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A parabolic inverse problem with mixed

boundary data. Stability estimates for the

unknown boundary and impedance

V. Bacchelli∗, M. Di Cristo†, E. Sincich‡, S. Vessella§

Abstract

We consider the problem of determining an unaccessible part of the

boundary of a conductor by mean of thermal measurements. We study a

problem of corrosion where a Robin type condition is prescribed on the

damaged part and we prove logarithmic stability estimate.

1 Introduction

In this paper we consider the problem of determine an inaccessible portion I of
the boundary of a conductor body Ω ⊂ R

n by mean of thermal measurements,
performed on an accessible part A of its boundary. In particular we analyze the
situation in which there might be a corrosion occurring on I and our aim is to
recover information on this damaged part that can not be directly inspected.
This leads to a parabolic equation with a Robin type condition on the inac-
cessible part of ∂Ω and a Dirichlet or Neumann condition, according whether
we prescribe a temperature or a heat flux, on A (see [4, 5, 12]). This kinds of
boundary conditions are known as mixed type.

Assuming ∂Ω = A ∪ I and Int∂Ω(A) ∩ Int∂Ω(I) = ∅ and denoting by γ(x, t)
the surface impedance on I, we prescribe a heat flux g on A that induces a
temperature u in Ω solution to

(1.1)






ut = ∆u in Ω× [0, T ],

u(x, 0) = 0 in Ω,

∂u

∂ν
(x, t) = g(x, t) on A× [0, T ],

∂u

∂ν
+ γu = 0 on I × [0, T ],

where ν is the outer unit normal to ∂Ω.
The inverse problem we are addressing to is to recover information on the

unknown part I of the boundary and on the impedance coefficient when thermal
measurements of the form {g, u|Σ}, where Σ ⊂ A, are available. Particularly we
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are interested in the issue of stability, that is we want to study the continuous
dependence of the solution I from the boundary data.

This problem has been considered in the stationary case in [2] with a Dirichlet
or Neumann condition on the unknown boundary I. The authors show that,
keeping as minimal as possible the a priori assumptions on the unknowns, the
solution depends continuously on the boundary measurements with a rate of
continuity of logarithmic type, which is the best possible as shown in [8]. The
non stationary analysis has been carried on in [7] (see also [21] for a first study
of this problem). Also here stability estimates of logarithmic type are provided.
A refined analysis of the problem has been proposed in [9]. Beside the more
general framework considered by the authors, precisely they deal with thermal
conductivity depending on time and space, this article contains a detailed study
on the optimality of logarithmic rate of continuity in the parabolic case.

The problem of determine part of the boundary with Robin type condition
has been considered in [3] where a uniqueness result in the stationary case is
proved, provided two measurements are performed. In view of the example
given in [6], the number of measurements turns out to be optimal. Stability
estimates of logarithmic type has been obtained in [20]. This result is optimal
as well (see [8]). Let us finally mention [19], where a uniqueness result under
weaker regularity assumptions on the boundary has been obtained.

In this paper we show that I depends on thermal boundary measurements
with a rate of continuity of logarithmic type. As in the elliptic case, we perform
two boundary measurements, precisely we prescribe two different heat fluxes and
we read the corresponding temperatures on a portion of the accessible part of
the boundary. The optimality of two measurements is still an unsolved question.
We also believe that the argument used in [9] to prove exponential instability
could be applied in the present setting through minor adaptations.

Main ideas and tools can be outlined as follows.

i) Evaluating how much the error on measurements can effect the error on
an auxiliary function λ obtained as the ratio of the solutions ũ and u cor-
responding to the heat fluxes g̃ and g. Such a control has been obtained
by combining two arguments. The first relies on smallness propagation
estimates based on an iterated use of two–sphere and one–cylinder in-
equality ([10, 22]). The latter is a lower bound for the solution u achieved
by combining the Harnack inequality up to the inaccessible boundary (see
Proposition 4.2) with an iterated application of the interior Harnack in-
equality ([18, 17]).

ii) A lower bound for λ which has been established by the use of quanti-
tative estimates of unique continuation and a proper choice of the given
heat fluxes. Precisely we prescribe functions g and g̃ that are linearly
independent with a quantitative control of such an independence.

iii) Using i) and ii) we prove a first rough estimate of log–log type for the
Hausdorff distance between the unknown domains. Employing, then, in
a more refined way the above mention estimates, in particular using the
two–sphere one–cylinder inequality at the boundary (see Theorem 3.6 and
[10, 22]), and a geometric argument, we get the logarithmic estimate. The
stability for the unknown impedance follows from stability estimates for
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the underlying Cauchy problem and the stability result for the unknown
boundary.

For the sake of exposition, we have chosen to study the inverse problem with
the constant coefficients equation. All proofs, though, can be simply adapted
to the equation with coefficients depending on time and space with reasonable
assumptions on them. Indeed, we deal with an auxiliary function λ that solves
an equation with variable coefficients.

The plan of the paper is the following. The main result is stated in Section
2, where we also give notations and definitions. In Section 3 we provide a proof
of this result based on some auxiliary propositions proved in the subsequent
Section 4.

2 Main Result

We begin by giving some notations and definitions. For every x ∈ R
n, n ≥ 2,

x = (x1, . . . , xn), we set x = (x′, xn), where x′ ∈ R
n−1 and xn ∈ R. We

denote by Br(x) and B′
r(x

′) respectively the open ball in R
n centered at x

of radius r and the open ball in R
n−1 centered at x′ of radius r. Sometimes

we shall write Br and B′
r instead of Br(0) and B′

r(0) respectively. For given
numbers r, t > 0, and a function ϕ defined on R

n−1 × R, we define Ωr = {x ∈
Ω : dist(x, ∂Ω) > r}, Qt

r,ϕ = {(x, s) ∈ Br × (t − r2, t) : xn > ϕ(x′)} and
Γt
r,ϕ = {(x, s) ∈ B′

r × (t− r2, t) : xn = ϕ(x′)}.
Denoting by D a open subset of Rn+1, for a function f defined on D and

α ∈ (0, 1], we define

[f ]α;D = sup

{
|f(x, t)− f(y, s)|

(|x− y|2 + |t− s|)α/2
: (x, t), (y, s) ∈ D, (x, t) 6= (y, s)

}
.

If α ∈ (0, 2], we set

< f >α;D= sup

{
|f(x, t)− f(y, s)|

|t− s|α/2
: (x, t), (y, s) ∈ D, t 6= s

}
.

Let k be a positive integer, D an open subset of Rn+1, f a sufficiently smooth
function and α ∈ (0, 1]. We denote by

[f ]k+α;D =
∑

|β|+2j=k

[∂βx∂
j
t f ]α;D,

< f >k+α;D=
∑

|β|+2j=k−1

< ∂βx∂
j
t f >1+α;D,

where for a multi-index β = (β1, . . . , βn), βi ∈ N∪{0}, i = 1, . . . , n, we have used

the notation ∂βx∂
j
t f = ∂|β|+kf

∂
β1
x1

...∂βn
xn ∂k

t

, with |β| =
∑n

i=1 βi. If α ∈ (0, 1] and [f ]α;D

is finite, we shall say that f belongs to C0,α(D). Let k be a positive integer,
α ∈ (0, 1] and D an open subset of Rn+1, we shall say that f belongs to the
class Ck,α(D) whenever for every non-negative integer j such that |β|+2j ≤ k,
there exist the derivatives ∂βx∂

j
t f and the quantities supD |∂βx∂

j
t f |, [f ]k+α;D and

< f >k+α;D are finite. If f is a function not depending on t, we keep the
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definition above by considering a function f̃ defined on Ω × R, Ω ⊂ R
n, such

that f̃(x, t) = f(x) for every (x, t) ∈ Ω × R and we shall say that f ∈ Ck,α(Ω)
whenever f̃ ∈ Ck,α(Ω×R). Throughout the paper we will make use of standard
Sobolev spaces. We refer the reader to [16] for details.

Definition 2.1. Let Ω be a domain in R
n. Given α, α ∈ (0, 1] and k, k ∈ N,

we say that ∂Ω is of class Ck,α with constants r0, L if for any P ∈ ∂Ω there
exists a rigid transformation of Rn under which we have P ≡ 0 and

Ω ∩Br0 = {x ∈ Br0 : xn > ϕ(x′)},

where ϕ is a Ck,α function on B′
r0 satisfying the following condition ϕ(0) =

|∇x′ϕ(0)| = 0 and ‖ϕ‖Ck,α(B′
r0

) ≤ Lr0.

