
Data Mining for XML Query-Answering Support
Mirjana Mazuran, Elisa Quintarelli, and Letizia Tanca

Abstract—Extracting information from semistructured documents is a very hard task, and is going to become more and more critical

as the amount of digital information available on the Internet grows. Indeed, documents are often so large that the data set returned as

answer to a query may be too big to convey interpretable knowledge. In this paper, we describe an approach based on Tree-Based

Association Rules (TARs): mined rules, which provide approximate, intensional information on both the structure and the contents of

Extensible Markup Language (XML) documents, and can be stored in XML format as well. This mined knowledge is later used to

provide: 1) a concise idea—the gist—of both the structure and the content of the XML document and 2) quick, approximate answers to

queries. In this paper, we focus on the second feature. A prototype system and experimental results demonstrate the effectiveness of

the approach.

Index Terms—XML, approximate query-answering, data mining, intensional information, succinct answers.

Ç

1 INTRODUCTION

IN recent years, the database research field has concen-
trated on the Extensible Markup Language (XML) [30] as

a flexible hierarchical model suitable to represent huge
amounts of data with no absolute and fixed schema, and a
possibly irregular and incomplete structure. There are two
main approaches to XML document access: keyword-based
search and query-answering. The first one comes from the
tradition of information retrieval [20], where most searches
are performed on the textual content of the document; this
means that no advantage is derived from the semantics
conveyed by the document structure.

As for query-answering, since query languages for semi-

structured data rely on the document structure to convey its

semantics, in order for query formulation to be effective

users need to know this structure in advance, which is often

not the case. In fact, it is not mandatory for an XML

document to have a defined schema: 50 percent of the

documents on the web do not possess one [5]. When users

specify queries without knowing the document structure,

they may fail to retrieve information which was there, but

under a different structure. This limitation is a crucial

problem which did not emerge in the context of relational

database management systems.
Frequent, dramatic outcomes of this situation are either

the information overload problem, where too much data are

included in the answer because the set of keywords

specified for the search captures too many meanings, or

the information deprivation problem, where either the use of

inappropriate keywords, or the wrong formulation of the

query, prevent the user from receiving the correct answer.

As a consequence, when accessing for the first time a large

data set, gaining some general information about its main
structural and semantic characteristics helps investigation
on more specific details.

This paper addresses the need of getting the gist of the
document before querying it, both in terms of content and
structure. Discovering recurrent patterns inside XML
documents provides high-quality knowledge about the
document content: frequent patterns are in fact intensional
information about the data contained in the document itself,
that is, they specify the document in terms of a set of
properties rather than by means of data. As opposed to the
detailed and precise information conveyed by the data, this
information is partial and often approximate, but synthetic,
and concerns both the document structure and its content.

In particular, the idea of mining association rules [1] to
provide summarized representations of XML documents
has been investigated in many proposals either by using
languages (e.g., XQuery [29]) and techniques developed in
the XML context, or by implementing graph- or tree-based
algorithms. In this paper, we introduce a proposal for
mining and storing Tree-Based Association Rules (TARs) as
a means to represent intensional knowledge in native XML.
Intuitively, a TAR represents intensional knowledge in the
form SB) SH , where SB is the body tree and SH the head
tree of the rule and SB is a subtree of SH . The rule SB) SH
states that, if the tree SB appears in an XML document D, it
is likely that the “wider” (or “more detailed”), tree SH also
appears in D. Graphically, we render the nodes of the body
of a rule by means of black circles, and the nodes of the
head by empty circles (to get the idea, see the rules in Fig. 4,
mined from the data set of Fig. 1).

The intensional information embodied in TARs provides
a valid support in several cases.

1. It allows to obtain and store implicit knowledge of the
documents, useful in many respects: a) when a user
faces a data set for the first time, she/he does not
know its features and frequent patterns provide a
way to quickly understand what is contained in the
data set; b) besides intrinsically unstructured docu-
ments, there is a significant portion of XML

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012 1393

. The authors are with the Dipartimento di Elettronica e Informazione,
Politecnico di Milano, Via Ponzio 34/5, Milano 20133, Italy.
E-mail: {mazuran, quintare, tanca}@elet.polimi.it.

Manuscript received 1 Sept. 2010; revised 17 Feb. 2011; accepted 1 Mar. 2011;
published online 18 Mar. 2011.
Recommended for acceptance by T. Grust.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2010-09-0478.
Digital Object Identifier no. 10.1109/TKDE.2011.80.

1041-4347/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

documents which have some structure, but only
implicitly, that is, their structure has not been
declared via a DTD or an XML-Schema [27]. Since
most work on XML query languages has focused on
documents having a known structure, querying the
above-mentioned documents is quite difficult be-
cause users have to guess the structure to specify the
query conditions correctly. TARs represent a data
guide that helps users to be more effective in query
formulation; c) it supports query optimization de-
sign, first of all because recurrent structures can be
used for physical query optimization, to support the
construction of indexes and the design of efficient
access methods for frequent queries, and also
because frequent patterns allow to discover hidden
integrity constraints, that can be used for semantic
optimization; d) for privacy reasons, a document
answer might expose a controlled set of TARs
instead of the original document, as a summarized
view that masks sensitive details [9].

2. TARs can be queried to obtain fast, although
approximate, answers. This is particularly useful
not only when quick answers are needed but also
when the original documents are unavailable. In
fact, once extracted, TARs can be stored in a
(smaller) document and be accessed independently
of the data set they were extracted from.

Summarizing, TARs are extracted for two main purposes:
1) to get a concise idea—the gist—of both the structure and
the content of an XML document, and 2) to use them for
intensional query-answering, that is, allowing the user to query
the extracted TARs rather than the original document. In
this paper, we concentrate mainly on the second task.

We have applied our techniques in the Odyssey EU
Project,1 whose objective is to develop a platform for
automated sharing, management, processing, analysis and
use of ballistic, and crime scene information across Europe.
Frequent patterns, in the form of TARs, provide summaries
of these integrated data sets shared by different EU Police
Organizations. By querying such summaries, investigators
obtain initial knowledge about specific entities in the vast

data set(s), and are able to devise more specific queries for

deeper investigation. An important side effect of using such

a technique is that only the most promising specific queries

are issued toward the integrated data, dramatically redu-

cing time and cost.

1.1 Goal and Contributions

This paper provides a method for deriving intensional

knowledge from XML documents in the form of TARs, and

then storing these TARs as an alternative, synthetic data set

to be queried for providing quick and summarized answers.

Our procedure is characterized by the following key aspects:

1. It works directly on the XML documents, without
transforming the data into any intermediate format.

2. It looks for general association rules, without the
need to impose what should be contained in the
antecedent and consequent of the rule.

3. It stores association rules in XML format.
4. It translates the queries on the original data set into

queries on the TARs set.

The aim of our proposal is to provide a way to use

intensional knowledge as a substitute of the original

document during querying and not to improve the

execution time of the queries over the original XML data

set, like in [34]. Accordingly, the paper’s contributions are

. An improved version of the TARs extraction algo-
rithm introduced in [22], which was based on
PathJoin [35]. The new version uses the better
performing CMTreeMiner [7] to mine frequent
subtrees from XML documents.

. Approach validation by means of experimental
results, considering both the previous and the
current algorithm and showing the improvements.

. Automatic user-query transformation into “equiva-
lent” queries over the mined intensional knowledge.
The notion of equivalence in this setting is given in
Section 4.

. As a formal corroboration of the accuracy of the
process, the proof that our intensional-answering
process is sound and complete up to a frequency
threshold.

1394 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 1. Sample XML file: “incidents.xml” from the Odyssey data sets.

1. http://odyssey-project.eu/.

