shown in Fig. 9, where a decrease in accuracy for increasing
integration step size is evidenced in terms of calculated volumetric
strain during the isotropic test.

6. Performance and accuracy

Performance of the algorithms can be discussed, as a first ap-
proach, in terms of CPU time as a function of the error. Results
for the isochoric suction controlled test are shown in Fig. 10. The
error is computed with reference to the values of the stresses (as
in Eq. (26)) at the end of the whole cyclic loading path:

16— G| 26)
[| G exact |

For the sake of completeness, also the error obtained with an
explicit algorithm without substepping is shown. The implicit
algorithm and the explicit one without substepping show similar
trends. As expected, lower CPU time is required by the implicit
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algorithm, thanks to its unconditional stability. The explicit
algorithm with substepping is less efficient than the implicit one,
unless when very low tolerances are imposed. In the latter case
the explicit algorithm with substepping becomes competitive,
although absolute CPU times increase beyond acceptable values
in view of the numerical analysis of real scale problems. The trends
confirm the results of Chaboche and Cailletaud [36], also in terms
of higher convergence rate for the explicit algorithm with
substepping.

Total CPU time, which increases with the number of substeps, is
mostly attributable to specific time steps which appear to be partic-
ularly challenging in terms of convergence and accuracy. Gonzalez
and Gens [19] have already observed that the number of substeps
increases dramatically for high curvature of the stress path.

To provide a more objective criterion for identifying those time
steps, in which convergence and accuracy issues may be encoun-
tered in general hydro-mechanical paths, the discretised incre-
mental work per unit volume was analysed along the integration
paths. According to Houlsby [37], the incremental work per unit
volume, dW, may be written as
dW =6 -de — n(u, — u)) dS; (27)
where n is porosity.

Fig. 11 shows the evolution with suction of both the normalised
incremental work dW/dW; and the number of subincrements of
each step. The normalising quantity dW; is defined as the incre-
mental work corresponding to the first integration step. It can be
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at constant volume, obtained with steps of different size.

observed that the number of subincrements required by the
substepping procedure increases as the rate of normalised incremen-
tal work with the external controlling variable (i.e. suction in this
case) decreases. In particular, the maximum number of substeps cor-
responds to a minimum in terms of normalised incremental work.

An identical behaviour is shown by the algorithm in the iso-
choric test (Fig. 12). The number of substeps increases as the nor-
malised incremental work decreases, and reaches its maximum
value when dW/dW; is minimum.

To further investigate the link between increasing convergence
and accuracy issues of the algorithms and the gradient of the incre-
mental work per unit volume, the isotropic test has been simulated
again with the explicit algorithm but without substepping. Sub-
stepping has been inhibited by setting a high value of tolerance
TOL (see Section 3.1.3). The numerical simulations confirm that
the refined explicit algorithm without substepping is rather effi-

cient, although only conditionally stable. If the given integration
step is too large, the algorithm diverges as shown in Fig. 13a for
a step size As=29.8 kPa. The onset of loss of accuracy seems to
correspond to a stationary point in dW. When the step size is too
large, the explicit algorithm without substepping is no longer able
to converge.

On the contrary, no convergence problems were found in the
numerical simulation of the isochoric test, even using the algorithm
without substepping and a larger step size with As=59.5 kPa.
Results in terms of evolution of net vertical stress ¢/, =0, — U,
against suction are presented in Fig. 14a. Nevertheless, although
in this plane no relevant accuracy problems occur (even for the sim-
ulation with suction integration step of 59.5 kPa), the prediction in
terms of volumetric plastic strain (Fig. 14b) shows large errors. It is
worth noting that inaccuracies start to be evident for a value of suc-
tion s = 200 kPa, which again corresponds to the maximum of nor-



malised incremental work (Fig. 12a). When dW/dW; starts to de-
crease, explicit integration issues increase.

7. Conclusions

Formulations proposed to model the constitutive behaviour of
unsaturated soils based on generalised stress definitions, including
both degree of saturation and suction in the definition of the con-
stitutive variables, are characterised by strong non linearities due
to hydromechanical coupling. As a consequence, refined algo-
rithms are mandatory for their numerical implementation in finite
element codes. A refined Runge-Kutta—-Dormand-Prince explicit
algorithm with automatic substepping and a fully implicit Euler
scheme were tested to this aim, on an elastoplastic constitutive
model with generalised hardening. Both explicit and implicit pro-
cedures proved to be rather efficient in the integration of the
hydromechanical laws at the Gauss point level. The implicit algo-
rithm is not only unconditionally stable, but also rather accurate.
The explicit algorithm with substepping is rather efficient, and be-
comes competitive with the implicit one when very small errors
can be tolerated. Nonetheless, in view of the implementation in
numerical codes for the analysis of real scale problems, the implicit
algorithm is advantageous for affordable CPU times. In spite of con-
vergence, accuracy issues arise along selected hydromechanical
paths.

