
Tree-based Fitted Q-Iteration
for Multi-Objective Markov Decision Problems

Andrea Castelletti, Francesca Pianosi and Marcello Restelli
Department of Electronics and Information

Politecnico di Milano
Piazza Leonardo da Vinci, 32

20133 - Milan, Italy
Email: {castelle,pianosi,restelli}@elet.polimi.it

Abstract—This paper is about solving multi-objective control
problems using a model–free batch–mode reinforcement–learning
approach. Although many real–world applications have sev-
eral conflicting objectives, reinforcement–learning (RL) literature
has mainly focused on single-objective control problems. As a
consequence, in the presence of multiple objectives, the usual
approach is to consider many single–objective control problems
(resulting from different combinations of the original problem
objectives), each one solved using standard RL techniques. The
algorithm proposed in this paper is an extension of Fitted Q–
iteration (FQI) that enables to learn the control policies for
all the linear combinations of preferences (weights) assigned
to the objectives in a single training process. The key idea
of multi–objective FQI (MOFQI) is to enlarge the continuous
approximation of the action–value function, which is performed
by single–objective FQI over the state–action space, also to the
weight space. The approach is demonstrated on an interesting
real–world application for multi–objective RL algorithms: the
optimal operation of a multi–purpose water reservoir.

I. INTRODUCTION

Multi–objective control problems are quite common in
many application fields, including economic systems, water
resources systems, mechatronic and robotic systems. These
problems are often modeled as Multi–objective Markov De-
cision Processes (MOMDPs).The conventional approach to
solving MOMDPs is to convert the problems themselves into
a single–objective optimization, combining all the objective
functions into a single functional form that can be handled
by any standard single–objective control design method. A
well–known combination is the linear combination of the
objectives, known as weighted–sum method: many single–
objective problems associated with different values of the
weights are solved and a subset of the theoretical Pareto–
optimal solutions to the multi–objective problem is obtained.
With the growth in the number of the objectives, the repetitions
of single–objective problems scale exponentially, thus making
the approach computationally intensive, if not prohibitive.
With the development of bio–inspired optimization methods,
a number of alternative algorithms have been designed to
directly solve the multi–objective control problem by simul-
taneously handling all the objectives [1]. The common basic
idea to all these methods is to formulate the control problem
as a simulation–based optimization of the policy parameters
within a given class of functions and to generate a subset

of the theoretical Pareto–optimal solutions in one single run.
Whilst also these approaches suffer from some computational
burden associated with the number of objectives considered,
for problems with more than two objectives they are definitely
more efficient than any other method based on the resolution of
multiple single–objective problems. However, as the number of
objectives grows, the number of simulation runs they require
to produce an acceptable approximation of the Pareto frontier
might be considerably high and computationally intractable.

Multi–objective Reinforcement Learning (MORL) is re-
cently emerging as a potentially interesting alternative to the
above two approaches to efficiently design multi–objective
control policies [2], [3], [4], [5], [6], [7]. Among the works so
far published under the MORL umbrella, the most related to
the approach presented in this paper is the one presented in [7],
which reduces the time– and space–complexity of the Convex
Hull Value Iteration algorithm and extends it to continuous–
state problems (using linear function approximation) where the
model is unknown and batch data are used. Nonetheless, the
complexity of the algorithm becomes overwhelming when the
number of objectives is larger than three. For a recent survey
of the field, we refer the reader to [8].

In this paper we present a novel MORL algorithm, which is
a multi–objective extension of the single–objective Fitted Q-
Iteration (FQI) algorithm [9]. The key idea of multi–objective
FQI (MOFQI) is to enlarge the continuous approximation of
the action–value function, which FQI performs over the state–
control space, also to the weight space by including new
variables (the weights) within the arguments of the action–
value function. As a result, MOFQI is able to approximate,
with a single learning process, all the policies associated to
any convex linear combination of the different objectives. In
this way, it is possible to exploit the benefits (inherited from
the FQI algorithm) of working with any kind of regression
algorithm. The properties of MOFQI are first evaluated by
application to a numerical Test case study of a two–objective
reservoir system. Pareto–optimal operating policies designed
by tree-based MOFQI are compared with those generated by
several runs of tree-based FQI for different linear combinations
of the objectives, and the nearly optimal solution provided
by Stochastic Dynamic Programming. The potential of the
proposed MOFQI approach is subsequently explored by ap-

U.S. Government work not protected by U.S. copyright

WCCI 2012 IEEE World Congress on Computational Intelligence
June, 10-15, 2012 - Brisbane, Australia IJCNN

plication to a real–world case study, the operation of the Hoa
Binh reservoir in Northern Vietnam.

II. MULTI-OBJECTIVE MARKOV DECISION PROCESSES

A discrete–time continuous Markov Decision Process
(MDP) is described as a tuple 〈X,U, P,R, γ, µ〉, where X ⊂
Rn is the continuous state space, U ⊂ Rm is the continuous
action space, P (y|x, u) is the transition model that defines
the transition density between state x and y under action u,
R(x, u, y) is a reward function that specifies the instantaneous
reward when state y is reached by taking action u in state
x, γ ∈ [0, 1) is a discount factor, and µ is the initial–state
distribution from which the starting state is drawn. The policy
is characterized by a density distribution π(u|x) that specifies
the probability of taking action u in state x. The value of a
state x under a policy π is the expected return when starting
in x and following π thereafter:

V π(x) =

∫
U

∫
X

(R(x, u, y) + γV π(y))P (dy|x, u)π(du|x).