1.2 Structure of the Paper

The paper is organized as follows. Section 2 defines tree-
based association rules and introduces their usage, while
Section 3 presents how these rules are extracted from XML
documents. Section 4 presents the main interesting applica-
tion of TARs, that is, their use to provide intensional
answers to queries. Section 5 describes a prototype that
implements our proposal and the experimental results
obtained on real XML data sets. Section 6 discusses related
work and Section 7 states the possible follow-ups of this
work and draws the conclusions.

2 TREE-BASED ASSOCIATION RULES

Association rules [1] describe the co-occurrence of data
items in a large amount of collected data and are represented
as implications of the form X) Y , where X and Y are two
arbitrary sets of data items, such that X \ Y ¼ ;. The quality
of an association rule is measured by means of support and
confidence. Support corresponds to the frequency of the set
X [Y in the data set, while confidence corresponds to the
conditional probability of finding Y , having found X and is
given by suppðX [Y Þ=suppðXÞ.

In this paper, we extend the notion of association rule
introduced in the context of relational databases to adapt it
to the hierarchical nature of XML documents. Following the
Infoset conventions, we represent an XML document as a
tree2 hN;E; r; ‘; ci, where N is the set of nodes, r 2 N is the
root of the tree, E is the set of edges, ‘ : N ! L is the label
function which returns the tag of nodes (with L the domain
of all tags) and c : N ! C [f?g is the content function
which returns the content of nodes (with C the domain of all
contents). We consider the element-only Infoset content
model [28], where XML nonterminal tags include only
other elements and/or attributes, while the text is confined
to terminal elements.

We are interested in finding relationships among
subtrees of XML documents. Thus, since both textual
content of leaf elements and values of attributes convey
“content,” we do not distinguish between them. As a
consequence, for the sake of readability, we do not report
the edge label and the node type label in the figures.
Attributes and elements are characterized by empty circles,
whereas the textual content of elements, or the value of
attributes, is reported under the outgoing edge of the
element or attribute it refers to (see Fig. 1).

2.1 Fundamental Concepts

Given two trees T ¼ hNT ;ET ; rT ; ‘T ; cT i and S ¼ hNS;ES;
rS; ‘S; cSi, S is an induced subtree of T if and only if there
exists a mapping � : NS ! NT such that for each node ni 2
NS; ‘T ðniÞ ¼ ‘SðnjÞ and cT ðniÞ ¼ cSðnjÞ, where �ðniÞ ¼ nj,
and for each edge e ¼ ðn1; n2Þ 2 ES; ð�ðn1Þ; �ðn2ÞÞ 2 ET .
Moreover, S is a rooted subtree of T if and only if S is an
induced subtree of T and rS ¼ rT .

Given a tree T ¼ hNT ;ET ; rT ; ‘T ; cT i, a subtree of T, t ¼
hNt;Et; rt; ‘t; cti and a user-fixed support threshold smin: 1) t
is frequent if its support is greater or at least equal to smin;
2) t is maximal if it is frequent and none of its proper

supertrees is frequent; and 3) t is closed if none of its proper
supertrees has support greater than that of t.

Fig. 2 shows an example of an XML document (Fig. 2a),
its tree-based representation (Fig. 2b), two induced subtrees
(Fig. 2c), and a rooted subtree (Fig. 2d).

A Tree-based Association Rule is a tuple of the form
Tr ¼ hSB; SH; sTr ; cTri, where SB ¼ hNB;EB; rB; ‘B; cBi and
SH ¼ hNH;EH; rH; ‘H; cHi are trees and sTr and cTr are real
numbers in the interval [0,1] representing the support and
confidence of the rule, respectively, (defined below). A TAR
describes the co-occurrence of the two trees SB and SH in an
XML document. For the sake of readability, we shall often
use the short notation SB) SH ; SB is called the body or
antecedent of Tr while SH is the head or consequent of the rule.
Furthermore, SB is a subtree of SH with an additional
property on the node labels: the set of tags of SB is
contained in the set of tags of SH with the addition of the
empty label “�”: ‘SBðNSBÞ � ‘SBðNSBÞ [f�g. The empty label
is introduced because the body of a rule may contain nodes
with unspecified tags, that is, blank nodes (see the rule (4) of
Fig. 3). For the sake of simplicity the label � is omitted in the
figures. Moreover,

. a rooted TAR (RTAR) is a TAR such that SB is a
rooted subtree of SH , and

. an extended TAR (ETAR) is a TAR such that SB is
an induced subtree of SH .

Let countðS;DÞ denote the number of occurrences of a
subtree S in the tree D and cardinalityðDÞ denote the
number of nodes of D. We formally define the support of a
TAR SB) SH as countðSH;DÞ=cardinalityðDÞ and its
confidence as countðSH;DÞ=countðSB;DÞ.

Notice that TARs, in addition to associations between
data values, also provide information about the structure of
frequent portions of XML documents; thus, they are more
expressive than classical association rules which only
provide frequent correlations of flat values.

It is worth pointing out that TARs are different from
XML association rules as defined in [24], because, given a
rule X) Y , where both X and Y are subtrees of an XML
document, that paper requires that ðX 6� Y Þ ^ ðY 6� XÞ, i.e.,
the two trees X and Y have to be disjoint; on the contrary,
TARs require X to be an induced subtree of Y .

Given an XML document, we extract two types of TARs.

. A TAR is a structure TAR (sTAR) iff, for each node
n contained in SH , cHðnÞ ¼ ?, that is, no data value

MAZURAN ET AL.: DATA MINING FOR XML QUERY-ANSWERING SUPPORT 1395

2. Without loss of generality, we do not consider namespaces, ordering
label, referencing formalism through ID-IDREF attributes, URIs, Links and
entity nodes because they are not relevant to the present work.

Fig. 2. (a) An example of XML document. (b) Its tree-based
representation. (c) Two induced subtrees. (d) A rooted subtree.

is present in sTARs, i.e., they provide information
only on the structure of the document (see Fig. 3).

. A TAR, SB) SH , is an instance TAR (iTAR) iff SH
contains at least one node n such that cHðnÞ 6¼ ?,
that is, iTARs provide information both on the
structure and on the data values contained in a
document (Fig. 4).

According to the definitions above we have: structure-

Rooted-TARs (sRTARs), structure-Extended-TARs (sE-

TARs), instance-Rooted-TARs (iRTARs), and instance-
Extended-TARs (iETARs).

Since TARs provide an approximate view of both the

content and the structure of an XML document, 1) sTARs
can be used as an approximate DataGuide [13], [14] of the

original document, to help users formulate queries; 2) iTARs

can be used to provide intensional, approximate answers to
user queries. Fig. 3 shows a sample XML document and

some sTARs. Rules (1) and (3) are rooted sTARs, rule (2) is
an extended sTAR. Rule (1) states that, if there is a node

labeled A in the document, with 86 percent probability that

node has a child labeled B. Rule (2) states that, if there is a
node labeled B, with 75 percent probability its parent is

labeled A. Finally, Rule (3) states that, if a node A is the
grandparent of a node C (notice the empty node, parent of

node C), with 75 percent probability the child of A and

parent of C, is labeled B.
By observing sTARs users can guess the structure of an

XML document, and thus use this approximate schema to

formulate a query when no DTD or schema is available: as
DataGuides [13], sTARs represent a concise structural

summary of XML documents. Consider a user, querying

for the first time the document “incidents.xml.” The

sTAR ð4Þ, in Fig. 3, allows users to understand that five
times out of six an incident’s structure presents the fields
type, ballistic item, country, and when re-

ported, and that the ballistic item is a bullet which in
turn comprises type, case type, diameter; thus for
instance “the average diameter of the bullets” or “the
number of incidents reported in Italy” are meaningful
queries with respect to this document.