Remark 2.1. We have chosen to normalize all norms in such a way that their
terms are dimensional homogeneous and coincide with the standard definition
when r0 = 1. For instance, for any ϕ ∈ Ck,α(B′

r0 × (−r20 , r
2
0)) we set

‖ϕ‖Ck,α(B′
r0

×(−r20,r
2
0))

=

k∑

l=0

rl0
∑

|β|+2j=l

‖∂βx∂
j
tϕ‖L∞(B′

r0
×(−r20,r

2
0))

+rk+α
0

(
< ϕ >k+α;B′

r0
×(−r20,r

2
0)

+[ϕ]k+α;B′
r0

×(−r20,r
2
0)

)
.

Similarly we set

‖u‖L2(D) = r
− n+2

2
0

(∫

D

u2dxdt

)1/2

,

where D is a domain in R
n+1.

We shall use letters C,C0, C1, . . . to denote constants. The value of these
constants may change from line to line and their dependance will specified ev-
erywhere they appear.
Assumptions on the domain. Let r0,M,L be given positive numbers. We
assume that Ω is a bounded domain in R

n such that

(2.2a) |Ω| ≤Mrn0 ,

where |Ω| denotes the Lebesgue measure,

(2.2b) ∂Ω = A ∪ I,

where A and I are open subsets of ∂Ω, A ∩ I = ∅, and

(2.2c) ∂Ω is of class C1,1 with constants r0, L.

Also, we denote by Σ an open portion of ∂Ω so that there exists a point P0 ∈ Σ
such that

(2.2d) ∂Ω ∩Br0(P0) ⊂ Σ.

Assumptions on the boundary data. Given positive constants E,Φ0,Φ1,
on the accessible part A of the boundary of Ω we shall prescribe two different
heat fluxes g and g̃ such that

(2.3a) g, g̃ ∈ C0,1(A× [0, T ]),
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(2.3b) supp g, supp g̃ ⊂ Ar0 × [0, T ],

where Ar0 = {x ∈ A : dist(x, I) > r0} ,

(2.3c) A2r0 6= ∅,

(2.3d) ‖g‖C0,1(A×[0,T ]), ‖g̃‖C0,1(A×[0,T ]) ≤ E,

(2.3e) ∃ t1 > 0 such that g(x, t) = g̃(x, t), for 0 ≤ t ≤ t1, x ∈ A,

(2.3f)

∥∥∥∥∥
g̃

g
−

(
g̃

g

)

A×[0,T ]

∥∥∥∥∥
L2(A×[0,T ])

≥ Φ0 > 0,

where (
g̃

g

)

A×[0,T ]

=
1

|A|T

∫

A×[0,T ]

g̃

g
dσdt,

and

(2.3g) g(x, t) ≥ Φ1r
−1
0 > 0, in A2r0 × [0, T ].

Assumptions on the surface impedance. Given a positive number γ, the
surface impedance γ of the unknown boundary I is such that

(2.4a) γ ∈ C0,1(I × [0, T ]), with suppγ ⊂ I × [0, T ]

and

(2.4b) 0 ≤ γ(x, t) ≤ γ.

Remark 2.2. By [15, Theorem 6.46, page 141], if (2.2a), (2.2c), (2.3a), (2.3b),
(2.4a) are fulfilled, there exists a unique solution u of the problem (1.1), u ∈
C1,α(Ω× [0, T ]) such that

(2.5) ‖u‖C1,α(Ω×[0,T ]) ≤ C0‖g‖C0,1(A×[0,T ]), ∀α ∈ (0, 1),

where C0 is a positive constant depending n,Ω, γ.

From now on we shall fix an α, α ∈ [1/2, 1).
We denote by Ωi, i = 1, 2, two bounded domains on R

n satisfying (2.2) such
that

∂Ωi = A ∪ Ii, Int∂Ωi(A) ∩ Int∂Ωi(Ii) = ∅, i = 1, 2,

where the accessible part A of the boundary is the same for both sets and by
γi(x, t), i = 1, 2, the boundary impedance on Ii, i = 1, 2, respectively satisfying
(2.4). Let also t2 and t3 such that 0 < t1 < t2 < t3 ≤ T .

In the sequel we shall refer to numbers M,L,Φ0,Φ1, γ, r
2
0/T, r

2
0/t1, as the a

priori data.
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Theorem 2.3. For i = 1, 2, let ui ∈ C1,α(Ω × [0, T ]) be the solution to (1.1)
when Ω = Ωi, γ = γi and let ũi ∈ C1,α(Ω× [0, T ]) be the solution to (1.1) when
Ω = Ωi, γ = γi, g = g̃. Let (2.2a)–(2.4b) be satisfied. Assume for ε > 0

(2.6)
‖u1 − u2‖L2(Σ×[t1,T ]) ≤ ε,

‖ũ1 − ũ2‖L2(Σ×[t1,T ]) ≤ ε,

where Σ ⊂ A is an open subset, then

(2.7) dH(Ω1,Ω2) ≤ r0η(ε),

where η is a continuous increasing function on [0,+∞) satisfying

(2.8) η(s) ≤ C| log s|−β ,

for every 0 < s < 1, with C > 0 and β depending on the a priori data only.
Furthermore, for any t ∈ (t1, T ),

sup
P∈I1

r0

Q∈B2η(ε)(P )∩I2
r0

|γ2(Q, t)− γ1(P, t)| ≤ η(ε) ,(2.9)

where η is defined as in (2.8) up to a possible replace of constants C and β.

Here dH stands for the Hausdorff distance.

3 Proof of Theorem 2.3

We first observe that the solution u1 ∈ C1,α(Ω1 × [0, T ]) of problem (1.1) with
boundary data g satisfying (2.3g), is such that

(3.10) u1(x, t) > 0, in Ω1 × (0, T ].

Namely, by contradiction, if

min
Ω1×[0,T ]

u1(x, t) = u1(x, t) ≤ 0,

then, by maximum principle, the point (x, t) belongs to the parabolic boundary.

If (x, t) ∈ A × (0, T ], by Hopf lemma we would have
∂u1
∂ν

(x, t) < 0, that

contradicts (2.3g). If (x, t) ∈ I × (0, T ], again by Hopf lemma we would have
∂u1
∂ν

(x, t) < 0, which contradicts the Robin condition that u1 satisfies on I

because
∂u1
∂ν

(x, t) = −γu1(x, t) ≥ 0.

Then (x, t) = (x, 0),
min

Ω1×[0,T ]
u1(x, t) = u1(x, 0) = 0

and we get (3.10).
The same is true for u2(x, t).

6



By (3.10) we can define, for i = 1, 2,

(3.11) λi(x, t) =
ũi(x, t)

ui(x, t)
− 1, in Ωi × [t1, T ].

By straightforward calculation we notice that λi(x, t) satisfies the problem

(3.12)





∂tλi(x, t) = div(u2i∇λi(x, t)) in Ωi × [t1, T ],

λi(x, t1) = 0 in Ωi,

u2i
∂λi
∂ν

(x, t) = uig̃(x, t)− ũig(x, t) on A× [t1, T ],

u2i
∂λi
∂ν

(x, t) = 0 on Ii × [t1, T ].

By standard estimates of solutions of parabolic problem [15], by (2.3b), (2.3d),
(2.5), we have

(3.13) ‖λi‖C1,α(Ωi×(t1,T )) ≤ C,

where α ∈ (0, 1) and C depends on the a priori data only.
With the change of variable (3.11) we can deal with the new problem (3.12),

where we have a homogeneous Neumann condition on I.
In the next propositions, whose proofs are postponed to Section 4, we provide

stability estimates of unique continuation from Cauchy data when (2.6) holds
true, then a lower bound on u, where u is solution to (1.1) and a lower bound
of the integral of λi in term of the boundary data.

The proof of Theorem 2.3 will be obtained from the following sequence of
propositions.

We shall denote by G the connected component of Ω1∩Ω2 such that A ⊂ G.

Proposition 3.1 (Stability estimates of unique continuation from Cauchy data).
Let hypothesis of Theorem 2.3 be satisfied. Then there exists a positive constant
C depending on the a priori data only such that for i = 1, 2

(3.14)

∫

Ωi\G
u2i (x, t)λ

2
i (x, t)dx ≤ Crn0 η1(ε) ∀ t ∈ [t1, T ],

where η1 is an increasing continuous function on [0,+∞) which satisfies

η1(s) ≤ (log | log s|)−β1 ,

for every 0 < s < 1, with β1 > 0.

Proposition 3.2 (Improved stability estimates). Let hypothesis of Proposition
3.1 be fulfilled. In addition, assume there exist constants L > 0 and r1, 0 <
r1 < r0 such that ∂G is of Lipschitz class with constant r1 and L. Then there
exists a positive constant C depending on the a priori data only such that

(3.15)

∫

Ωi\G
u2i (x, t)λ

2
i (x, t)dx ≤ Crn0 η2(ε) ∀ t ∈ [t1, T ],

where η2 is an increasing continuous function on [0,+∞) which satisfies

η2(s) ≤ | log s|−β2 ,

for every 0 < s < 1, with β2 > 0.
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Proposition 3.3 (Lower bound on u). Let u ∈ C1,α(Ω× [0, T ]) be a solution to
(1.1) with boundary data g satisfying (2.3a), (2.3b), (2.3d), (2.3g). Then there
exists a positive constant c0, 0 < c0 < 1, depending on the a priori data except
Φ0,Φ1 such that

(3.16) u(x, t) ≥ c0Φ1, for t ≥ t1, x ∈ Ω,

where t1 as in (2.3g).