Solving an MDP means to find a policy that maximizes the
above function in each state (called value function). The op-
timal value function is the solution of the Bellman optimality
equation:

V ∗(x) = max
u∈U

∫
X

(R(x, u, y) + γV ∗(y))P (dy|x, u).

Given the initial–state distribution µ, it is possible to define
the maximum expected return:

J∗µ =

∫
X

V ∗(x)µ(dx). (1)

To simplify notation, in the following subscript µ will be
omitted where possible. For control purposes, it is better to
consider action values, i.e., the value of taking action u in
state x and following a policy π thereafter. The optimal action–
value function is the solution of the following equation:

Q∗(x, u) =

∫
X

(
R(x, u, y) + γ max

u′∈U
Q∗(y, u′)

)
P (dy|x, u).

Any MDP has at least one deterministic stationary optimal
policy that takes in each state the action with the highest value,
π∗(x) = arg max

u∈U
Q∗(x, u).

Multi-Objective MDPs (MOMDPs) are an extension of the
MDP model, where several pairs of reward functions and
discount factors are defined, one for each objective. Formally,
a MOMDP is described as a tuple 〈X,U, P,R,γ, µ〉, where
R = [R1, . . . , Rq] and γ = [γ1, . . . , γq] are q-dimensional
vectors of reward functions and discount factors respectively.
In MOMPDs, any policy π is associated to q value functions
Vπ = [V π1 , . . . , V

π
q], where V πi is defined as

V πi (x) =

∫
U

∫
X

(Ri(x, u, y) + γiV
π
i (y))P (dy|x, u)π(du|x).

Given the initial–state distribution µ and the vector of value
functions Vπ for policy π, it is possible (as done in Eq. 1) to
compute the vector of expected returns Jπ = [Jπ1 , . . . , J

π
q].

Definition 1: Policy π dominates policy π′ if there exists
1 ≤ i ≤ q such that Jπi > Jπ

′

i and there does not exist
1 ≤ j ≤ q such that Jπj < Jπ

′

j .
Definition 2: Policy π is Pareto–optimal if there is no

policy π′ that dominates π.
In general, it is not possible to find a single policy which

dominates all the others; when conflicting objectives are
considered, no policy can simultaneously maximize all the
objectives. Solving a MOMDP means to find the set of Pareto–
optimal policies Π∗ = {π|@π′ that dominates π}, which maps
to the so–called Pareto frontier J ∗ = {Jπ∗ |π∗ ∈ Π∗}.

The traditional approach to solve a multi–objective problem
is to transform it into a series of single–objective problems
by combining the different objectives with some scalarizing
function ψ : Rq → R [10]. The most straightforward choice
for ψ is a convex combination of the objectives (weighted–sum
method) using weights λ = [λ1, . . . , λq] ∈ Λq−1, where Λq−1

is the unit (q− 1)–dimensional simplex (so that
∑q
i=1 λi = 1

and λi ≥ 0 for all i). To simplify notation, in the following
we drop the superscript q− 1 from the simplex symbol when
there is no risk of confusion. Each vector of weights λ defines
a single–objective MDP with the following reward function:

Rλ(x, u, y) =

q∑
i=1

λiRi(x, u, y).

By linearity of the mathematical expectation and the weighted
sum, the expected return of policy π with weight vector
λ is: Jπλ = λ′ · Jπ. Since all optimal policies of such
single–objective MDPs (Π∗Λ = {π∗λ}λ∈Λ) are provably Pareto–
optimal solutions of the original MOMDP [11], the Pareto–
frontier can be estimated by computing the set of expected–
return vectors obtained for all the possible values of λ:
J ∗Λ =

{
Jπ
∗
λ

}
λ∈Λ

.
However, not all Pareto–optimal points can be obtained in

this way; in fact, deterministic policies do not suffice for
Pareto optimality (Π∗Λ ⊂ Π∗). The reason is that different
non-dominated trade–offs among criteria can be obtained by
considering stochastic policies [6]. Nonetheless, since the
expected–return vector of any stochastic policy is in the
convex hull of the expected-return vectors of deterministic
policies, the Pareto frontier can be fully estimated from the
set of non-dominated deterministic policies computed using
the weighted–sum method1.

An approximation of the set of Pareto–optimal policies, and
the associated Pareto frontier, is obtained by considering a
finite number of sample weight combinations Λ̂ ⊂ Λ. The
more weights combinations are evaluated the more accurate
the approximation, but also the longer the computing time
needed. The advantage is that such single–objective MDPs
can be solved by many standard single–objective methods like
dynamic–programming and linear–programming, or faced with
reinforcement–learning techniques.

1In episodic tasks, to determine policies for each point on the frontier,
instead of stochastic policies, we can consider mixture policies, i.e., stochastic
combinations of deterministic policies [6].