Differently from DataGuides, sTARs do not show all
possible paths in the XML document but only the frequent
paths. In particular, for each fragment, its support deter-
mines how frequent the substructure is. This means that
sTARs provide a simple path index which supports path
matching and can be used for the optimization of the query
process. An index for an XML data set is a predefined
structure whose performance is maximized when the query
matches exactly the designed structure. Therefore, the goal,
when designing an index, is to make it as similar as possible
to the most frequent queries. For example, the sTAR 4 in
Fig. 3 can suggest the index paths: incident/ballisti-
c_item/bullet and incident/type.

By contrast, iTARs give an idea about the type of content of
the different nodes. Fig. 4 shows some examples of iTARs
referred to the XML document in Fig. 1. Rules (1) and (4) are
rooted iTARs, while rules (2) and (3) are extended iTARs.
Rule (1) states that, if there is a node labeled incident in the
document, with confidence 0.8 it has a child labeled type

whose value is “robbery.” That is, 80 percent of the incidents
contained in the document are robberies. Rule (2) states that,
if there is a path composed by the sequence of nodes
bullet/type, and the content of type is “Full Metal
Jacket,” then nodebullet, with confidence 0.66, has another
child labeled case_type whose content is “Rimless.” That

1396 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 3. Sample data set and graphical representation of structure Tree-based Association Rules (sTARs).

Fig. 4. Graphical representation of instance Tree-based Association Rules (iTARs).

is, 66 percent of Full Metal Jacket bullets have rimless cases.
Rule (3) states that, if there is a path composed by the
sequence of nodes bullet/type, and the content of type is
“Winchester,” then node bullet, with confidence 1.00, has
two other children labeled diameter and case_type

whose contents are, respectively, “7.8 mm” and “Belted.”
That is, 100 percent of the Winchester bullets have a 7.8 mm
diameter and a belted case. Note that, since Rule (3) has
confidence 1, we understand that the data set satisfies the
constraint “all Winchester bullets are Belted and measure
7.8 mm.” Finally, rule (4), states that, if there is a path
composed by the following sequence of nodes: incident/
ballistic_ items/bullet and the node bullet has
two children labeled type and case_type whose contents
are, respectively, “Full Metal Jacket” and “Rimless,” then
node incident, with confidence 0.75, has two more
children labeled type and country whose contents are
“robbery” and “Italy.” That is, 75 percent of incidents
involving rimless Full Metal Jacket bullets are robberies
happening in Italy.

3 TAR EXTRACTION

TAR mining is a process composed of two steps: 1) mining
frequent subtrees, that is, subtrees with a support above a user-
defined threshold, from the XML document; 2) computing
interesting rules, that is, rules with a confidence above a user-
defined threshold, from the frequent subtrees.

As will be discussed in more detail in Section 6, the
problem of finding frequent subtrees has been widely
treated in the literature [36], [3], [32], [35], [37], [1].

Algorithm 1 presents our extension to a generic frequent-
subtree mining algorithm in order to compute interesting
TARs. The inputs of Algorithm 1 are the XML document D,
the threshold for the support of the frequent subtrees
minsupp, and the threshold for the confidence of the rules,
minconf . Algorithm 1 finds frequent subtrees and then
hands each of them over to a function that computes all the
possible rules. Depending on the number of frequent
subtrees and their cardinality, the amount of rules
generated by a naive Compute-Rules function may be very
high. Given a subtree with n nodes, we could generate 2n �
2 rules, making the algorithm exponential. This explosion
occurs in the relational context too, thus, based on similar
considerations [1], it is possible to state the following
property, that allows us to propose the optimized version of
Compute-Rules shown in Function 2.

Algorithm 1. Get-Interesting-Rules (D, minsupp, minconf)

1: // frequent subtrees

2: FS ¼ FindFrequentSubtrees (D, minsupp)

3: ruleSet ¼ ;

4: for all s 2 FS do

5: // rules computed from s

6: tempSet ¼ Compute-Rulesðs;minconfÞ
7: // all rules

8: ruleSet ¼ ruleSet [tempSet

9: end for

10: return ruleSet

Function 2. Compute-Rules ðs;minconfÞ
1: ruleSet ¼ ;; blackList = ;
2: for all cs, subtrees of s do

3: if cs is not a subtree of any element in blackList then

4: conf = supp(s) / supp(cs)
5: if conf � minconf then

6: newRule ¼ hcs; s; conf; suppðsÞi
7: ruleSet ¼ ruleSet [{newRule}

8: else

9: blackList ¼ blackList [cs
10: end if

11: end if

12: end for

13: return ruleSet

Remark 1. If the confidence of a rule SB) SH is below the
established threshold minconf then the confidence of
every other rule SBi

) SHi
, such that its body SBi

is an
induced subtree of the body SB, is no greater than
minconf .

Consider Fig. 5, which shows a frequent subtree (Fig. 5a)
and three possible TARs mined from the tree; all the three
rules have the same support k and confidence to be
determined. Let the support of the body tree of rule (1) be
s. Since the body trees of rules (2) and (3) are subtrees of the
body tree of rule (1), their support is at least s, and possibly
higher. This means that the confidences of rules (2) and (3)
are equal, or lower, than the confidence of rule (1).

In Function 2, TARs are mined exploiting Remark 1 by
generating first the rules with the highest number of nodes
in the body tree. Consider two rules Tr1 and Tr2 whose body
trees contain one and three nodes, respectively; suppose
both rules have confidence below the fixed threshold. If the
algorithm considers rule Tr2 first, all rules whose bodies are
induced subtrees of Tr2 will be discarded when Tr2 is
eliminated. Therefore, it is more convenient to first generate
rule Tr2 and in general, to start the mining process from the
rules with a larger body. Using this solution, we can lower
the complexity of the algorithm, though not enough to make
it perform better than exponentially. However, notice that
the process of deriving TARs from XML documents is only

MAZURAN ET AL.: DATA MINING FOR XML QUERY-ANSWERING SUPPORT 1397

Fig. 5. Rule examples for Property 1.

done periodically. Since intensional knowledge represents
frequent information, to update it, it is desirable to perform
such process after a big amount of updates have been made
on the original document. Therefore, in the case of stable
documents (that is, those that are rarely updated) the
algorithm has to be applied few times or only once (for
documents that do not change).

Once the mining process has finished and frequent TARs
have been extracted, they are stored in XML format. This
decision has been taken to allow the use of the same
language (XQuery in our case) for querying both the
original data set and the mined rules. Each rule is saved
inside a <rule> element which contains three attributes for
the ID, support, and confidence of the rule. Follows the list
of elements, one for each node in the rule head. We exploit
the fact that the body of the rule is a subtree of the head, and
use a Boolean attribute in each node to indicate if it also
belongs to the body. Each blank node is described by an
element <blank>. Finally, the rules in the XML file are
sorted on the number of nodes of their antecedent; there-
fore, the TARs in Fig. 4 are stored in the following order: (1),
(2), (3), and (4). This is an important feature that is used to
optimize the answering of queries containing a count
operator (see Section 4). Fig. 6 shows the XML file
containing TARs (1) and (2) of Fig. 4.

One of the (obvious) reasons for using TARs instead of the
original document is that processing iTARs for query-
answering is faster than processing the document. To take
full advantage of this, we introduce indexes on TARs to
further speed up the access to mined trees—and in general of
intensional query-answering. In the literature, the problem of
making XML query-answering faster by means of path-based
indexes has been investigated (see [34] for a survey). In
general, path indexes are proposed to quickly answer queries
that follow some frequent path template, and are built by
indexing only those paths having highly frequent queries.
We start from a different perspective: we want to provide a
quick, and often approximate, answer also to casual queries.