Proposition 3.4 (Lower bound for λ). For every ρ > 0 and for every x0 ∈ Ωρ,
we have for i = 1, 2,

∫ T

t1

∫

Bρ(x0)

λ2i (x, t)dxdt ≥ Cρr
n+2
0 Φ0,(3.17)

where Cρ > 0 is a constant depending on the a priori data and ρ only.

To better deal with the Hausdorff distance, we introduce a variation of it
that, though it is not a metric, we shall call modified distance (see also [2, 9]).

Definition 3.1. We call modified distance between Ω1 and Ω2 the number

(3.18) dm(Ω1,Ω2) = max

{
sup

x∈∂Ω1

dist(x,Ω2), sup
x∈∂Ω2

dist(x,Ω1)

}
.

Note that

(3.19) dm(Ω1,Ω2) ≤ dH(Ω1,Ω2),

but, in general, the reverse inequality does not hold. However we have the
following result, [2]

Proposition 3.5 (Proposition 3.6 [2]). Let Ω1 and Ω2 be bounded domains
satisfying (2.2). There exist numbers d0 > 0, r̃ ∈ (0, r0], such that d0

r0
and r̃

r0
depend on E only and the following facts hold true. If

(3.20) dH(Ω1,Ω2) ≤ d0,

then there exists an absolute constant C > 0 such that

(3.21) dH(Ω1,Ω2) ≤ Cdm(Ω1,Ω2),

and any connected component of Ω1 ∩ Ω2 has boundary of Lipschitz class with
constants r̃, L1 where r̃ is as above and L1 > 0 depends on L only.

Last tool we need for the proof of Theorem 2.3 is related with quantitative
form of unique continuation property.

Theorem 3.6 (two–sphere one–cylinder inequality at the boundary). Let λ,Λ
and R be positive numbers, with λ ∈ (0, 1] and t0 ∈ R. Let L be a parabolic
operator L = ∂i(g

ij(x, t)∂j)−∂t, where {gij(x, t)}ni,j=1 is a real symmetric n×n

matrix. For ξ ∈ R
n, (x, t), (y, τ) ∈ R

n+1, assume that

λ|ξ|2 ≤
n∑

i,j=1

gij(x, t)ξiξj ≤ λ−1|ξ|2

8



and 


n∑

i,j=1

(gij(x, t)− gij(y, τ))2




1/2

≤
Λ

R

(
|x− y|2 + |t− τ |

)1/2
.

Let u ∈ H2,1(Qt0
R,ϕ) be such that

|Lu| ≤ Λ

(
|∇u|

R
+

|u|

R2

)
, in Qt0

R,ϕ

and

gij
∂u

∂xj
(x, t)νi = 0, ∀ (x, t) ∈ Γt0

R,ϕ.

There exist constants s1 ∈ (0, 1) and C, C > 0, depending on λ,Λ and L only
such that for every r, 0 < r ≤ ρ ≤ s1R we have
(3.22)
∫

Bρ∩Ω

u2(x, t0)dx ≤
CR2

ρ2

(
R−2

∫

Q
t0
R,ϕ

u2dxdt

)1−θ (∫

Br∩Ω

u2(x, t0)dx

)θ

,

where θ = 1
C log R

r

.

Proof. The proof can be obtained along the line of [22, Theorem 3.3.5] through
slight modifications due to the different boundary condition we have on Γt0

R,ϕ

(see also [10] where a similar problem is studied).

An inequality similar to (3.22) can be obtained for cylinder and spheres
entirely contained in the domain Ω. We refer the interested reader to [22,
Theorem 3.3.3].

Proof of Theorem 2.3. For the sake of brevity we denote d = dH(Ω1,Ω2) and
dm = dm(Ω1,Ω2). The proof follows the lines of the proof of [7, Theorem 4.1].
We shall sketch only the main items, using Propositions 3.1, 3.2, 3.3, 3.4. Let
us prove that if η > 0 is such that

(3.23)

∫ T

t1

∫

Ω1\G
u21(x, t)λ

2
1(x, t)dxdt ≤ η, ∀t ∈ [t1, T ],

then there exists a constant C, depending on the a priori data only, such that

(3.24) dm ≤ CηK ,

where K depends on the a priori data only. We may assume, without loss of
generality, that there exists x0 ∈ I1 ⊂ ∂Ω1 such that

dist(x0,Ω2) = dm.

We apply now the two–sphere one-cylinder inequality at the boundary [22, The-
orem 3.3.5] with r = dm, ρ = cr0 and R = r0, we integrate over the time interval
[0, T ] and we get

∫ T

0

∫

Qρ,ϕ(t)

λ21(x, t)dxdt ≤
CR2

ρ2

(
R−2

∫

Qt
R,ϕ

λ21(x, t)dxdt

)1−θ

(3.25)

×

(∫ T

0

∫

Qr,ϕ(t)

λ21(x, t)dxdt

)θ

,

9



where θ = 1

C log(R
r )

. Recalling (3.15) and (3.17), we get the following inequality

(3.26) Φ0 ≤ CA1−θηθ, where A =

∫

Ω1×[0,T ]

u21(x, t)dxdt.

Developing (3.26) we arrive to

ρ1 ≤ Cr0

( η
A

)|log a
A |
,

which leads to

(3.27) dm ≤ C1η
C0 ,

where C0 = | logΦ0/A| and C1 is a positive constant depending on the a priori
data only. Let us consider now the Hausdorff distance d. With no loss of
generality, we may assume there exists y0 ∈ Ω1 such that dist(y0,Ω2) = d.
Denote by δ = dist(y0, ∂Ω1). We distinguish three cases.

i) δ ≤ d/2.
We take z0 ∈ ∂Ω1 such that |y0 − z0| = δ and we have

dm ≥ dist(z0,Ω2) ≥ d− δ ≥ δ/2,

hence δ ≤ 2dm, that is (3.27) holds for d as well.
ii) d/2 < δ ≤ d0/2.

This implies d < d0 and by Proposition 3.5 we obtain (3.27) for d.
iii) δ > max {d/2, d0/2}.

We observe that if d0/2 < d/2 then (3.27) for d is trivial. On the other hand
d/2 < d0/2 implies δ ≥ d/2. Let us denote d1 = min

{
d
2 ,

s1r0
2

}
, where s1 ∈ (0, 1)

has been introduced in Theorem 3.6 and it depends on the a priori data only.
We have Bd1(y0) ⊂ Ω1\Ω2 and Bs1r0/2(y0) ⊂ Ω1 because δ > max{d/2, d0/2} ≥
d0/2 > s1r0/2. Applying again Theorem 3.6 with ρ1 = d1, ρ2 = s1r0/2, R = d0,
T1 = T/2, τ = T/4 and proceeding as in (3.25) and applying Proposition 3.1,
3.2, we get the thesis (2.7).

Let us prove now (2.9).
First we observe that, in general, the Hausdorff distances dH(Ω1,Ω2) and

dH(∂Ω1, ∂Ω2) are not equivalent. However, in our regularity assumptions, the
following estimate

dH(∂Ω1, ∂Ω2) ≤ η(ε)(3.28)

can be derived from (2.7) using the arguments contained in the proof of Propo-
sition 3.6 in [2]. We consider a point P ∈ I1

r0 , a point Q ∈ B2η(ε)(P )∩ I2
r0 and

t ∈ (t1, T ). With no loss of generality we may assume that P,Q ∈ Ω1, hence we
have that for any t ∈ (t1, T ),

|γ2(Q, t)− γ1(P, t)| ≤

∣∣∣∣
∂u1
∂ν

(P, t)
1

u1(P, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣

+

∣∣∣∣
∂u2
∂ν

(Q, t)
1

u2(Q, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣ .(3.29)
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We can split the first term on the right hand side of (3.29) as follows

∣∣∣∣
∂u1
∂ν

(P, t)
1

u1(P, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣ ≤

∣∣∣∣
∂u1
∂ν

(P, t)
1

u1(P, t)
−
∂u1
∂ν

(Q, t)
1

u1(P, t)

∣∣∣∣

+

∣∣∣∣
∂u1
∂ν

(Q, t)
1

u1(P, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣ .

From Remark 2.5 and Proposition 3.3 we can infer that

∣∣∣∣
∂u1
∂ν

(P, t)
1

u1(P, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣ ≤ C|P −Q|.(3.30)

where C > 0 is a constant depending on the a priori data only. Hence by (3.28)
we can infer that

∣∣∣∣
∂u1
∂ν

(P, t)
1

u1(P, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣ ≤ η(ε) ,(3.31)

up to a possible replacing of the constants C and β in (2.8).
Analogously we can split the second term on the right hand side of (3.29)

as follows
∣∣∣∣
∂u2
∂ν

(Q, t)
1

u2(Q, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣ ≤

∣∣∣∣
∂u2
∂ν

(Q, t)
1

u2(Q, t)
−
∂u1
∂ν

(Q, t)
1

u2(Q, t)

∣∣∣∣

+

∣∣∣∣
∂u1
∂ν

(Q, t)
1

u2(Q, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣

From Remark 2.5 and Proposition 3.3 we can infer that

∣∣∣∣
∂u2
∂ν

(Q, t)
1

u2(Q, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣

≤ C

∣∣∣∣
∂u2
∂ν

(Q, t)−
∂u1
∂ν

(Q, t)

∣∣∣∣+ C |u1(Q, t)− u2(Q, t)|

where C > 0 is a constant depending on the a priori data only. Dealing as in
Proposition 3.15, we have that for any t ∈ (t1, T )

‖u1(·, t)− u2(·, t)‖C1(I2r0) ≤ η(ε).

Hence we have that
∣∣∣∣
∂u2
∂ν

(Q, t)
1

u2(Q, t)
−
∂u1
∂ν

(Q, t)
1

u1(Q, t)

∣∣∣∣ ≤ η(ε).(3.32)

Up to a possible replacing of the constants C and β in (2.8). Combining (3.31)
and (3.32) we obtain that for any t ∈ (t1, T )

|γ2(Q, t)− γ1(P, t)| ≤ η(ε).(3.33)

Being such an estimate independent from P , Q and t the thesis (2.9) follows.
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4 Proofs of Propositions 3.1, 3.2, 3.3, 3.4

We proceed with the proof of Proposition 3.1. For this purpose we recall a result
of [7], that will be used several times in the next proofs.

Theorem 4.1 (Theorem 3.3.1 [7]). Let Ω be a domain satisfying (2.2c). Let
P1 ∈ Σ be such that ∂Ω ∩ Br0(P1) ⊂ Σ. Let u ∈ H2,1(Ω× (0, T )) be a solution
to {

ut = ∆u in Ω× (0, T )
u(x, 0) = 0

satisfying

‖u‖H3/2,3/4(Σ×(0,T )) ≤ C ε,

∥∥∥∥
∂u

∂ν

∥∥∥∥
H1/2,1/4(Σ×(0,T ))

≤ C ε,

where C depends on T, r0. Then, for every t0 ∈ [0, T ], we have

‖u(·, t0)‖L2(Bθr0
(P2))

≤ C ‖u‖1−τ
H2,1(Ω×(0,T )) ε

τ ,

where P2 = P1 − θr0ν, ν is the outer unit normal to Ω at P1, τ , 0 < τ < 1, is
an absolute constant, θ, 0 < θ < 1/2, depends on L only, C ≥ 1 depends on L
and r20/T only.

Proof of Proposition 3.1. We prove the proposition for i = 1, as the other case
i = 2 is analogous. In [14] it is proved that there exists a function d̃(x), labeled

regularized distance, d̃ ∈ C2(Ω1) ∩C1,1(Ω1) such that the following facts hold

i) ξ1 ≤
dist(x, ∂Ω1)

d̃(x)
≤ ξ2,

ii) |∇d̃(x)| ≥ c1 for every x such that dist(x, ∂Ω1) ≤ br0,

iii) ‖d̃‖C1,1 ≤ c2r0,

where ξ1, ξ2, c1, c2, b are positive constants depending on L only (see also [2,
Lemma 5.2]). For r > 0 we define

Ω̃1,r = {x ∈ Ω1 : d̃(x) > r}.

By [2, Lemma 5.3], there exists a constant a, depending on L only, such that

for every r, 0 < r ≤ ar0, Ω̃1,r is connected with boundary of class C1 and the
following facts hold

ξ1r ≤ dist(x, ∂Ω1) ≤ ξ2r, ∀x ∈ ∂Ω̃1,r,(4.34)

∣∣∣Ω1\Ω̃1,r

∣∣∣ ≤ ξ3Mrn−1
0 r,(4.35)

∣∣∣∂Ω̃1,r

∣∣∣
n−1

≤ ξ4Mrn−1
0 .(4.36)

Also, for every x ∈ ∂Ω̃1,r, there exists y ∈ ∂Ω1 such that

(4.37) |y − x| = dist(x, ∂Ω1), |ν(x)− ν(y)| ≤ ξ5
r

r0
,
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where ν(x), ν(y) denote the outer unit normal to Ω̃1,r at x and to Ω1 at y
respectively. Here ξj , j = 1, . . . , 5, are constants depending on L only.

Since ξ2r0θ ≤ r0
16 , let us define θ = min{a, 1

16(1+M2)ξ2
} and Σξ2r0θ = {x ∈

Ω1 : dist(x,Σ) = ξ2r0θ} ≡ {x ∈ Ω2 : dist(x,Σ) = ξ2r0θ}.
Let Ṽr be the connected component of Ω̃1,r∩Ω̃2,r whose closure contains Σξ2r0θ.
We have

Ω1 \G ⊂ [(Ω1 \ Ω̃1,r) \G] ∪ [Ω̃1,r\Ṽr](4.38)

∂(Ω̃1,r \ Ṽr) = Γ̃1,r ∪ Γ̃2,r,(4.39)

where Γ̃1,r is the part of the boundary contained in ∂Ω̃1,r and Γ̃2,r is contained

in ∂Ω̃2,r ∩ ∂Ṽr. We denote ωr = Ω̃1,r \ Ṽr. For t1 ≤ t ≤ T , by (4.39)
∫

Ω1\G
u21(x, t)λ

2
1(x, t)dx(4.40)

≤

∫

(Ω1\Ω̃1,r)\G
u21(x, t)λ

2
1(x, t)dx +

∫

Ω̃1,r\Ṽr

u21(x, t)λ
2
1(x, t)dx.

Since u21(x, t)λ
2
1(x, t) = (ũ1(x, t)− u1(x, t))

2
, by (5.81), (5.85), (4.35), there

exists a constant C depending on the a priori data only such that, for t1 ≤ t ≤ T ,

(4.41)

∫

(Ω1\Ω̃1,r)\G
u21(x, t)λ

2
1(x, t)dx ≤ Cr.

Let us evaluate
∫
Ω̃1,r\Ṽr

u21(x, t)λ
2
1(x, t)dx. Recalling that λ1 solves (3.12), we

get

(4.42)

∫ t

t1

ds

∫

ωr

u21λ1tλ1dx =

∫ t

t1

ds

∫

∂ωr

u21
∂λ1
∂ν

λ1dσ−

∫ t

t1

ds

∫

ωr

u21 |∇λ1|
2 dx,

where ν is the outer normal to ωr. We have, integrating by parts the left hand
side and since λ1(x, t1) = 0,

1

2

∫ t

t1

ds

∫

ωr

u21λ1tλ1dx =
1

2

∫

ωr

u21λ
2
1

∣∣t
t1 dx−

∫ t

t1

ds

∫

ωr

λ21u1u1t(4.43)

=
1

2

∫

ωr

u21(x, t)λ
2
1(x, t)dx −

∫ t

t1

ds

∫

ωr

λ21u1u1t.

Therefore plugging (4.42) into (4.43), we have

1

2

∫

ωr

u21(x, t)λ
2
1(x, t)dx +

∫ t

t1

ds

∫

ωr

u21 |∇λ1|
2
dx =

∫ t

t1

ds

∫

ωr

λ21u1u1t +

∫ t

t1

ds

∫

∂ωr

u21
∂λ1
∂ν

λ1dσ.

By Proposition 3.3, (2.3d), (2.5), (3.13), we get

C1

∫

ωr

λ21(x, t)dσ ≤

∫ t

t1

ds

∫

ωr

λ21u1u1t +

∫ t

t1

ds

∫

∂ωr

u21
∂λ1
∂ν

λ1dx

≤ C2

(∫ t2

t1

ds

∫

ωr

λ21dσ + T max
t1≤θ≤t

∫

∂ωr

∣∣∣∣
∂λ1(x, θ)

∂ν

∣∣∣∣ dσ
)
,(4.44)
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for t1 ≤ t ≤ T , where C1, C2 depend on a priori data only. Denoting by t,
t ∈ [t1, t], where the maximum is achieved, by Gronwall inequality, we obtain

(4.45)

∫

ωr

λ21(x, t)dx ≤ C

∫

∂ωr

∣∣∣∣
∂λ1(x, t)

∂ν

∣∣∣∣ dσ, ∀ t ∈ [t1, T ],

where C is a constant depending on the a priori data and on t1. Recalling that
∂ωr ⊂ Γ̃1,r ∪ Γ̃2,r we distinguish two situations: either x ∈ Γ̃1,r or x ∈ Γ̃2,r.