III. MULTI–OBJECTIVE BATCH REINFORCEMENT
LEARNING

When the state space and the action space are finite, MDPs
can be solved using dynamic–programming algorithms (such
as value iteration or policy iteration) or linear programming in
polynomial time. Nonetheless, they suffer from the Bellman’s
curse of dimensionality that prevents their application in
many real–world problems involving medium–to–high order
continuous dynamical systems. To overcome these limits, a
plethora of approximate dynamic–programming methods [12]
have been devised in the recent past. Furthermore, in sev-
eral applications, the system dynamics are unknown, thus
making such methods useless. Reinforcement Learning (RL)
algorithms allow the estimation of Q∗(x, u) directly interact-
ing with the environment through a trial–and–error process.
Recently, considerable interest has developed in the study of
batch-mode RL algorithms that, on the basis of experience
samples previously collected from the system, allow to learn
offline solutions to control problems.

A. Fitted Q–iteration

While in online learning the control policy is modified
step by step according to the previous experience, the batch
approach aims at determining the best control policy given
a set of experience samples D = {〈xi, ui, yi, ri〉}1≤i≤N
previously collected according to a given sampling strategy2.
Since learning is performed off-line, there is no need for
directly experimenting on the real system, which is a key
requirement in many real–world systems (e.g. water resources
systems) for which experiments would lead to unsustainable
costs in terms of time, social, and economic loss [14].

In particular, good results have been achieved by the fitted
Q–iteration algorithm [9] a model–free approach derived from
the fitted value iteration approach. The idea of FQI is to
reformulate the RL problem as a sequence of supervised
learning problems.

Given the dataset D, in the first iteration of the al-
gorithm, for each tuple 〈xi, ui, yi, ri〉, the corresponding
training pair is set to (xi, ui) → ri, and the goal is
to use a regression algorithm to estimate a function that
approximates the expected immediate reward Q1(x, u) =
E[R(xt, ut)|xt = x, ut = u]. The second iteration, based
on the approximation Q̂1 of the Q1–function, extends the
optimization horizon one step further, by estimating function
Q̂2 through regression on the following training dataset: T2 ={[

(xi, ui)→ ri + γmax
u∈U

Q̂1(yi, u)

]}
1≤i≤N

. By proceeding

in the same way, at the kth iteration, using the approximation
of the Qk−1–function, we can compute an approximation of
the optimal action–value function at horizon k. The procedure
iterates until the Q–function converges or a maximum number
of iterations is reached (see [9] for a discussion about the

2It is assumed that samples in D are enough to avoid conditioning problems
with regression algorithms [13].

stopping condition and the convergence properties of the
algorithm).

B. Multi–Objective Fitted Q–iteration

In this paper we propose to extend the FQI algorithm to
multi–objective problems, thus producing the multi–objective
FQI (MOFQI). The idea is to enlarge the state space X with
the unit (q−1)–dimensional simplex Λq−1, in order to consider
different weight combinations of the q objectives. Starting
from the original dataset D, a new dataset for MOFQI is
created by generating new tuples. For each tuple in D, k
new tuples are produced by adding a random weight vector
(uniformly drawn from the unit (q− 1)–dimensional simplex)
on which the new reward value is computed:

DMO = {〈xi,λi, ui, yi,λi,λ′i ·R(xi, ui, yi)〉}1≤i≤NMO
, (2)

where NMO = N · k is the number of tuples in the MOFQI
dataset3. It is worth noting that the weight values are actually
constant parameters. The result is that MOFQI approximates
an optimal action–value function which is parameterized by
λ: Q̂∗(x,λ, u). In this way, it is possible to generalize
information even over the weight space and, after a single
training process, MOFQI learns a continuous approximation
of the optimal policy over the weight space:

π̂∗λ(x) = arg max
u∈U

Q̂(x,λ, u),

from which the approximate Pareto frontier ĴΛ =
{
Jπ̂
∗
λ

}
λ∈Λ

.
The state space wherein MOFQI operates has a higher

dimension than the one of the corresponding single–objective
algorithm. As a consequence, to obtain similar performances,
MOFQI requires in general more tuples than FQI. Nonetheless,
starting from the dataset D used by FQI, it is possible to gen-
erate, by increasing the tuple multiplication factor k, a dataset
DMO for MOFQI with an arbitrarily larger number of samples
(NMO � N) without collecting new experience samples from
the system. As we will see in the experimental section (see
Section IV-E), the use of MOFQI is computationally more
efficient than solving multiple single–objective problems as
soon as the number of these problems exceeds a few units.
Furthermore, the generalization over the weight space may
be a key factor when problems with many objectives are
considered.

IV. TEST CASE STUDY

To evaluate the proposed MOFQI approach, we consider a
typical multi–objective control problem: the optimal operation
of a water reservoir [14]. For the sake of clarity and to
better describe the MOFQI properties, we initially consider a
numerical case study, where a simplified stationary model of
the problem is defined. A description of parameters used in the

3In the general MOMDP formulation, objectives can be associated to
different discount factors. Although in this paper we focus only on MOMDPs
with a unique discount factor, MOFQI can be easily adapted to work in
the more general setting by generating the training datasets as follows:
Tk = [(xi, ui) =>

∑q
j=1 λjγ

L−k
j rj,i +max

u
Qk−1(yi, u)], where L is

the temporal horizon.

experiments for the different algorithms and the introduction
of the criterion used to evaluate their performance complete
this section.