Given a set R of rules, the index associates, with every
path p present in at least one rule of R, the references to
rules that contain p in SH . An index is an XML document
containing a set of trees T1; . . . ; Tn such that each node n of
each tree Ti contains a set of references to the rules
containing in SH the path from the root of Ti to n. A
TAR-index contains references both to iTARs and sTARs
and is constructed by Algorithm 3.

Algorithm 3. Create-Index (D)

1: for all Di 2 D do

2: for all dj 2 Di with j 2 f2; 3; . . .ng do

3: references(root(d1)) = references(root(d1))

[references(root(dj))
4: sumChildren (d1; dj)

5: end for

6: end for

7: return D

Function 4. sumChildren (T1; T2)

1: for all x 2 children(root(T2)) do

2: if 9 c 2 children(root(T1)) j c ¼ x then

3: references(root(c)) = references(root(c))

[references(root(x))

4: c ¼ sumChildren(c,x)

5: else

6: addChild(root(T1),x)

7: end if

8: end for

9: return T1

Before applying the algorithm, two sets A and C are
constructed containing, respectively, the antecedent and
consequent trees of all the TARs to be indexed. Each tree Ti
in the index is annotated in a way that each node contains
the reference to the ID of the rule it comes from; then trees
are scanned looking for those that have the same root. After
this step two sets P ¼ fP1; . . . ; Png and D ¼ fD1; . . . ; Dmg
are obtained that are partitions of A and C, respectively,
where each Pi and Di contains trees having the same root.
Algorithm 3 is applied to merge the trees in each set using
the same rationale behind the DataGuide construction
procedure [13]. In particular, for each set, the first tree is
merged together with the others, that means that the
references of its root are added to the references of the roots
of the other trees (line 3) and the same procedure is applied
recursively to the children of the two roots (line 4).

For each node n of the resulting tree a set of references is
stored, pointing to the TARs that contain the path from the
root of the tree to node n. Once the algorithm is applied to all
TARs, the result is a set of trees whose nodes contain
references to one or more rules and which are stored in an
XML file to be queried later on. Notice that both antecedents
and consequents of rules are indexed because we work on
the assumption that an answer to a user query is a set of rules
whose antecedents or consequents match user requests.
However, they are indexed separately because for some
categories of user queries we need both of them to provide
the answer, while for others we need only antecedents.
Detailed explanations will be given in Section 4. Fig. 7 shows
the index corresponding to the TARs in Fig. 4, both in its
graphical and XML representation. Fig. 7a shows the two
annotated trees resulting from the application of Algorithm 3
to the TARs: each node has a label and a set of references to
rules; Fig. 7b shows the XML document containing the two
trees. For the sake of clarity, Algorithm 3 exploits functions:
root(T) returns the root of tree T; references(n)
returns the references to the rules with node n; chil-
dren(n) returns the subtrees of node n; addChil(n,T)
adds tree T to the children of node n.

4 INTENSIONAL ANSWERS

iTARs provide an approximate intensional view of the
content of an XML document, which is in general more

1398 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 6. XML file containing the TARs (1) and (2) of Fig. 4.

concise than the extensional one because it describes the
data in terms of its properties, and because only the
properties that are verified by a high number of items are

extracted. A user query over the original data set can be
automatically transformed into a query over the extracted
iTARs. The answer will be intensional, because, rather than
providing the set of data satisfying the query, the system
will answer with a set of properties that these data
“frequently satisfy,” along with support and confidence.
There are two major advantages: 1) querying iTARs

requires less time than querying the original XML docu-
ment; 2) approximate, intensional answers are in some cases
more useful than the extensional ones (see Section 1). For

example, if a user asks for the incidents registered in the

data set in Fig. 1, the extensional answer is the list of all

incidents (possibly megabytes) to be inspected manually,

while an intensional answer might be that “80 percent of

incidents were robberies.”
Not all queries lend themselves to being transformed into

queries on iTARs; we list three classes of queries that can be

transformed, still preserving the soundness; moreover, we

explain how such transformation can be automatically done.
The classes of queries that can be managed with our

approach have been informally introduced in [11] and
further analyzed in the relational database context in [4].
They include the main retrieval functionalities of XQuery,
i.e., path expressions, FLOWR expressions, and the COUNT
aggregate operator. We have not considered operators for
adding new elements or attributes to the result of a query,
because our purpose is to retrieve slender and approximate
descriptions of the data satisfying the query, as opposed to
modifying, or adding, new elements to the result. More-
over, since aggregate operators require an exact or approx-
imate numeric value as answer, they do not admit
intensional answers in the form of implications, thus
queries containing aggregators other than COUNT are
excluded. Note, however, that mined TARs allow us to
provide exact answers to counting queries.

Table 1 shows each class with its syntax and an example.

The emphasized objects are metaexpressions (queries or

variables) which need to be replaced in the actual query.

. Class 1: ��/��-queries. Used to impose a simple, or
complex (containing AND and OR operators), restriction
on the value of an attribute or the content of a leaf
node, possibly ordering the result. The query
imposes some conditions on a node’s content and
on the content of its descendants, orders the results
according to one of them and returns the node itself.
For example “Retrieve all incidents where Full Metal
Jacket types of bullets were used, ordered by the date the
incident was reported.”

. Class 2: count-queries. Used to count the number of
elements having a specific content. The query creates a
set containing the elements which satisfy the condi-
tions and then returns the number of elements in

MAZURAN ET AL.: DATA MINING FOR XML QUERY-ANSWERING SUPPORT 1399

Fig. 7. TARs index.

TABLE 1
Classes of Supported Queries

such set. For example “Retrieve the number of
Winchester bullets.”

. Class 3: top-k queries. Used to select the best k

answers satisfying a counting and grouping condition.

The query counts the occurrences of each distinct

value of a variable in a desired set; then orders the

variables with respect to their occurrences and

returns the most frequent k. For example “Retrieve

the k most used types of bullets.”

Notice that, in all classes of queries, conditions can be

imposed on the descendants of the element that is returned

and not on its ancestors. That is, a query containing

conditions on the contents of an element is supposed to

be as depicted in Fig. 8b (where x is the element returned by

the query).
Given query qE , a file containing iTARs and the index

file, it is possible to obtain the intensional answer in two

steps: 1) rewrite qE into qI ; 2) apply qI on the intensional

knowledge. That is: a) access the index retrieving the

references to the rules satisfying the conditions in qI ; b)

access the iTARs file returning the rules whose references

were found in Step a.
In Step 1, we start from the extensional query qE and

apply a rewriting algorithm to obtain the intensional query

qI . We first extract from qE the following variables and lists:

. vF , the path in the FOR clause of qE .

. vOB, the variable in the ORDER BY clause of qE .

. vDV , the variable in the distinct-values function of qE .

. VW ¼ hvwjjvwj is a variable of the paths in the
WHERE clause of qE , in the same orderi.

. CONN ¼ hconnkjconnk is a connective in the
WHERE clause of qE , in the same orderi.

These objects are the input of Algorithm 5 and its

variants, whose output is the intensional query qI . In the

following, we describe the algorithm for obtaining the

rewritten query qI for each class of queries. Each algorithm

progressively builds the query qI by concatenating pieces of

the query. Notice that the operator “�” is used to denote

concatenation of strings.