Let x ∈ Γ̃1,r. By (4.34) dist(x, ∂Ω1) ≤ ξ2r. On the other hand dist(x,Σ) > ξ2r
(see [22, Proposition 3.1]). Hence there exists y ∈ ∂Ω1 \ Σ such that |y − x| =

dist(x, ∂Ω1) ≤ ξ2r. Since
∂λ1
∂ν

= 0 on I1 × [t1, T ], by (3.13), (4.34), (4.37)

(4.46)

∣∣∣∣
∂λ1(x, t)

∂ν

∣∣∣∣ ≤ C
r

r20
,

that implies

(4.47)

∫

Γ̃1,r

∣∣∣∣
∂λ1(x, t)

∂ν

∣∣∣∣ dσ ≤ Cr rn−2
0 ,

where C is a constant depending on the a priori data only. Let us consider now
x ∈ Γ̃2,r. As before there exists y ∈ ∂Ω1 \ Σ such that |y − x| = dist(x, ∂Ω2) ≤

ξ2r. Since
∂λ2
∂ν

= 0 on I2 × [t1, T ], we have that

∣∣∣∣
∂λ1(x, t)

∂ν

∣∣∣∣ ≤
∣∣∇λ1(x, t)−∇λ2(x, t)

∣∣+
∣∣∇λ2(x, t)−∇λ2(y, t)

∣∣ .

Thus we get

(4.48)

∫

Γ̃2,r

∣∣∣∣
∂λ1(x, t)

∂ν

∣∣∣∣ dσ ≤ C rn−2
0 r +

∫

Γ̃2,r

∣∣∇λ1(x, t)−∇λ2(x, t)
∣∣ dσ,

where C is a constant depending on the a priori data only.
Let us consider the integral on the right hand side of (4.48). First observe

that

∇λ1 −∇λ2(4.49)

=
1

(u1u2)
2 {u1u

2
2(∇ũ1 −∇ũ2)− ũ1u

2
2(∇u1 −∇u2)

+u22∇ũ2 (u1 − u2)− u22∇u2 (ũ1 − ũ2) + (u22 − u21)(u2∇ũ2 − ũ2∇u2)}.

Now labeling w = u1 − u2 and w̃ = ũ1 − ũ2 and taking into account (4.48) and
(4.49), we get

∫

Γ̃2,r

∣∣∣∣
∂λ1(x, t)

∂ν

∣∣∣∣ dσ

≤ Crn−1
0

(
r

r0
+ r0 max

x∈Ṽr

∣∣∇w̃(x, t)
∣∣+ r0 max

x∈Ṽr

∣∣∇w(x, t)
∣∣

+max
x∈Ṽr

∣∣w̃(x, t)
∣∣+max

x∈Ṽr

∣∣w(x, t)
∣∣
)
,
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where C is a constant depending on the a priori data only. To evaluate maxi-
mum of w, w̃ and their gradients we can proceed as [7, Proposition 5.3]. Let us
briefly sketch the main items of this proof for the ∇w, for instance. Suppose
max
x∈Ṽ r

∣∣∇w(x, t)
∣∣ =

∣∣∇w(x, t)
∣∣ =

∥∥∇w(·, t)
∥∥
L∞(Br(x))

, with x ∈ Ṽr. By inter-

polation inequality (see [7, A2 page 553 with α = 1/2]), (2.3d) and (2.5), we
have

(4.50)
∥∥∇w(·, t)

∥∥
L∞(Br(x)

≤
Cr0

r1+
n

3(n+2)

(∫

Br(x)

w2(x, t)dx

) 1
3(n+2)

,

where C depends on E. Now, in order to apply [7, Theorem 3.3.1], we estimate
‖w‖H3/2,1/2(Σ×(t1,T )) = ‖u1 − u2‖H3/2,1/2(Σ×(t1,T )) in terms of ‖u1 − u2‖L2(Σ×(t1,T ))

and of the a priori data. The functions w, wt, wtt satisfy the problem





zt −∆z = 0, in G× (0, T ),

z = 0, on G× {0},

∂z
∂ν = 0, on A× (0, T ).

Hence, recalling that Ar0 = {x ∈ A : dist(x, I) > r0} and denoting Ur0/8 =
{x ∈ G : dist(x,Ar0) ≤ r0/8}, we may apply the local bound estimates [13]
obtaining,

(4.51) ‖wt‖L∞(Ur0/8×(0,T )) ≤ C ‖g‖H1/2,1/4(A×(0,T )) ≤ C ‖g‖C1,1(A×(0,T )) ,

(4.52) ‖wtt‖L∞(Ur0/8×(0,T )) ≤ C ‖g‖H1/2,1/4(A×(0,T )) ≤ C ‖g‖C1,1(A×(0,T )) ,

where C depends on r20T
−1, L. We may also think to w(·, t), for a fixed t ∈ (0, T ),

as the solution of the elliptic problem
{

∆w(x, t) = wt(x, t) in G,

∂w
∂ν (x, t) = 0, on A,

and, similarly, we may think to wt(·, t) as the solution of the elliptic problem
{

∆wt(x, t) = wtt(x, t) in G,

∂wt

∂ν (x, t) = 0, on A.

By Lp regularity estimates (see [11]), by (4.51), (4.52), by trace inequalities and

by the immersion of W
2−1/p
p in H2−1/p for p > 2, we have

sup
t∈[0,T ]

(‖w(·, t)‖H2−1/p(Σ) + ‖wt(·, t)‖H2−1/p(Σ)) ≤ C ‖g‖C1,1(A×(0,T )) ,

for any p > 2, where C depends on L, r20/T only. Therefore

(4.53) ‖w‖Hα,α/2(Σ×(0,T )) ≤ C ‖g‖C1,1(A×(0,T )) ,

with α = 2 − 1/p > 3/2, where C depends on L, r20/T only. By interpolation
we have

(4.54) ‖w‖H3/2,3/4(Σ×(0,T )) ≤ C ‖w‖1−θ
Hα,α/2(Σ×(0,T )) ‖w‖

θ
L2(Σ×(0,T )) ,
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where θ is given by (1 − θ)α = 3/2 (see [16]). By (5.81), (5.87), (4.53), (4.54),
choosing p = 4 we have

(4.55) ‖w‖H3/2,3/4(Σ×(0,T )) ≤ C ε1/7,

where C depends on L, r20/T,E only. Let P1 ∈ Σ be such that ∂Ω∩Br0(P1) ⊂ Σ.
By Theorem 4.1 and (4.55), we get

(4.56)
∥∥w(·, t)

∥∥
L2(Bθr0

(P2))
≤ Cετ/7,

where P2, θ, τ are as in the above theorem, C ≥ 1 depends on L, r20/T, t1, E
only and t is the point in (4.45). Now, let σ be an arc in Ṽr joining x with P2

(since θr0 > r, the point P2 ∈ Ṽr). Let us define {xi}, i = 1, 2, ..., s, as follows:
x1 = P2, xi+1 = σ(ηi), where ηi = max{η : |σ(η) − xi| = 2θr} if |xi − x| > 2θr,
otherwise i = s and stop the process. By construction, the balls Bθr(xi) are

pairwise disjoint, |xi+1 − xi| = 2θr, for i = 1, 2, ..., s− 1, |xs − x| ≤ 2θr. Notice
that s ≤ C

rn , where C depends onM only. By an iterated application of the two-

spheres one-cylinder inequality over the chain of balls Br1(xi), for r1 = θ
26

√
2
r,

by (2.5), (4.40), (4.45), (4.56), (4.50), we get, for t1 ≤ t ≤ T ,

(4.57)

∫

Ω1\G
u21(x, t)λ

2
1(x, t)dx ≤ Crn0

(
r

r0
+
(r0
r

) 4n+10
3n+6

ε
2τs+1

7(3n+6)

)
,

where C depends on r20(T − t1)
−1, L, E. With a suitable choice of r = r(ε), by

standard arguments we get the thesis.