A. MOMDP model of a water reservoir

A water reservoir can be modeled as a MOMDP with a
continuous state variable representing the water volume stored
in the reservoir, a continuous action that controls the water
release, a state–transition model that depends also on the
stochastic reservoir inflow, and a set of conflicting objectives
(e.g., avoiding floods, irrigation supply, energy supply, naviga-
tion). Formally, the state–transition function can be described
by the mass balance equation:

xt+1 = xt + εt+1 −max (ut,min(ut, ut)) (3a)

where xt is the reservoir storage at time t; εt+1 is the reservoir
inflow from time t to t + 1, generated by a white noise
process with normal distribution εt+1 ∼ N(40, 100); ut is the
release decision; ut and ut are the minimum and maximum
releases associated to the storage xt according to the following
relations

ut = xt and ut = max(xt − 100, 0) (3b)

In this case study, two objectives are considered: flooding
along the lake shores and irrigation supply. The associated
immediate reward to the flood objective is the negative of
the cost due to the excess level w.r.t. a flooding threshold
h̄: R1(xt, ut, xt+1) = −max(ht+1 − h̄, 0), where ht+1 is
the reservoir level, given by the storage xt+1 divided by the
reservoir surface S (in the following experiments S = 1),
and the flooding threshold is set to 50. The immediate reward
function for the other objective is the negative of the deficit in
the water supply w.r.t. the water demand ρ̄: R2(xt, ut, xt+1) =
−max(ρ̄ − ρt, 0), where ρt = max (ut,min(ut, ut)) is the
release from the reservoir and the water demand is 50. Given
the non–economic nature of the above performance indicators
and since the MOMDP can be solved optimizing over a finite–
time horizon, we set the discount factor γ to 1 for all the
objectives.

B. Algorithm Parameters

To evaluate the effectiveness of the MOFQI algorithm
we have analyzed its performance in comparison with the
solutions found by FQI and Stochastic Dynamic Programming
(SDP) using the weighted-sum method. In the following we
describe how we have computed the reference solution using
SDP and the parameterizations used for FQI and MOFQI in
the experiments of Section IV-E.

1) Stochastic Dynamic Programming: As a reference solu-
tion we consider the Pareto solutions computed by Stochastic
Dynamic Programming (SDP) at 11 different values of the
weight vector, namely λ = [λ1, 1 − λ1] with λ1 ∈ Λ̂ =
{0.0, 0.1, 0.2, . . . , 1.0}. For each λ, SDP consists in deter-
mining the optimal value function V ∗(·,λ), which returns the

maximum expected reward associated to each state xt:

V ∗(xt,λ) = max
ut

E
εt+1

[Rλ(xt, ut, xt+1) + γV ∗(xt+1,λ)].

(4)
Expectation in (4) requires knowledge of the disturbance prob-
ability distribution function (pdf). Since we want a reference
solution, a perfect knowledge of such pdf is assumed. The
equation is solved numerically, using 156 uniformly spaced
storage values (from 0 to 155); 161 values of the control ut
(from 0 to 160); and 81 values of inflow εt+1 (from 0 to 80).
The solution algorithm is iterative. At each iteration (say the
k-th), the current estimate V̂ k(·) of the Bellman function is
used to approximate V ∗(·) on the right hand side of (4) and
derive the new estimate V̂ k+1(·). At the first iteration, the
value function is initialized at V̂ 0(xt) = 0 for all discretized
values of xt. If γ < 1, the approximate Bellman function
converges and the algorithm terminates when the maximum
absolute difference between V̂ k(·) and V̂ k+1(·) goes below
a given tolerance threshold. Alternatively, the algorithm can
be interrupted after a prescribed number of iterations (this is
the termination test used when γ = 1). After the final iteration
(say the Lth), the approximation of the optimal value function
is assumed equal to its last approximation, V̂ ∗(xt) = V̂ L(xt),
∀xt. Once the value function has been computed, the optimal
policy is:

π̂∗λ(xt) = arg max
ut

E
εt+1

[Rλ(xt, ut, xt+1) + γV̂ ∗(xt+1,λ)].

Numerical results presented in Section IV-E have been ob-
tained by L = 10 iterations.

2) FQI and MOFQI: The simple reservoir model consid-
ered in this case study, allow us to feed both FQI and MOFQI
algorithms with experience samples drawn uniformly random
from the state–action space; for each sample the next state and
reward values are obtained from the generative model (3). The
only difference between the dataset for FQI and the one for
MOFQI is that in the multi–objective case the state space has
one more dimension which represents the value of weight λ1.
As a result, the dataset takes the shape presented in Eq. 2.

We have chosen to approximate the Q–functions using
extremely–randomized trees (Extra–Trees) [15] since they
have been successfully combined with the FQI algorithm
in many applications [9], [14]. Given a dataset D =
{〈il, ol〉}1≤l≤N , the extra–tree building algorithm grows an
ensemble of M regression trees. Nodes are split using the
following rule: K alternative cut-directions (regressor input)
are randomly selected and, for each one, a random cut-point
is chosen; a score (explained variance) is then associated to
each cut-direction and the one maximizing the score is adopted
to split the node (for details, see [15]). The algorithm stops
partitioning a node if its cardinality is smaller than nmin and
the node is therefore a leaf. To each leaf a value is assigned,
obtained as the average of the regressor outputs ol associated
to the inputs il that fall in the leaf. The estimates produced by
the M trees are finally aggregated with arithmetic average.