Algorithm 5. Class1-Query (vF ,VW ,CONN ,vOB)

1: // the intensional query is empty

2: IQ ¼ �
3: if VW 6¼ ; then

4: // get instance rules for paths with a constraint

5: IQ ¼ IQ � get_iTARs(vF ; VW;CONN; false)

6: else

7: // structure rules for the path without constraint

8: IQ ¼ IQ � get_sTARs(vF)

9: end if

10: // order the results

11: IQ ¼ IQ � “for $r in $Rules/Rule

order by $r/vF/vOB
return $r”

12: return IQ

Function 6. get_iTARs (for, variables, connectives, count)

1: Q ¼ �
2: for all vj 2 variables do

3: if count = true then

4: // for count queries match only in the antecedent

5: Q ¼ Q � “let $RefI_j:=referencesA(for, vj)”

6: else

7: // for queries without count match both in antecedent and

consequent

8: Q ¼ Q � “let $RefI_j:=references(for, vj)”

9: end if

10: end for

11: Q ¼ Q � “let $Rules :=”

12: for all vj 2 variables, j 2 f1; . . .ng do

13: Q ¼ Q � “ruleset($RefI_j) connectivej”
14: end for

15: return Q

Function 7. get_sTARs (variable)

1: Q ¼ “let $RefS:=references(variable,“”)

let $Rules := ruleset($RefS)”

2: return Q

1) Class 1: �=�-queries. This class of queries is rewritten

using Algorithm 5. The result is query qI that looks for the

rules which satisfy the conditions imposed in the where

clause and returns those obtained by combining the

previous sets using the logical connectives in the same

order as in the where clause of qE , possibly ordered by the

variable specified in the order by clause. The query qI
contains calls to the functions references, referencesA

1400 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 8. The intensional query-answering commutative diagram and an

example for Class 1 queries.

and ruleset presented in [21], used to access the TARs

and their index.
The sample Class 1-query in Table 1 is rewritten as qI :

let $RefI_1 := references(“/incidents/

incident”,

“//bullet/type[text()=“Full Metal

Jacket”]”)

let $Rules := ruleset ($RefI_1)

for $r in $Rules/Rule

order by $r/incidents/incident/when_reported

ascending

return $r

Applying qI to the index, the variable $RefI_1 is
initialized with the set of references to the iTARs containing
the element /incidents/incident//bullet/type

with content “Full Metal Jacket.” Then, variable $Rules

will contain the set of iTARs whose reference is in
$RefI_1, that is, the iTAR (4) in Fig. 4. Finally, the iTARs
in $Rules will be ordered according to the node
when_reported.

We consider as intensional answer to Class-1 queries
iTARs that are

. iRTARs that match the constraints in the antecedent
and/or consequent (see Fig. 8c); and

. iETARs that match the constraints in the consequent
(see Fig. 8d).

Consider a Class-1 query qE applied to a document DE ,
and its answer EA. Consider the document DI containing
the extracted TARs. We now show that, if we extract TARs
from the answer to query qE , we obtain a superset of the
answers IA obtained by applying qI to the TARs DI

extracted from DE , i.e., the intensional answer constitutes
a representation of the frequent properties of the extensional
one. The commutative diagram is shown in Fig. 8a. Note
that the set of iTARs extracted from EA includes the set IA,
obtained as intensional answer; the reason is that some
frequent subtrees of EA are not given as result in IA because
they do not represent an answer for the input query qI .
Thus, we can say that our procedure is sound. Note that the
following theorems serve as the formal basis for the
accuracy results presented in Section 5.

Theorem 1. Let qE be a Class-1 query on the XML documentDE ,

qI the intensional rewriting of qE , EA the XML document

obtained as result for qE ,3 and IA the intensional answer to qI .

The procedure to obtain intensional answers is sound, that is, if a

TAR Tr 2 IA then Tr 2 qIðGet� Interesting�RulesðEAÞÞ.
Proof. Let us consider a Class 1 query qE specifying the

subtrees rooted in a node x and satisfying conditions
cond1; . . . ; condn on the descendants of x, as shown in
Fig. 8b. We have to prove that if a TAR Tr 2 IA then
Tr 2 qIðGet� Interesting�RulesðEAÞÞ.

A possible extensional answer belonging to EA is
sketched in Fig. 8e; the iTARs in R ¼ Get�
Interesting�RulesðEAÞ are

1. the ones in IA, because if they were extracted
from DE , they are extracted also from EA; and

2. other iTARs, showing corelations between proper
subtrees of the ones composing the extensional
answer.

The application of qI to R eliminates the iTARs in 2, that
is, the ones that are not rooted in x. tu
Notice that, when using iRTARs and iETARs satisfying

the constraints of the query in the antecedent, we can only
guarantee soundness; indeed the consequent of iETARs
extends the antecedent and possibly contains some ances-
tors of the antecedent root. Thus, when using iETARs
satisfying the query in their antecedent, we can obtain as
result also rules containing knowledge about ancestors of
the node x specified in the original query (see Fig. 8), rules
that cannot be mined from EA, because they do not satisfy
the constraint in qE .

On the other hand, if we apply the intensional query qI to
the set EA—thus filtering only the interesting iRTARs w.r.t.
the original query qE—and do not impose any constraint on
the support threshold, we obtain as result IA, thus, our
method is both sound and complete.

Theorem 2. Let qE be a Class 1 query on the XML document DE ,
qI the intensional rewriting of qE , EA the XML document
obtained as result for qE , and IA the intensional answer. If, in
the mining process, the imposed support and confidence
thresholds are 0, the procedure to obtain intensional answers is
such that qIðGet� Interesting�RulesðEAÞÞ ¼ IA, that is,
the procedure is both sound and complete.

Proof. We have already proven the soundness, thus we
have only to prove that, given a TAR Tr, if Tr 2
qIðGet� Interesting�RulesðEAÞÞ then Tr 2 IA.

If Tr 2 qIðGet� Interesting�RulesðEAÞÞ then 1) Tr
satisfies qI and 2) Tr is frequent in EA (because EA is a
collection of subtrees of D). From 2, it follows that Tr is
frequent also when we apply Get-Interesting-Rules to
DE , and from 1 we prove that Tr 2 IA. tu

In the proof, we have highlighted the fact that the
procedure is complete if we do not impose a threshold on
the support and confidence values. If, during the mining
process, we impose a threshold greater than 0 on the
support and confidence, we cannot state that the described
technique is complete because qIðGet� Interesting�
RulesðEAÞÞ may contain some rules whose support is
greater when calculated on the extensional answer than
the support of the same rule when calculated on the original
data set DE . Intuitively, the extensional answer is a tree
with fewer nodes than the data set (or the same number of
nodes when the answer coincides with the whole data set)
which means that the support of a TAR is usually lower
when calculated on the original data set w.r.t. the support of
that TAR mined from the extensional answer.

Class 2: count-queries. This class of queries is rewritten
using Algorithm 8. The result is a query qI that specifies the
iTARs which satisfy the original query conditions and
returns the support of the first rule which has been found, divided
by its confidence. Notice that, since rules are ordered
according to the number of nodes in their antecedent, the

MAZURAN ET AL.: DATA MINING FOR XML QUERY-ANSWERING SUPPORT 1401

3. The set of XML trees obtained as answer of qE are collected in a unique
document having a < result> tag as root.

first rule will be either the one which satisfies all and only
the requested conditions or its best approximation (that is, a
rule whose antecedent satisfies all the desired conditions
and contains the least number of nodes).

Algorithm 8. Class2-Query (vF ; VW;CONN)

1: // the intensional query is empty

2: IQ ¼ �
3: // get instance rules for paths with a constraint

4: IQ ¼ IQ � get_iTARs(vF ,VW ,CONN ,true)
5: IQ ¼ IQ � get_count()

6: IQ ¼ IQ � “return $supp div $conf”

7: return IQ

Function 9. get_count ()

1: Q=“let $supp:=$Rules/Rule[1]@support

let $conf:=$Rules/Rule[1]@confidence”
2: return Q

The sample Class 2-query in Table 1 is rewritten as qI :

let $RefI_1 := referencesA(“/incidents/

incident/ballistic_items/bullet”,

“/ type[text()=“Winchester”]”)

let $Rules := ruleset ($RefI_1)

let $supp := $Rules/Rule[1]@support

let $conf := $Rules/Rule[1]@confidence

return $supp div $conf

To answer this query, an association rule is used (if it
exists) whose body exactly matches the query conditions.
Since for each association rule A) B, confðA) BÞ ¼
suppðA) BÞ=suppðAÞ, it is possible to compute suppðAÞ
(that is, the number of elements satisfying the conditions in A) as
suppðA) BÞ=confðA) BÞ. With respect to the example, it
is possible to count the number of “Winchester” bullets
using the iTAR (3) in Fig. 4, which contains exactly the path
bullet/type (with content “Winchester”) in the body. By
multiplying its support by the number of nodes in the
document and dividing by the confidence, we obtain
ð0:03�62Þ=1 ¼ 1:86 � 2. Notice that the result of Class 2
queries is exact, up to the approximation introduced by the
computation of the support and confidence. In general, the
following theorem holds.