Proof of Proposition 3.2. By the use of the divergence theorem over the Lips-
chitz domains Ω1 and G and the same arguments based on the application of
the Gronwall inequality developed in Proposition 3.1, we have that

∫

Ω1\G
λ1(x, t)

2dx ≤ C

∫

∂(Ω1\G)

|∂νλ1(x, t̄)|dσ.(4.58)

where C > 0 is a constant depending on the a priori data only. Moreover we

observe that ∂(Ω1 \G) ⊂ (∂Ω1 \A) ∪ (∂Ω2 ∩ ∂G \ U
r0
2

A ).
Since ∂νλ1 = 0 on ∂Ω1 \A and since ∂νλ2 = 0 on ∂Ω2 \A we found that

∫

Ω1\G
λ1(x, t)

2dx ≤ C

∫

(∂Ω2∩∂G)\U
r0
2

A

|∂νλ1(x, t̄)− ∂νλ2(x, t̄)|dx ≤

≤ C1r
n+1
0 max

∂G
|∇λ1(x, t̄)−∇λ2(x, t̄)|,

where C1 is a constant depending on the a-priori data only. By the same argu-
ment of Proposition 3.1 and using the same notations we get

∫

Ω1\G
λ1(x, t)

2dx ≤ C2r
n
0

(
max
∂G

|w|+max
∂G

|w̃|+ r0 max
∂G

|∇w| + r0 max
∂G

|∇w̃|

)
,

where C2 is a constant depending on the a priori data only.
In order to control the maximum of w, w̃ and their gradients we argue as in

Proposition 5.4 of [7]. We carry out our analysis for the term ∇w, the other
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cases being analogous. Let P1 ∈ A be such that ∂Ω ∩ Br0(P1) ⊂ A and let
P2 = P1 − θ̃r0ν with 0 < θ̃ < 1

4 and where ν denotes the outer unit normal to
Ω1 at P1. Now by Theorem 4.1 arguing as in (4.56), we may infer

‖w(·, t̄)‖L2(Bθ̃r0
(P2)) ≤ C̃εγ ,(4.59)

where C̃ > 0, 0 < γ < 1 are constants depending on the a-priori data and on θ̃
only.

Given z ∈ R
n, ξ ∈ R

n, |ξ| = 1, θ > 0, r > 0, we shall denote by

C(z, ξ, θ, r) = {x ∈ R
n :

(x− z) · ξ

|x− z|
> cos(θ), |x− z| < r}(4.60)

the intersection of the ball Br(z) and the open cone having vertex z, axis in the
direction ξ and width 2θ. Since ∂G is of Lipschitz class with constant r0, L for
any z ∈ ∂G there exists ξ ∈ R

n, |ξ| = 1, such that C(z, ξ, θ, r0) ⊂ G, where
θ = arctan 1

L .
Let (x̄, t̄) ∈ ∂G be such that |∇w(x̄, t̄)| = ‖∇w(·, t̄)‖L∞(∂G). Now dealing as

in Proposition 5.4. [7], we combine the inequality (4.59) with an iterated use
of the two–sphere and one–cylinder inequality (Theorem 3.6) within the cone
C(x̄, ξ, θ, r0) obtaining the following estimate

‖w(·, t̄)‖2L2(Bρk(r)
(xk(r)))

≤ C

(
1 +

T 2

ρ4k(r)

)1−τ̄k(r)−1

εβ1τ̄
k(r)−1

,(4.61)

with

ρ0 = a1 sin θ, ρk = χρk−1, d1 = a1(1− sin θ),

| log r
d1
|

| logχ|
≤ k(r)− 1 ≤

| log r
d1
|

| logχ|
+ 1,

where 0 < τ̄ < 1, 0 < β1 < 1, 0 < χ < 1, a1 > 0 are positive constants depending
on the a-priori data only and where xk(r) is a point lying on the axis ξ of the

cone C(x̄, ξ, θ, r0) at a distance χk(r)−1 · d1 + ρk(r) from x̄ with 0 < r < d1. By
the interpolation inequality (4.50) stated in Proposition 3.1 and the definition
of ρk(r) we have that (4.61) leads to

‖∇w(·, t̄)‖L∞(Bρk(r)
(xk(r))) ≤

C

r0
χβ3(1−k(r))εβ2τ̄

k(r)−1

,(4.62)

where C > 0, 0 < β2 < 1, 0 < β3 < 1 are constants depending on the a-priori
data only. We consider the point xr = x̄+ rξ. We have that xr ∈ Bρk(r)

(xk(r)).

From (4.62) and from the C1,α regularity of w we have that

|∇w(x̄, t̄)| ≤
C

r0

((
r

r0

)α

+ χβ3(1−k(r))εβ2τ̄
k(r)−1

)
,(4.63)

where C > 0 depends on the a-priori data only. Minimizing with respect to r
we obtain the desired estimate.
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Let us consider now the proofs of Propositions 3.3 and 3.4. For this purpose
we need a Harnack inequality, its version at the boundary and a technical lemma
(see Lemma 4.3 below).

The first tool can be found in [18]. We state a Harnack inequality at the
boundary, postponing its proof to the next Section 5. Let us remark here that
the thesis holds true weakening the regularity assumptions on the boundary
(C0,1 instead of C1,α), on γ and considering operators of more general form such
as div(a(x, t)∇u)− ut, where a is bounded and satisfies a uniformly ellipticity
condition.

Proposition 4.2 (Harnack inequality at the boundary). Let Ω be a bounded
domain with C1,α boundary with constants r0, L. Let γ satisfying (2.4) be such
that there exists a positive constant γ such that γ ≤ γ. Let us denote by T1, T2
two numbers in the time interval [0, T ]. Let u ∈ C1,α(Ω × [0, T ]) be a positive
solution to {

ut −∆u = 0 in Ω× [T1, T2]

∂u
∂ν + γu = 0 on Γ× [T1, T2],

where Γ is an open portion compactly contained in ∂Ω. Assume T1 < t1 < t2 <
t3 < t4 ≤ T2. Then for ρ < ρ0 there exists a positive constant C depending on
ρ0, ρ, t1, t2, t3, t4 such that

(4.64) sup
(Bρ∩Ω)×[t1,t2]

u ≤ C inf
(Bρ∩Ω)×[t3,t4]

u.

In order to state next result, let us introduce the following notation. We
shall denote by b0, b1 two positive constants such that

b0 ≤ u(x, t) ≤ b1 ∀ (x, t) ∈ Ω× [t1, T ],

(by (3.16) we can take b0 = c0Φ1, whereas the existence of b1 is guaranteed by
(2.3d) and (2.5)).

Lemma 4.3. Let the hypothesis of Theorem 2.3 be satisfied. We have that
∫

Ω

λ2(x, t)dx + b20

∫ t

t1

∫

Ω

|∇λ(x, t)|2dxdt

≤ C0b
2
0(1 + eb

2
0tr

−2
0 )

∫ t

t1

∫

∂Ω

|u2(x, τ)∂νλ(x, τ)|
2dσdτ, ∀ t ∈ [t1, T ](4.65)

where C0 > 0 is a constant depending on the a-priori data only.

Proof. For a sake of brevity, we shall denote along the proof h = u2∂νλ. By the
weak formulation of problem (3.12) we obtain that

1

2

∫ t

t1

∫

Ω

(λ2)τdxdτ +

∫ t

t1

∫

Ω

u2|∇λ|2dxdτ

=

∫ t

t1

∫

∂Ω

hλdσdτ.(4.66)

By the Hölder inequality, we get

1

2

∫

Ω

λ2dx +

∫ t

t1

∫

Ω

u2|∇λ|2dxdτ

≤

(∫ t

t1

∫

∂Ω

h2dσdτ

) 1
2
(∫ t

t1

∫

∂Ω

λ2dσdτ

) 1
2

.(4.67)
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We recall the following trace inequality (see [15])

‖λ(·, t)‖L2(∂Ω) ≤ C
(
r
−1/2
0 ‖λ(·, t)‖L2(Ω) + r

1/2
0 ‖∇λ(·, t)‖L2(Ω)

)
(4.68)

where C > 0 is a constant depending on r0 and L only. Raising to the square
the latter and integrating over the interval [t1, t] we have that

∫ t

t1

∫

∂Ω

λ2dσdτ ≤ C

(
r−1
0

∫ t

t1

∫

Ω

λ2dxdτ + r0

∫ t

t1

∫

Ω

|∇λ|2dxdτ

)
.

Plugging the above estimate in the right hand side of (4.67) and using the Young
inequality we get

1

2

∫

Ω

λ2dx+ b20

∫ t

t1

∫

Ω

|∇λ|2dxdτ

≤
Cr0
δ

∫ t

t1

∫

∂Ω

h2dσdτ + δr−2
0

∫ t

t1

∫

Ω

λ2dxdτ + δ

∫ t

t1

∫

Ω

|∇λ|2dxdτ, ∀ t ∈ [t1, T ].

Choosing δ = 1
2b

2
0 we obtain that

∫

Ω

λ2dx(4.69)

≤ Cr0b
2
0

∫ t

t1

∫

∂Ω

h2dσdτ + b20r
−2
0

∫ t

t1

∫

Ω

λ2dxdτ, ∀ t ∈ [t1, T ].

Moreover, by the Gronwall inequality we infer that

∫

Ω

λ2dx ≤ Cr0b
2
0e

b20tr
−2
0

∫ t

t1

∫

∂Ω

h2dσdτ.(4.70)

Finally, integrating (4.70) over the interval [t1, t] and combining the obtained
inequality with (4.69) we get the desired estimate (4.65).