An attempt was made to pick up a suitable indicator of the
possible onset of accuracy issues. The discretised incremental
hydromechanical work per unit volume, following the theoretical
definition given by Houslby [37], was calculated along the paths
analysed. The quantity was then normalised with its estimation
at the first step. It was observed that plotting the evolution of
this scalar variable as a function of the pertinent static or
kinematic variables helps in identifying the first appearance of
accuracy problems. In particular, the onset of loss of convergence
for the explicit approach without substepping and of accuracy
for both the explicit and the implicit algorithms was found to
be linked with points of stationarity of dW. As soon as a
minimum of dW is approached, the explicit algorithm solution
starts to be significantly influenced by the size of the step. As
a consequence, the algorithm without substepping might not
be able to converge, depending on the controlling kinematic
and static variables, and an increasing number of substeps is re-
quired by the adaptive algorithm to met the fixed tolerance.
Also, the implicit algorithm may loose accuracy when a
stationary point in the incremental work is approached. As the
convergence and accuracy issues are reduced with the step size,
discretised normalised incremental work may be possibly
exploited as useful aid in adaptive time stepping algorithms.
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Appendix A. Model equations

The model adopted for the simulation of the coupled hydro-
mechanical behaviour of unsaturated soils is a combination of
the mechanical laws proposed by Romero and Jommi [29] and
the retention curve proposed by Della Vecchia [33] (see also Della
Vecchia et al. [31]). The readers may refer to the original references
for a detailed discussion of the models equations and of the rele-
vant calibration procedures. A brief summary of the model’s equa-

tions is reported here, with reference to axisymmetric stress and
strain paths.

The elastic behaviour is described by
2 1+e,
p =

——Déua,

” q = 3Géy,

(A1)
where p and g are the isotropic and deviator stresses in axisymmet-
ric conditions and &,, and &4 the corresponding work-conjugate
variables. The yield function,

512 2 2\ an e
f=(q=Mp)* + (M* = M;)p(p—B) = 0, (A2)
depends on two internal variables, p. and M,, ruling isotropic and
rotational hardening, respectively. M represents the slope of the
critical state line in the g — p plane. An associated flow rule is
adopted to describe plastic strain direction (f = g). The preconsolida-
tion stress p. is assumed to be a function of the degree of saturation
and of the preconsolidation pressure in saturated conditions p$* as

pe =P (1= by (1 — e21=)), (A3)

where b; and b, are model parameters.

To express the evolution of the internal variables with plastic
strains, the classical Cam-clay volumetric hardening law was cho-
sen for the evolution of p3

c

‘suti‘l_'_e sat op
c *}L_K c “wol

where 1 is the slope of the NCL.

Rotational hardening is assumed to be governed by the differ-
ence between the current obliquity q/p and the current inclination
M,, of the yield surface:

Moc =0 (q/ﬁ - é,M‘X)|él;)01|’

where ¢; and { are model parameters ruling the rotation rate and
the limiting rotation, respectively.

The retention model is based on the conceptual subdivision be-
tween intra-aggregate and inter—-aggregate pores. The model dis-
tinguishes between an intra-aggregate retention region, which is
not affected by void ratio, and an inter-aggregate one, depending
on the void ratio through a linear scaling law, accounting explicitly
for activity of the clay aggregates. Assuming that void ratio does
not influence the intra-aggregate retention mechanisms, the in-
tra—aggregate portion of the retention domain is delimited by main
wetting and main drying branches, uniquely linking the suction to
a measure of water content. Each branch may be given the
expression

(A4)

(AS)

% Smax

_be, b+ 1In (22x) »

In ()
In the previous equation, e,, is the water ratio on the drying or the
wetting branch of the curve, s, is the maximum suction attain-
able, corresponding to the value of s for e, = 0,s;, are the suction
values corresponding to e;,,, i.e. the smallest value of water ratio
corresponding to saturated micro-voids and empty macro-voids.
Parameter b is related to the average slope of the relevant curve
in this region.

The portion of the water retention domain, which describes the
retention mechanism of the inter-aggregate pore space, may be
scaled in the range e > e,, > e,, with the expression:

1n<1+§) { 1

Ew

fors<s;. (A.6)

ew=e€n+(e—en)|l-

m
for s > s*
ocs)”} m

(A7)



where m and n are model parameters. Microscopic void ratio e, is
continuously adjusted following the relationship:

em =6y, +plew—e;,) fore,>ep, (A.8)

where the parameter j3 describes the slope of the approximating lin-
ear interpolation of e, for e, > e, and quantifies the swelling and
shrinking potential of the aggregates.

The variable s,, is assumed to change following the microscopic
portion of the relevant branch of the water retention domain:

be’, <b +1In (—)) n a9)

Sm = S, €Xp - .
ewm IN ( ;"m") + be,

In the region bounded by the main drying and the main wetting
curves, the hydraulic response of the material is assumed to be
reversible. A linear relationship is postulated between degree of sat-
uration and suction:

ds, = —kids,

where ks is a constant parameter of the model.

(A.10)
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