Theorem 3. Let qE be a Class 2 query on the XML document DE ,
qI the intensional rewriting of qE , countE the extensional
answer, and countI the intensional answer. If we can mine at
least a TAR exactly satisfying in the antecedent the constraints
in qE then countE � countI, that is, the procedure is sound.

Proof. To answer Class-2 queries we use only iTARs which
match the requested constraints in the antecedent and
obtain as answer ðsupp� nodesÞ=conf (where supp and
conf are support and confidence of the iTAR used to
answer the query, and nodes is the number of nodes inDE).
The following two possibilities can be envisaged:

1. We use an iTAR whose body exactly matches the
requested constraints, if it has been mined, and
the answer will be exact up to approximation,
that is, countI � countE.

2. If the previous case cannot be applied, we use an
iTAR whose body partially matches the requested
constraints (that is, the body contains more

constraints w.r.t. those required in the query) and
the answer will be countI 	 countE. For example,
if we want to count the number of incidents
involving “Full Metal Jacket” bullets and we use
iTAR (4) in Fig. 4, we obtain an approximate
answer; that iTAR describes a property of in-
cidents involving “Rimless Full Metal Jacket.” tu

Class 3: top-k queries. This class of queries is rewritten using
Algorithm 10. The result will be a query qI that, for each
distinct value of a variable finds, the corresponding sTARs
and uses them to compute the number of occurrences of each
value; ranks the values according to the computed count and
returns all the rules associated with the first k ranked values.

Algorithm 10. Class3-Query (vDV ; vF ; VW;CONN)

1: IQ ¼ � // the intensional query is empty

2: IQ ¼ IQ � get_sTARs(vDV) // get instance rules for paths

with a constraint

3: IQ ¼ IQ � “for $v in distinct-values

($Rules/vDV)”
4: IQ ¼ IQ � get_iTARs(vF ,VW ,CONN ,true)

5: IQ ¼ IQ � get_count()

6: IQ ¼ IQ � “order by $supp div $conf descending

return $Rules) [position()<=k]”

7: return IQ

The sample Class 3-query in Table 1 is rewritten as qI :

let $RefS = references(“/incidents/incident/

ballistic_items/bullet/type”, “”)

let $RulesS = ruleset ($RefS)

(for $t in distinct-values($RulesS/incidents/

incident/ballistic_items/bullet/type)

let $RefI_1 = referencesA(“/incidents/

incident/ballistic_item/

bullet”, “/type[text()=$t]”)

let $Rules = ruleset ($RefI_1)

let $supp := $Rules/Rule[1]@support

let $conf := $Rules/Rule[1]@confidence

order by $supp div $conf

return $Rules) [position() <= k]

The soundness of the intensional answering process for
Class 3 queries can be easily derived from the proofs of
Classes 1 and 2. Indeed, Class 3 queries only add a filter on
the number of results which are first ordered according to a
count condition. Notice that, with the type of index we
chose to use, the translation of the constraints required in
the original query are straightforward, that is, the index
allows us to support XQuery and XPath constraints without
any preprocessing.

The soundness and completeness results proven in this
section testify for the general quality, and in particular
accuracy, of the intensional answers. In particular, the
soundness means that there are no “false positive” TARs,
and thus TARs are characterized by 100 percent precision
for the three query classes, while the completeness shows
that the recall is strongly related the support threshold
imposed in the mining process and is guaranteed to be
100% only if we reduce the threshold to 0. In Section 5, we
will reinforce this claim, analyzing, by means of experi-
ments on real data sets, the recall of the intensional answers
when varying the support threshold.

1402 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

As a last remark, note that we have proposed an
application scenario where iTARs are extracted from the
original XML data set and then used to answer intensional
queries. Another interesting use is a-posteriori, that is, mine
iTARs from the extensional answer to a user query. Indeed,
since extensional results may be too large to examine, the
iTARs mined from them can provide the user with succinct
and more interpretable—though approximate—knowledge.

5 EXPERIMENTAL RESULTS

5.1 The TreeRuler Prototype

TreeRuler is a tool that integrates the functionalities
proposed in our approach. Given an XML document, it
enables users to extract intensional knowledge and com-
pose traditional queries as well as queries over the
intensional knowledge, receiving both extensional and
intensional answers. Users formulate XQueries over the
original data, and queries are automatically translated and
executed on the intensional knowledge. The answer is given
in terms of the set of TARs which reflect the search criteria.
TreeRuler interface offers three tabs.

. Get the gist allows intensional information extrac-
tion from an XML document, given the support,
confidence and the files where the extracted TARs
and their index are to be stored.

. Get the idea allows to show the intensional
information as well as the original document, to
give users the possibility to compare the two kinds
of information.

. Get the answers allows to query the intensional
knowledge and the original XML document. Users
have to write an extensional query; when the query
belongs to the classes we have analyzed it is
translated and applied to the intensional knowledge.
Finally, once it is executed, the TARs that reflect the
search criteria are shown.

TreeRuler is implemented in C++ using the eXpat

(http://expat.sourceforge.net) library for XML parsing, and
wxWidgets(http://www.wxwidgets.org/) tools for the
GUI. The tool implements the CMTTreeMiner [7] algorithm
for the extraction of frequent subtrees from the XML
document.

In our first proposal [22], we have used the PathJoin [35]
algorithm to find frequent subtrees in XML documents. As
will be shown in Section 5.2 such algorithm performed
exponentially, therefore we have changed it and continued
working with CMTreeMiner [7]. The authors of CMTreeMi-
ner provided (http://www.nec-labs.com/ ychi/—Available
in January 2008) the C++ implementation for both ordered
and unordered subtree extraction. In this paper, we have
provided a general extension which can be applied to both
versions of CMTreeMiner, but for the moment our prototype
is focused on the ordered version.

5.2 Experiments

We performed four types of experiments.

1. Time required for the extraction of the intensional
knowledge from an XML database.

2. Time needed to answer intensional and extensional
queries over an XML file.

3. A use case scenario on the DocBook (http://
www.docbook.org/) XML database, in order to
monitor extraction time given a specific support or
confidence.

4. A study of the accuracy of intensional answers.

5.2.1 Extraction Time

We have performed experiments using both PathJoin and
CMTreeMiner as algorithms for mining frequent subtrees
from XML documents. We used PathJoin on both real and
artificial XML data sets. First, we executed TreeRuler on the
data sets found at the XMLData Respository (http://
www.cs.washington.edu/research/xmldatasets/), but they
were too structured and the extracted intensional knowl-
edge was not interesting. Moreover, the DTD for all
documents was already provided thus the extraction of
sTARs did not give any advantages. Then, we applied
TreeRuler to documents created by means of the GCC_XML
tool (http://www.gccxml.org/HTML/Index.html) because
they were unstructured and without a DTD.

Fig. 9a shows how extraction time depends on the
number of nodes in the XML document. In particular,
extraction time growth is almost linear with respect to the
cardinality of an XML tree. Moreover, the compression
factor provided by the XML representation of TARs,
compared to the size of the original XML data set, is
significant (e.g., 264 KB w.r.t. 4 KB).