In the following experiments we have used M = 100 trees
and a number of alternative cut directions equal to the number

of state and actions variables (two for FQI and three for
MOFQI). The score function and the termination test of the
split process have been slightly modified w.r.t. to the ones
proposed in [15]. In [15], the node is split in the direction
with the largest variance reduction and the split process is
recursively repeated until the number nmin of samples in the
node falls below a given threshold, which determines how
much each regression tree generalizes over the input space.
Since choosing such threshold may be difficult and using the
same generalization over the whole input space may be not
effective, we propose a different score function based on a
Student’s t-test to estimate which cut is most likely to partition
the input space into two subsets with different output means.
Exploiting this information, the splitting process is stopped
when no cut has a probability higher than τ% of producing
two regions with different output means (after tuning, in the
experiments we used τ = 0.98).

C. Performance Evaluation

Policies produced by SDP and learning algorithms are eval-
uated using Monte Carlo simulations. Each simulation consists
of 100 steps and is repeated 10 times (using independent
realizations of inflow trajectories) for each one of the 10
different initial states (chosen uniformly random over the state
space X). As a consequence, the performance of each policy
π is evaluated on 100 scenarios of 100 steps. The result is
a performance vector J

π
whose components are the average

rewards per step associated to each objective under π.

D. Comparing two Pareto frontiers

In the recent past, many performance metrics for multi–
objective optimization have been proposed [16]. From [16], we
adopt a measure that, for any weight λ, takes into account the
difference between the aggregate expected return in the opti-
mal Pareto frontier and the one produced by an approximated
algorithm. The measure is normalized by the differences of
optimal function values in the Nadir and Utopia points. Given
the weighted linear combination of the reward functions, we
measure the loss L of an approximation of the Pareto frontier,
denoted with ĴΛ =

{
J π̂
∗
λ

}
λ∈Λ

, w.r.t. the subset of the optimal
Pareto frontier obtained considering the optimal solutions for
any weight vector J ∗Λ =

{
Jπ
∗
λ

}
λ∈Λ

as:

Lp(ĴΛ,J ∗Λ) =

∫
λ∈Λ

(Jπ
∗
λ − J π̂∗λ)

∆J∗λ
p(dλ), (5)

where p(·) is a probability density over the simplex Λ and

∆J∗λ =

q∑
i=1

λi

(
max
λ′∈Λ

J
π∗
λ′

i − min
λ′∈Λ

J
π∗
λ′

i

)
is the normalization

factor. According to this (non–negative) measure, an approx-
imate Pareto frontier Ĵ AΛ produced by algorithm A is better
than the approximation Ĵ BΛ produced by algorithm B when
Lp(Ĵ AΛ ,J ∗Λ) < Lp(Ĵ BΛ ,J ∗Λ) (i.e., if its loss is smaller). Since,
in general, the optimal Pareto frontier J ∗ is not available, a
reference Pareto frontier can be used instead.

E. Experimental Results

In this section, we will show how the non-dominated
policies for the previously–defined water–reservoir control
problem are approximated by the MOFQI algorithm. As a
reference, we consider the solutions computed by SDP for
the set of weight values. Although the solution computed by
SDP is still an approximation, the discretization described
in Section IV-B1 achieves near–optimal performance. Fur-
thermore, we discuss computational aspects of the proposed
approach when compared to frontier approximation by means
of multiple executions (using different weights) of the single–
objective FQI algorithm.

Figure 1 shows the continuous multi–objective value func-
tion computed with MOFQI on a dataset composed of 20, 000
tuples (10, 000 experience samples and k = 2) and compares
it with the discrete approximation V̂ ∗(·,λ) produced by SDP
for the 11 sampled weights values Λ̂ 4. As we can notice,
the approximation produced by MOFQI is fairly good for
mid–range weight values, while it is quite inaccurate at the
boundaries. This behavior is not surprising and it is usual
when, as in the case of Extra-trees, an averager [17] is
used as function approximator. Since averagers use convex
combinations of output values associated to neighbor samples,
they generally fail to extrapolate properly and approximation
errors at the edges of the sampled space are often larger.
Nonetheless, as shown in Fig. 2, the infinite set of policies
(parameterized in λ) learned by MOFQI is quite close to the
finite set of policies computed by SDP.

For λ1 = 0, i.e., only the irrigation objective is considered,
the optimal decision is to release the water demand (50) as
long as this is possible (storage xt ≥ 50), and the maximum
possible (xt) otherwise (Fig. 2). Correspondingly, the optimal
value function (Fig. 1) is lowest when the reservoir is empty
(critical situation) and increases with the storage. For λ1 = 1,
i.e., only the flood objective is considered, the optimal decision
is to always release the maximum possible, i.e., xt (Fig. 2).
The optimal value function (Fig. 1) is independent of the
storage, in fact, if one releases the maximum possible, then the
future state xt+1 does not depend on the current state xt but
equals the inflow εt+1 (see (3)). Intermediate weight values
lead to compromise solutions.

Figure 3 shows the Pareto frontiers obtained by Monte
Carlo simulations (as explained in Section IV-C) of the non-
dominated solutions produced by the different algorithms. As
we can see, the approximation of the Pareto frontier produced
by FQI using 10, 000 samples is similar to the one of MOFQI
when using the same 10, 000 samples to build a dataset with
20, 000 tuples. Nonetheless, from the computational perspec-
tive, it is worth recalling that FQI has to solve as many single–
objective learning problems (using 10, 000 tuples for each of
them) as the number of points used to approximate the Pareto
frontier.