Proof of Proposition 3.3. Let (x0, t0) ∈ Ω× [t1, T ] be such that

u(x0, t0) = min
(x,t)∈Ω×[t1,T ]

u(x, t).

By maximum principle (x0, t0) ∈ (I × [t1, T ]) ∪ (A × [t1, T ]) ∪ (Ω × {t1}). Let
us consider separately the three pieces of the boundary.

i) (x0, t0) ∈ Ā× [t1, T ]. Being ∂νu(·, t0) ∈ Cα(∂Ω) and ∂νu(·, t0) = g(·, t0) on
A, we have that ∂νu(·, t0) ≥ 0 on Ā, that contradicts Hopf maximum principle.
Thus we can conclude that (x0, t0) doesn’t belong to Ā× [t1, T ].

ii) (x0, t0) ∈ I × [t1, T ]. First we fix y0 ∈ A and y1 = y0 −
r0
2 ν(y0). Without

loss of generality, assume t0 > t1. We divide the interval
[
t0+t1

2 , t0
]
into N

subintervals [t̃i, t̃i+1], i = 1, . . . , N , where t̃N = t0+t1
2 and t̃0 = t0. We shall

quantify N later on. By Harnack inequality at the boundary (Proposition 4.2)
we have

(4.71) inf
Bρ(x0)∩Ω

u(x, t0) ≥ C sup
Bρ(x0)∩Ω

u(x, t̃1),
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where ρ is such that ρ ≤ 4r0. There exists x1 ∈ Bρ(x0)∩Ω such that Bρ/8(x1) ⊂
Bρ(x0) ∩ Ω. Thus

sup
Bρ(x0)∩Ω

u(x, t̃1) ≥ sup
Bρ/8(x1)

u(x, t̃1).

We denote be σ a continuous path joining y1 and x1 and define xi, i = 1, . . . , N ,
as follows xi+1 = σ(si), where si = max{s : |σ(s)−xi| = ρ/8} if |y1−xi| > ρ/8,
otherwise i = N and stop the process. Trivially

sup
Bρ/8(x1)

u(x, t̃1) ≥ inf
B3ρ/4(x1)

u(x, t̃1).

By Harnack inequality in the interior [18] we have

inf
B3ρ/4(x1)

u(x, t̃1) ≥ C sup
B3ρ/4(x1)

u(x, t̃2).

Then
sup

B3ρ/4(x1)

u(x, t̃2) ≥ sup
Bρ/8(x2)

u(x, t̃2).

Summarizing we get

(4.72) sup
Bρ/8(x1)

u(x, t̃1) ≥ C sup
Bρ/8(x2)

u(x, t̃2),

where C depends on t0, t1.
Iterating this process along a chain of balls {Bρ/8(xi)}

N
i=1, we obtain the

estimate

(4.73) sup
Bρ/8(x1)

u(x, t̃1) ≥ CN sup
Bρ/8(xN )

u(x, t̃N ) ≥ CNu(y1, t̃N ).

By Taylor formula, recalling that u > 0 and by (2.5), (2.3g), we have that

u(y1, t̃N ) ≥ g(y0, t̃N )
ρ

8
− Cr−α

0 ‖g‖C0,α(A×[0,T ])

(ρ
8

)1+α

≥
ρ

8r0

(
Φ1 − CE

(
ρ

8r0

)α)
.

Now choosing ρ = min
{
4r0, 8r0

(
Φ1

2EC

)1/α}
, we get the thesis.

iii) (x0, t0) ∈ Ω× {t1}. This case can be treated similarly as ii).

Proof of Proposition 3.4. In the sequel we shall maintain the notation h =
u2∂νλ. After straightforward computation we observe that

g̃

g
− 1 =

u

g
∂νλ+ λ,

from this identity and by (2.5) we get

∥∥∥∥
g̃

g
− 1

∥∥∥∥
L2(A×[t1,T ])

≤
1

C0b1
‖h‖L2(A×[t1,T ]) + ‖λ‖L2(∂Ω×[t1,T ])(4.74)
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where C0 has been introduced in (2.5). Now, by integrating the trace estimate
(4.68) over the time interval [t1, T ] and by (4.65) we get

∫ T

t1

∫

∂Ω

λ2dσdτ ≤ C

(
r−1
0

∫ T

t1

∫

Ω

λ2dxdτ + r0

∫ t

t1

∫

Ω

|∇λ|2dxdτ

)

≤ CC0(1 + eb
2
0r

−2
0 t)(1 + b20r

−2
0 t)

∫ T

t1

∫

A

h2dσdτ.(4.75)

At this stage we use the above inequality to control the right hand side of (4.74)
obtaining the following

∥∥∥∥
g̃

g
− 1

∥∥∥∥
L2(A×[t1,T ])

≤ C1‖h‖L2(A×[t1,T ]),(4.76)

where C1 =
(

1
C0b1

+ [CC0(1 + eb
2
0r

−2
0 T )(1 + b20r

−2
0 T )]

1
2

)
. Recalling that for ev-

ery c ∈ R we have

∥∥∥∥
g̃

g
− c

∥∥∥∥
L2(A×[t1,T ])

≥

∥∥∥∥∥
g̃

g
−

(
g̃

g

)

A×[0,T ]

∥∥∥∥∥
L2(A×[0,T ])

≥ Φ0,

from (4.76) we infer that

∥∥∥∥∥
g̃

g
−

(
g̃

g

)

A×[0,T ]

∥∥∥∥∥
L2(A×[0,T ])

≤ C1‖h‖L2(A×[t1,T ]).

At this point we claim that for any ρ > 0 and for any x0 ∈ Ωρ it holds

‖h‖2L2(A×[t1,T ]) ≤
C

rn+2
0

∫ T

t1

∫

Bρ(x0)

λ2dxdτ,

where C > 0 is a constant depending on the a-priori data and on ρ only. Our
claim, now, follows by standard arguments based on Theorem 3.6 and the cor-
responding version in the interior (see [22, Proposition 4.1.3]).

5 Proof of Proposition 4.2 (Harnack Inequality

at the Boundary)

The proof of Proposition 4.2 can be obtained as in [18], where the result relies on
two Lemmas labeled as Lemma 1 and Lemma 2. For the sake of completeness, we
state and sketch the proof of them in the present situation in the two following
lemmas. For r > 0, we shall denote by S(r) the cylinder |t| < r2, |x| < r, by
S−(r) the cylinder 0 < −t < r2, |x| < r and by S+(r) the cylinder 0 < t < r2,
|x| < r. We denote also B+

r = Br ∩ {xn > 0}.

Lemma 5.1. Let u(x, t) > 0 be a solution of the problem
(5.77){

div(σ(x)∇u(x, t)) = ut(x, t), x ∈ B+
2 , |t| ≤ t, t > 1,

σ(x)∇u(x, t) · ν(x) + γ0(x, t) u(x, t) = 0, for |x| < 2, xn = 0, |t| ≤ t,
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where

(5.78) λ |ξ|2 ≤ σ(x)ξ · ξ ≤ Λ |ξ|2 ,

for every x ∈ B+
2 , ξ ∈ R

n and |γ0(x, t)| ≤ γ0. Let
1
2 ≤ ρ < r ≤ 1 and µ = Λ+ 1

λ .
Then there exists a constant C4 = C4(n, γ0) such that

sup
S(ρ)

up ≤
C4

(r − ρ)n+2

∫∫

S(r)

updxdt, for every 0 < p < µ−1,

sup
S−(ρ)

up ≤
C4

(r − ρ)n+2

∫∫

S−(r)

updxdt, for every − µ−1 < p < 0.

Proof. Let Φ(x, t) be a test function such that

{
Φ ∈ C1(S(1)),
Φ = 0, for (x, t) ∈ ∂B1 × [−1, 1].

By (5.77), integrating over B+
1 ×(t1, t2), t1, t2 ∈ (−1, 1), and taking into account

the Robin condition, we get

∫ t2

t1

∫

B+
1

utΦ+

∫ t2

t1

∫

B+
1

σ∇u · ∇Φ

=

∫ t2

t1

∫

B+
1

σ∇u · νΦ = −

∫ t2

t1

∫

I(1)

γ0(x, t)uΦ,

where I(1) = {(x ∈ R
n : x = (x′, 0), |x| ≤ 1}. Let us set v = u

p
2 , Φ = up−1ψ2.

Then we obtain,

∫ t2

t1

∫

B+
1

2

p
vvtψ

2 +

∫ t2

t1

∫

B+
1

4(p− 1)

p2
σ∇v · ∇vψ2

+

∫ t2

t1

∫

B+
1

4

p
vψσ∇v · ∇ψ = −

∫ t2

t1

∫

I(1)

γ0v
2ψ2.