After this first analysis, we used XMark (http://
www.xml-benchmark.org/) to create large artificial XML
documents and evaluate the extraction time with respect to
such documents, producing the curve in Fig. 9b. Notice that
extraction time growth is linear with respect to the
cardinality of an XML tree only for documents with less
than 2 billion nodes. After such threshold extraction time
growth becomes exponential.

We took a step further in the analysis with the aim of
understanding the parameters that influence extraction time
growth. Therefore, we performed evaluation experiments
tackling the depth and fan out of the XML documents. Fig. 10a
shows that documents with the same number of nodes have
different extraction times depending on the depth of the
document. In particular, the greater is the cardinality of the

MAZURAN ET AL.: DATA MINING FOR XML QUERY-ANSWERING SUPPORT 1403

Fig. 9. Extraction time growth using PathJoin.

document, the more its depth influences the extraction time.
Moreover, as shown in Fig. 10b, the greater the depth, the
lower the threshold which separates linear from exponential
time growth. Finally, Fig. 11a shows that the same observa-
tions about the depth, hold for the fan out as well.

We migrated to the CMTreeMiner algorithm, which does
not suffer [7] from the exponential explosion affecting
PathJoin. We performed experiments on real data sets and
obtained the results shown in Fig. 11b. Note that the growth
shown in the figure is almost linear because, since the
documents are synthetic: 1) there is a significant initial
pruning of the nodes and 2) the mined subtrees are very
small.

5.2.2 Answer Time

Fig. 12 shows, for each XML document we considered, the
time TreeRuler took to give an intensional and extensional
answer to the query of Class 2 introduced in Section 4. With
respect to that query, which was evaluated on all XML data

sets, $name is the name of a node contained in the

document (such name changes on the basis of the XML

document). Notice that the time for processing queries with

respect to extensional knowledge is always significantly

greater than the time for processing queries with respect to

intensional knowledge (actually almost constant), thus

proving the effectiveness of our approach.

5.2.3 Use Case Scenario

We applied TreeRuler on the DocBook XML database by

setting the confidence at 0.95, Fig. 13a shows how the

extraction time changes w.r.t. the support. Similarly, by

setting the support at 0.02, Fig. 13b shows how the

extraction time changes w.r.t the confidence. Notice that

the decrease of both support and confidence reflects in a

decrease of the extraction time because less intensional

information is extracted. In particular, support determines

how many frequent subtrees will be extracted, while

confidence influences the number of rules that will be

extracted from each subtree. The support threshold has a

higher impact on the performance because to a linear

decrease of the number of extracted subtrees corresponds

an exponential decrease of the number of possible rules. A

high support threshold means both small amount of

subtrees and small subtrees, from which very little time is

required to extract rules. On the other hand, the confidence

threshold allows to prune rules from each subtree; however,

if the support is small, bigger subtrees will be extracted

making the number of rules to check greater.

1404 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

Fig. 13. Extraction time in the DocBook use case scenario.
Fig. 11. Extraction time growth w.r.t. the number of nodes in the
document.

Fig. 12. Extensional and intensional time answering w.r.t. real XML
documents.

Fig. 10. Extraction time growth using PathJoin.

5.2.4 Accuracy

Precision and recall are commonly used to evaluate the
accuracy of approaches which return approximate answers.
Based on the soundness theorems of Section 4, we can say
that TARs are characterized by 100 percent precision for all
query classes described there, since the soundness demon-
strates that there are no “false positive” TARs.

Recall depends on the support threshold established in
the mining process. Indeed, the application of our mining
algorithm returns only frequent subtrees and the number of
such trees depends on the support threshold. Thus, since
the minimum support threshold strongly influences query
recall, it is a relevant parameter for tuning the intensional
representation of information.

To understand how the support threshold influences the
accuracy of the intensional answers we performed experi-
ments by extensionally querying some real data sets and
also by extracting intensional answers from them. In our
setting, the traditional definition of recall does not make
much sense, thus we need to find a measure of recall that
conveys the same intuition as the traditional one.

Given a query qE over an XML document D, let AE

denote the extensional answer to qE (i.e., a set of XML
documents—or trees—T). Let AI be the set of subtrees t of
D that are consequents of the TARs extracted from D which
have been returned as intensional answer to qI (the
intensional rewriting of qE).

Given a tree T 2 AE , if there is at least one t 2 AI such
that t is a subtree of T then we say that t is a hit for AE , since
it means that t represents summarized information of T . We
denote this by writing t 2 hitsðAI;AEÞ. Then, we compute
the recall of AI as the ratio of hits w.r.t. the whole
extensional answer, that is, as jhitsðAI;AEÞj=jAE j.

Our experiments are performed on real XML data sets and
cover all three classes of queries introduced in our proposal.
Figs. 14a, 14b, and 14c show the results obtained for Classes 1,
2, and 3 queries, respectively. The queries we apply depend
on the queried document, for example the queries performed
on the DocBook data set are: Q1) find all books that contain
“Java” as a keyword and return them ordered by year of
publication; Q2) count all books that contain “Java” as a
keyword; Q3) find the top 3 used keywords.

Notice that the recall values strongly depend on the
support threshold. The greater the support the smaller the
recall since a very limited number of TARs can be mined.
Similarly, the smaller the support the greater the recall since
more intensional information is extracted, thus, trees in the
extensional answers are better represented by the mined
TARs. Notice that, even with a small support threshold, for
Class 1 queries, recall values can be smaller than one. This is
reasonable, as it is due to the fact that TARs are not able to
represent all the properties of the extensional answer. The
difference between the two curves in Fig. 14a is that the
ebay data set is quite regular: it represents a list of auctions
that have very similar structure. A TAR representing such
structure is extracted with low support, and it describes a
property of each subtree in the extensional answer. When
the support grows, a smaller TAR is extracted that
represents properties of fewer subtrees in the extensional
answer. On the other hand, the docbook data set is very
irregular in the sense that it describes data with very
different structures. Therefore, even with low support

thresholds, the extracted TARs are not able to represent a
property which is common to all the subtrees in the
extensional answer. On the contrary, for Classes 2 and 3
queries, recall values are higher with lower support thresh-
olds because, if we have extracted at least a rule that satisfies
query constraints, we are able to compute the exact answer
to count requests.

6 COMPARISON WITH OTHER WORK

The problem of association rule mining was initially
proposed in [1] and many implementations of the algo-
rithms, downloadable from [12], were developed in the
database literature. More recently the problem has been
investigated in the XML context [6], [31], [24], [8], [10], [19],
[33]. In [31], Wan and Dobbie use XQuery [29] to extract
association rules from simple XML documents. They
propose a set of functions, written in XQuery, which
implement the Apriori algorithm [1]. In [31], Wan and
Dobbie show that their approach performs well on simple
XML documents but it is very difficult to apply to complex
XML documents with an irregular structure. This limitation
is overcome in [6], where Braga et al. introduce a proposal to
enrich XQuery with data mining and knowledge discovery
capabilities, by introducing XMINE RULE, an operator for
mining association rules for native XML documents. They
formalize the syntax and semantics for the operator and
propose some examples of complex association rules.