Since MOFQI has been proposed as an alternative approach

4In the plot, the marks are less than 11 because, as it often happens in MO
problems, some points overlap

 0 20 40 60 80 100 120 140 160 0
 0.2

 0.4
 0.6

 0.8
 1

-3

-2.5

-2

-1.5

-1

-0.5

 0

V
*

MOFQI vs SDP Bellman’s value functions

x λ

V
*

-2
-1.8
-1.6
-1.4
-1.2
-1
-0.8
-0.6
-0.4
-0.2

Fig. 1: Comparison between the value function by SDP for
11 weight values and the one estimated by MOFQI over the
whole weight space.

 0 20 40 60 80 100 120 140 160 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 20
 40
 60
 80

 100
 120
 140
 160

u

MOFQI vs SDP policies

x

λ

u

 0
 20
 40
 60
 80
 100
 120
 140
 160

Fig. 2: Comparison between the control law by SDP for 11
weight values and the one estimated by MOFQI over the whole
weight space.

-10.8

-10.6

-10.4

-10.2

-10

-9.8

-9.6

-9.4

-3.5 -3 -2.5 -2 -1.5 -1 -0.5

J
2

J1

SDP
FQI (10000 tuples)

MOFQI (20000 tuples)

Fig. 3: Comparison among the approximated Pareto frontiers
obtained with SDP, FQI, and MOFQI for 11 weight values.

samples FQI MOFQI
k = 1 k = 2 k = 3 k = 4 k = 5

1000 0.321 0.654 0.532 0.506 0.389 0.313

2000 0.265 0.527 0.504 0.433 0.329 0.287

3000 0.241 0.480 0.421 0.383 0.282 0.242

4000 0.240 0.458 0.380 0.324 0.241 0.224

5000 0.224 0.444 0.351 0.250 0.239 0.223

10000 0.208 0.348 0.237 0.209 0.199 0.190

TABLE I: Loss of FQI and MOFQI (with different factors k)
w.r.t. SDP when different sample size are considered

to the repeated application of single-objective FQI following
the weighting method, we will discuss in what conditions
MOFQI outperforms repeated FQI. Table I shows the loss L
(as defined in Eq. 5) for FQI and MOFQI (using different
values for the multiplication factor k) algorithms w.r.t. to SDP,
as the number of experience samples varies between 1, 000 and
10, 000. The loss has been computed by considering p(·) as
a uniform distribution over the discrete set Λ̂ of 11 weights
defined in the previous section. As expected, the loss reduces
for both the approaches as the number of experience samples
increases and the number of tuples required for the multi–
objective problem is larger than the one needed by FQI for
learning single–objective problems, the accuracy being the
same. From the data in Table I, we can observe that, starting
from the same set of experience samples, MOFQI performs as
FQI when its training dataset is about five times larger than
the one of FQI. From the computational perspective, while
the training time of FQI grows linearly with the number of
required points on the Pareto frontier, MOFQI is independent
of such number. So, we can conclude that, to have a dense
approximation of the Pareto frontier, MOFQI is computation-
ally preferable to repeated FQI (in the proposed test case, this
is true as long as more than five points are required).

V. HOA BINH RESERVOIR CASE STUDY

The second case study considered in this paper is a real-
world system, the Hoabinh reservoir in Northern Vietnam
(Figure 4). The reservoir has a surface area of about 198 km2

and an active storage of 6.056 billion m3. The main objectives
of reservoir operation are hydropower production (the plant
has a capacity of 1920 MW and produces more than 7,000
GWh per year) and flood mitigation in the downstream city
of Hanoi. The reservoir and the downstream river network
are modeled by a combination of conceptual and data-driven
models with a daily resolution time step. A detailed description
of the system and associated model can be found in [18], here
we will provide a brief description of the problem formulation
as a MODMP.
The problem can be modeled with two state variables, the
reservoir storage and the corresponding day of the year5, the
action variable u is the release decision for the next 24 hours,
and the future state is the reservoir storage y on the day after,
estimated by a mass balance equation like (3a), and t+1. The
minimum and maximum feasible release u and u are computed

5Since the system can be described as cyclostationary with period T = 365
days, we can obtain a stationary MDP by enlarging the state space with the
time variable [19].

based on the storage and inflow values, and taking into account
the rating curves of the bottom and intermediate gates and the
spillways. The reward associated to the hydropower objective
(R1) is the value (ranging from 0 to 1) of the daily hydropower
production, the one of flood control (R2) is the cost of floods
changed in sign, i.e. it ranges from -1 (maximum cost) to 0
(minimum cost), and it is estimated by a non–linear function
of the water level in Hanoi.