Multiplying for p
4 and adding to both sides the term

∫ t2
t1

∫
B+

1

1
4 (
d

dt
ψ2)v2, we get

1

4

∫ t2

t1

∫

B+
1

d

dt
(v2ψ2) + (1−

1

p
)

∫ t2

t1

∫

B+
1

σ∇v · ∇vψ2(5.79)

= −

∫ t2

t1

∫

B+
1

vψσ∇v · ∇ψ +
1

2

∫ t2

t1

∫

B+
1

ψψtv
2 −

p

4

∫ t2

t1

∫

I(1)

γ0v
2ψ2.

The term
∫ t2
t1

∫
I(1)

γ0v
2ψ2 can be estimated by trace theorem ([1, Th. 5.22])

and Poincaré inequality, that is

(5.80)

∣∣∣∣∣

∫ t2

t1

∫

I(1)

γ0v
2ψ2

∣∣∣∣∣ ≤ Cγ0

∫ t2

t1

∫

B+
1

∣∣∇(v2ψ2)
∣∣ ,
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where C is an absolute constant. Then, by spreading the gradient of the right
hand side of (5.80) and by applying the inequality 2ab ≤ a2 + b2, we get

∣∣∣∣∣
p

4

∫ t2

t1

∫

I(1)

γ0v
2ψ2

∣∣∣∣∣ ≤ Cγ0
|p|

4

∫ t2

t1

∫

B+
1

∣∣∇(v2ψ2)
∣∣(5.81)

≤ ε̃

∫ t2

t1

∫

B+
1

|∇v|2 ψ2 ++
1

ε̃

C2γ20 |p|
2

16

∫ t2

t1

∫

B+
1

v2ψ2

+
Cγ0 |p|

4

∫ t2

t1

∫

B+
1

v2(ψ2 + |∇ψ|2).

We first consider the case (1− 1
p ) > 0. By (5.78), (5.79), (5.81) and by

(5.82) |vψσ∇v · ∇ψ| ≤
1

4ε̃
v2∇ψ · σ∇ψ + ε̃ψ2∇v · σ∇v,

we obtain, taking ε̃ = λ
λ+1

1
2 (1 −

1
p ),

1

4

∫ t2

t1

∫

B+
1

d

dt
(v2ψ2) +

λ

2
(1−

1

p
)

∫ t2

t1

∫

B+
1

|∇v|2 ψ2(5.83)

≤
1

2

(λ+ 1)Λ

λ

p

p− 1

∫ t2

t1

∫

B+
1

v2 |∇ψ|2 +
1

2

∫ t2

t1

∫

B+
1

v2 |ψψt|

+C(λ, γ0)

(
p3

p− 1
+ |p|

)∫ t2

t1

∫

B+
1

v2(ψ2 + |∇ψ|2).

In the case (1 − 1
p ) < 0, we multiply (5.79) by −1. By (5.78), (5.81), (5.82),

choosing ε̃ = λ
λ+1

1
2 (

1
p − 1), we obtain

−
1

4

∫ t2

t1

∫

B+
1

d

dt
(v2ψ2) +

λ

2
(
1

p
− 1)

∫ t2

t1

∫

B+
1

|∇v|2 ψ2(5.84)

≤
1

2

(λ+ 1)Λ

λ

p

1− p

∫ t2

t1

∫

B+
1

v2 |∇ψ|2 +
1

2

∫ t2

t1

∫

B+
1

v2 |ψψt|

+C(λ, γ0)

(
p3

1− p
+ |p|

)∫ t2

t1

∫

B+
1

v2(ψ2 + |∇ψ|2).

Inequalities (5.83), (5.84) are analogous to the one in [18, page 737], with the

addition of the term C(λ, γ0)(p
2
∣∣∣ p
1−p

∣∣∣+ |p|)
∫ t2
t1

∫
B+

1
v2(ψ2+ |∇ψ|2). Proceeding

in the same way, we get the thesis.

Lemma 5.2. Let the hypothesis of Lemma 5.1 be fulfilled. Then there exist
constants a, C5 such that

|{(x, t) ∈ S+(1) : log u < −s+ a}|+ |{(x, t) ∈ S−(1) : log u > s+ a}| ≤
C5

s
,

for every s > 0, where C5 depends on λ,Λ, n, γ0, and a depends on u.
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Proof. We consider the function v = − logu that solves the problem

(5.85)

{
vt − div(σ∇v) = −∇v · σ∇v, x ∈ B+

2 , |t| < 1,
σ∇v · ν = γ0, |x| < 2, xn = 0, |t| < 1.

Let ψ2(x) be a test function independent on t and such that ψ(x) ≥ 0, ψ(x) = 0
for |x| = 2, xn > 0. By (5.85), we get, adding the null term v d

dtψ
2,

∫ t2

t1

∫

B+
2

d

dt
(vψ2) + 2

∫ t2

t1

∫

B+
2

σ∇v · ∇ψψ

−

∫ t2

t1

∫

I(2)

γψ2 +

∫ t2

t1

∫

B+
2

σ∇v · ∇vψ2 = 0,(5.86)

where t1, t2 ∈ (−1, 1). By Schwarz inequality, since
∫ t2

t1

∫

B+
2

σ∇v · ∇ψψ ≥ −
1

4

∫ t2

t1

∫

B+
2

σ∇v · ∇vψ2 −

∫ t2

t1

∫

B+
2

σ|∇ψ|2,

and by (5.78), (5.86), we get
∫

B+
2

vψ2
∣∣t2
t1 +

λ

2

∫ t2

t1

∫

B+
2

|∇v|2 ψ2 ≤ 2

∫ t2

t1

∫

B+
2

σ∇ψ · ∇ψ +

∫ t2

t1

∫

I(2)

γ0ψ
2.

Again by trace theorem ([1, Th. 5.22]) and Poincaré inequality we finally obtain
∫

B+
2

vψ2|t2t1 +
λ

2

∫ t2

t1

∫

B+
2

|∇v|2 ψ2 ≤ 2

∫ t2

t1

∫

B+
2

σ∇ψ · ∇ψ

+2γ0

∫ t2

t1

∫

B+
2

|ψ∇ψ| ≤ C(γ0,Λ)

∫ t2

t1

∫

B+
2

(ψ2 + |∇ψ|2).(5.87)

Inequality (5.87) is analogous to the inequality in [17], page 121, with the ad-

dition of the term C(γ0,Λ)
∫ t2
t1

∫
B+

2
(ψ2 + |∇ψ|2). Proceeding in the same way,

we get the thesis.

Let P ∈ Γ. Owing to the boundary regularity of Ω, there exists a rigid trans-
formation of coordinates such that P ≡ 0 and

Ω ∩Br0 = {x ∈ R
n : xn > ϕ(x′)},

where ϕ ∈ C1,α(B′
r0) satisfies

ϕ(0) = |∇ϕ(0)| = 0, ‖ϕ‖C1,α(B′
r0

) ≤ Lr0.

Defining the map Ψ on Br2 as

Ψ(y) = (y′, ϕ(y′) + yn),

we have that Ψ ∈ C1,α(Br2) and there exist C1, θ1, θ2, positive constants, 0 <
θi < 1, i = 1, 2, depending on L only such that for ri = θir0, i = 1, 2,

Ψ(Br2) ⊂ Br1 ,

Ψ(y′, 0) = (y′, ϕ(y′)), for every y′ ∈ B′
r2 ⊆ R

n−1,

Ψ(B+
r2) ⊂ Ω ∩Br1 ,

1

2
|y − z| ≤ |Ψ(y)−Ψ(z)| ≤ C1 |y − z| , ∀ y, z ∈ B′

r2 ,

detDΨ = 1.
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Denoting by

σ(y) = (DΨ−1)(Ψ(y))(DΨ−1)T (Ψ(y)),

ũ(y, t) = u(Ψ(y), t), γ′(y, t) = γ(Ψ(y), t),

we have

1

2n+2
|ξ|2 ≤ σ(y)ξ · ξ ≤ C2 |ξ|

2
, ∀ y ∈ B+

ρ2
, ξ ∈ R

n,

|σ(y) − σ(z)| ≤
C3

ρ0
|y − z| , ∀ y, z ∈ B+

ρ2
,

where C2, C3 depend on L. Moreover ũ(y, t) satisfies the problem
(5.88){

div(σ(y)∇ũ(y, t)) = ũt(y, t), B+
ρ2

× (T1, T2),

σ(y′, 0)∇ũ((y′, 0), t) · ν(y′, 0) + γ′((y′, 0), t)ũ((y′, 0), t) = 0, |y′| < ρ2, t ∈ (T1, T2),

where ν(y′, 0) = (0, 0, ...,−1). By a standard scaling argument and applying
Lemma 5.1 and 5.2, we obtain Proposition 4.2.
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