A. Experimental setup for FQI and MOFQI

Time series of measured flows over the period 1957-1978
together with the simulation model were used to generate the
dataset for FQI and MOFQI. For each day in the time series,
ten storage and action values were randomly sampled: the
storage is drawn uniformly over the range from 3.7151×109

to 1.0415×1010 m3, while the action is randomly chosen from
a finite set of 20 values of daily average release, ranging from
0 to 13,000 m3/s. The total number of experience samples
is 73, 650. First, FQI is repeatedly applied under 6 different
values of the weight λ1. Then, MOFQI is applied once, using
the enriched dataset of Eq. (2). Such dataset is obtained by
associating each original experience sample with k random
sampled weight values6; in the following, results relevant to
the case k = 3 and k = 7 will be compared.
In all the optimization experiments, Extra Trees were used to
approximate the state–action value function, with M = 100
trees and a number of alternative cut directions K equal to
3 for FQI and 4 for MOFQI. The threshold τ for computing
the score function described at the end of Sec. IV-B2 was set
to 0.9. The number of algorithm’s iterations L was decided
based on the analysis of the system functioning. From the
definition of the hydropower objective, it follows that the
optimal reservoir operation should allocate the hydropower
production in the period of maximum energy value, i.e. from
April to June. The storage to sustain such production must
have been created in the previous flood season (August–
September of the previous year) that is around 200 days
before. The optimal operation horizon for the flood objective,
instead, is much shorter since the time required to empty the
reservoir in anticipation of a big flood is around 10 days. Since
the number of algorithm iterations should correspond to the
maximum length of the operation horizon for the considered
objectives, L was set to 200.

B. Experimental Results

The operating policies were simulated under the time series
of observed reservoir inflows and Lo and Thao discharges
over the time horizon 1957-1978 (calibration dataset) and the
horizon 1995-2004 (validation dataset). Performances over the
validation dataset can be compared to the historical operation
(average reward values: J1=0.292, J2=-0.129), as the reservoir
construction was completed in 1989 and its filling in 1994.

6In this experiment k− 2 weight values were randomly chosen, while the
remaining two were set to λ1 = 1 (hydropower only) and λ1 = 0 (flood
control only).

Hoa Binh
 Red  
River

Hanoi

Da  
River
 SonTay

Lo  
River
Thao  

River

VuQuang

YenBai

VIETNAM

CHINA

LAOS

CAMBODIA

THAILAND

Catchment area

Reservoir

Fig. 4: The Hoa Binh reservoir water system in Northern
Vietnam.

0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
−0.22

−0.2

−0.18

−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

J1 (hydropower)
J 2 (f

lo
od

 c
on

tro
l)

FQI
MOFQI (k=3)
MOFQI (k=7)

Fig. 5: Hoa Binh case study: comparison among the approx-
imated Pareto frontiers obtained with FQI and MOFQI with
different multiplication factors (validation dataset). Magenta
diamond is the historical operation performance.

Table II reports the objective values over the calibration
dataset, Table III those of the validation dataset. Figure 5 also
shows the policies performances over the validation dataset.
First, it can be noticed that the performances of MOFQI are
obviously higher with larger multiplication factor k. More
interestingly, the comparison of FQI and MOFQI (with k = 7)
for λ1 between 0 and 0.5 (i.e., flood control is more relevant
than hydropower production) shows that while FQI outper-
forms MOFQI over the calibration dataset, it is outperformed
over the validation dataset. The result is consistent with the
findings of [20] for multi-task learning algorithm: learning
the solutions of multiple tasks simultaneously, as in MOFQI,
improves generalization abilities, while learning on a single
task, as in reiterate FQI, is more likely to overfit the data.

For λ1 > 0.5, it can be noticed that MOFQI performs
rather poorly with respect to FQI. The reason is that, as
stated above, the maximization of the hydropower objective
requires a longer time horizon (around 200 days) than the
flood control objective (about 10 days). This implies that the
number L of algorithm iterations must be high, thus increasing
the approximation error in the action–value function estimate.
To reduce such approximation errors, the number of tuples
must be increased, i.e. a much larger multiplication factor k
must be used for MOFQI.

TABLE II: Hoa Binh case study: objective values (hyd=hydropower; flo=flooding) over the calibration dataset 1957-1978. Best
scores in boldface.

FQI MOFQI (k=3) MOFQI (k=7)
λ1 hyd flo J hyd flo J hyd flo J
0.0 0.244 -0.043 -0.043 0.222 -0.043 -0.043 0.206 -0.041 -0.041
0.1 0.269 -0.046 -0.015 0.225 -0.062 -0.033 0.207 -0.050 -0.024
0.5 0.284 -0.056 0.114 0.232 -0.068 0.082 0.247 -0.057 0.095
0.7 0.300 -0.057 0.194 0.236 -0.075 0.143 0.260 -0.064 0.163
0.9 0.326 -0.076 0.286 0.262 -0.088 0.228 0.283 -0.077 0.247
1.0 0.328 -0.100 0.328 0.326 -0.100 0.326 0.328 -0.093 0.328

TABLE III: Hoa Binh case study: objective values (hyd=hydropower; flo=flooding) over the validation dataset 1995-2004. Best
scores in boldface.

FQI MOFQI (k=3) MOFQI (k=7)
λ1 hyd flo J hyd flo J hyd flo J
0.0 0.244 -0.106 -0.106 0.215 -0.076 -0.076 0.210 -0.076 -0.076
0.1 0.278 -0.110 -0.071 0.223 -0.091 -0.060 0.221 -0.083 -0.053
0.5 0.279 -0.119 0.080 0.234 -0.102 0.066 0.244 -0.083 0.081
0.7 0.299 -0.124 0.173 0.250 -0.181 0.121 0.272 -0.174 0.138
0.9 0.335 -0.184 0.284 0.268 -0.194 0.223 0.278 -0.178 0.233
1.0 0.338 -0.203 0.339 0.336 -0.201 0.337 0.335 -0.195 0.336

VI. CONCLUSION

In this paper we presented an extension of batch-mode Rein-
forcement Learning to derive multi–objective optimal control
policies. Experience gained from experiments conducted on
a synthetic multi–purpose water reservoir shows that, using a
relative small number of experience samples, MOFQI provides
a good approximation of the Pareto–optimal frontier as com-
puted with several repetitions of Stochastic Dynamic Program-
ming for different weight values. In addition, MOFQI becomes
computationally more efficient than the repeated application
of its single–objective twin, FQI, when more than five points
are used to approximate the Pareto frontier. The Hoa Binh
reservoir case study was used to evaluate the benefits from the
applicability of MOFQI on a real world sized problem. The
approximation of the Pareto frontier produced by FQI using
73,650 tuples dominates the one by MOFQI when using the
same 73,650 samples to build a dataset with 3×73,650 tuples.
By enlarging the data set to 7×73,650 tuples, MOFQI provides
comparable results, in terms of aggregated objective value,
with those by FQI. However, with no additional computation
cost the approximation of the Pareto front by MOFQI can be
made much more dense, thus allowing for a more accurate
exploration of trade-offs and for a better informed decision-
making. A generalized analysis of the algorithm’s computa-
tional requirements will be the subject of future studies.

REFERENCES

[1] Z. Abidin, M. Arshad, and U. Ngah, “A Survey: Animal-Inspired
Metaheuristic Algorithms,” in 2nd Postgraduate Colloquium School of
Electrical & Electronic USM, EEPC, 2009.

[2] Z. Gábor, Z. Kalmár, and C. Szepesvári, “Multi-criteria reinforcement
learning,” in Proc. of ICML, 1998, pp. 197–205.

[3] S. Mannor and N. Shimkin, “A geometric approach to multi-criterion
reinforcement learning,” JMLR, vol. 5, pp. 325–360, 2004.

[4] S. Natarajan and P. Tadepalli, “Dynamic preferences in multi-criteria
reinforcement learning,” in Proc. of ICML, 2005, pp. 601–608.

[5] L. Barrett and S. Narayanan, “Learning all optimal policies with multiple
criteria,” in Proc. of ICML, 2008, pp. 41–47.

[6] P. Vamplew, R. Dazeley, E. Barker, and A. Kelarev, “Constructing
Stochastic Mixture Policies for Episodic Multiobjective Reinforcement
Learning Tasks,” AI 2009: Advances in Artificial Intelligence, pp. 340–
349, 2009.

[7] D. J. Lizotte, M. Bowling, and S. A. Murphy, “Efficient reinforcement
learning with multiple reward functions for randomized controlled trial
analysis,” in Proc. of ICML, 2010, pp. 695–702.

[8] P. Vamplew, R. Dazeley, A. Berry, R. Issabekov, and E. Dekker,
“Empirical evaluation methods for multiobjective reinforcement learning
algorithms,” Machine Learning, pp. 1–30, 2010.

[9] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-based batch mode reinforce-
ment learning,” Journal of Machine Learning Research, vol. 6, no. 1,
pp. 503–556, Apr. 2005.

[10] P. Perny and P. Weng, “On finding compromise solutions in multiobjec-
tive markov decision processes,” in ECAI, 2010, pp. 969–970.

[11] K. Chatterjee, R. Majumdar, and T. Henzinger, “Markov decision
processes with multiple objectives,” STACS 2006, pp. 325–336, 2006.

[12] W. Powell, Approximate Dynamic Programming: Solving the curses of
dimensionality. Wiley-Interscience, 2007.

[13] R. Munos and C. Szepesvári, “Finite-time bounds for fitted value
iteration,” J. of Machine Learning Research, vol. 9, pp. 815–857, 2008.

[14] A. Castelletti, S. Galelli, M. Restelli, and R. Soncini-Sessa, “Tree-based
reinforcement learning for optimal water reservoir operation,” Water
Resources Research, vol. 46, no. 9, p. W09507, 2010.

[15] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine Learning, vol. 63, no. 1, pp. 3–42, 2006.

[16] M. P. Hansen and A. Jaszkiewicz, “Evaluating the quality of approxi-
mations to the non–dominated set,” Technical University of Denmark,
Tech. Rep. IMM-REP-1998-7, 1998.

[17] G. Gordon, “Approximate solutions to markov decision processes,”
Ph.D. dissertation, Computer Science Department, Carnegie Mellon
University, Pittsburgh, PA, 1999.

[18] A. Castelletti, F. Pianosi, X. Quach, and R. Soncini-Sessa, “Assessing
water resources management and development in Northern Vietnam,”
Hydrology and Earth System Sciences Discussions, vol. 8, no. 4, pp.
7177–7206, 2011.

[19] A. Castelletti, S. Galelli, M. Restelli, and R. Soncini-Sessa, “Tree-based
reinforcement learning for optimal water reservoir operation,” Water
Resources Research, vol. 46, no. W09507, 2010.

[20] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1, pp.
41–75, 1997.