However, XMINE is based on the MINE RULE operator,
which works on relational data only. This means that, after a
step of pruning of unnecessary information, the XML
document is translated into the relational format. Moreover,
both [6] and [31] force the designer to specify the structure of
the rule to be extracted and then to mine it, if possible. This

MAZURAN ET AL.: DATA MINING FOR XML QUERY-ANSWERING SUPPORT 1405

Fig. 14. Intensional query answer recall.

means that the designer has to specify what should be
contained in the body and head of the rule, i.e., the designer
has to know the structure of the XML document in advance,
and this is an unreasonable requirement when the document
does not have a DTD. Another limitation of these approaches
is that the extracted rules have a fixed root, thus once the root
node of the rules to mine has been fixed, only its descendants
are analyzed. Let us consider the data set in Fig. 1 to explain
this consideration. In order to infer the relationship among
the features of the bullets in the data set it is necessary to fix
the root node of the rules in theballistic_items element,
the body and the head inbullet. In such way it is possible to
learn that “Full Metal Jacket” type of bullets frequently have a
“Rimless” type of case. However, once we fix the root of the
rule in the ballistic_items element, we cannot mine
item sets stating that, frequently, “robberies” have occurred
in “Italy.” Indeed, to mine such property the head of the rule
should be fixed in the type element, and the body in the
country element, which is not contained in the subtree of
the ballistic_items node.

Our idea is to take a more general approach to the
problem of extracting association rules, i.e., to mine all
frequent rules, without any a-priori knowledge of the XML
data set. A similar idea was presented in [24] where Paik et
al. introduced HoPS, an algorithm for extracting association
rules from a set of XML documents. Such rules are called
XML association rules and are implications of the form
X) Y , where X and Y are fragments of an XML
document. The two trees X and Y have to be disjunct;
moreover, both X and Y are embedded subtrees of the XML
documents which means that they do not always represent
the actual structure of the data. Another limitation of the
proposal in [24] is that it does not consider the possibility to
mine general association rules within a single XML data set;
achieving this feature is one of our goals.

The idea of using association rules as summarized
representations of XML documents was also introduced in
[4] where the XML summary is based on the extraction of
rules both on the structure (schema patterns) and on content
(instance patterns) of XML data sets. The limitations of this
approach are: 1) the root of the rule is established a-priori
and 2) the patterns, used to describe general properties of
the schema applying to all instances, are not mined, but
derived as an abstraction of similar instance patterns and
are less precise and reliable.

In our work, association rules are mined starting from
maximal frequent subtrees of the tree-based representation
of a document. In the database literature, it is possible to
find many proposals of algorithms to extract frequent
structures both from graph-based data representations [36],
[18], [15] and tree-based data representations [37], [35], [2],
[25], [26], [17], [16], [23], [17]. In this paper, we focus on tree
mining since XML documents are represented with a tree-
shaped structure.

Table 2 shows a brief overview of the best known tree-
mining algorithms with respect to the features of the input
tree (ordered, unordered) and the features of the mined
patterns (induced, embedded, maximal, closed).

We remark here that we are not interested in proposing
yet another algorithm, but in extending an existing one in
order to extract association rules within a single XML
document. We choose to consider unordered XML trees,

however, as described in Section 3, the algorithm at the

basis of our work can mine also ordered trees.
In [26], Termier et al. show that DRYADEPARENT is

currently the fastest tree mining algorithm and CMTTree-

Miner is the second with respect to efficiency. However,

DRYADEPARENT extracts embedded subtrees which are

trees that maintain the ancestor relationship between nodes

but do not distinguish, among the hancestor, descendanti
pairs, the hparent, childi ones. In this paper, we are

interested in extracting subtrees which maintain the

parent-child relationship. Therefore, we propose an algo-

rithm that extends CMTTreeMiner to mine generic tree-

based association rules from XML documents.

7 CONCLUSIONS AND FUTURE WORK

The main goals we have achieved in this paper are: 1) mine
all frequent association rules without imposing any a-priori
restriction on the structure and the content of the rules;
2) store mined information in XML format; 3) use the
extracted knowledge to gain information about the original
data sets. We have developed a C++ prototype that has
been used to test the effectiveness of our proposal. We have
not discussed the updatability of both the document storing
TARs and their index. As an ongoing work, we are studying
how to incrementally update mined TARs when the
original XML data sets change and how to further optimize
our mining algorithm; moreover, for the moment we deal
with a (substantial) fragment of XQuery; we would like to
find the exact fragment of XQuery which lends itself to
translation into intensional queries.

ACKNOWLEDGMENTS

This research has been partially funded by the European

Commission: Project FP7-SEC-2007-1 - 218237-Odyssey and

Project IDEAS-ERC-227977-SMScom.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” Proc. 20th Int’l Conf. Very
Large Data Bases, pp. 478-499, 1994.

[2] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S.
Arikawa, “Efficient Substructure Discovery from Large Semi-
Structured Data,” Proc. SIAM Int’l Conf. Data Mining, 2002.

[3] T. Asai, H. Arimura, T. Uno, and S. Nakano, “Discovering
Frequent Substructures in Large Unordered Trees,” Technical
Report DOI-TR 216, Dept. of Informatics, Kyushu Univ., http://
www.i.kyushu-u.ac.jp/doitr/trcs216.pdf, 2003.

1406 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 24, NO. 8, AUGUST 2012

TABLE 2
Tree-Mining Algorithms Overview

[4] E. Baralis, P. Garza, E. Quintarelli, and L. Tanca, “Answering XML
Queries by Means of Data Summaries,” ACM Trans. Information
Systems, vol. 25, no. 3, p. 10, 2007.

[5] D. Barbosa, L. Mignet, and P. Veltri, “Studying the XML Web:
Gathering Statistics from an XML Sample,” World Wide Web, vol. 8,
no. 4, pp. 413-438, 2005.

[6] D. Braga, A. Campi, S. Ceri, M. Klemettinen, and P. Lanzi,
“Discovering Interesting Information in XML Data with Associa-
tion Rules,” Proc. ACM Symp. Applied Computing, pp. 450-454, 2003.

[7] Y. Chi, Y. Yang, Y. Xia, and R.R. Muntz, “CMTreeMiner: Mining
both Closed and Maximal Frequent Subtrees,” Proc. Eighth Pacific-
Asia Conf. Knowledge Discovery and Data Mining, pp. 63-73, 2004.

[8] C. Combi, B. Oliboni, and R. Rossato, “Querying XML Documents
by Using Association Rules,” Proc. 16th Int’l Conf. Database and
Expert Systems Applications, pp. 1020-1024, 2005.

[9] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, “Privacy
Preserving Mining of Association Rules,” Proc. Eighth ACM Int’l
Conf. Knowledge Discovery and Data Mining, pp. 217-228, 2002.

[10] L. Feng, T.S. Dillon, H. Weigand, and E. Chang, “An XML-
Enabled Association Rule Framework,” Proc. 14th Int’l Conf.
Database and Expert Systems Applications, pp. 88-97, 2003.

[11] S. Gasparini and E. Quintarelli, “Intensional Query Answering to
XQuery Expressions,” Proc. 16th Int’l Conf. Database and Expert
Systems Applications, pp. 544-553, 2005.

[12] B. Goethals and M.J. Zaki, “Advances in Frequent Itemset Mining
Implementations: Report on FIMI 03,” SIGKDD Explorations
Newsletter, vol. 6, no. 1, pp. 109-117, 2004.

[13] R. Goldman and J. Widom, “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases,”
Proc. 23rd Int’l Conf. Very Large Data Bases, pp. 436-445, 1997.

[14] R. Goldman and J. Widom, “Approximate DataGuides,” Proc.
Workshop Query Processing for Semistructured Data and Non-Standard
Data Formats, pp. 436-445, 1999.

[15] A. Inokuchi, T. Washio, and H. Motoda, “Complete Mining of
Frequent Patterns from Graphs: Mining Graph Data,” Machine
Learning, vol. 50, no. 3, pp. 321-354, 2003.

[16] A. Jiménez, F. Berzal, and J.C. Cubero, “Mining Induced and
Embedded Subtrees in Ordered, Unordered, and Partially-
Ordered Trees,” Proc. 17th Int’l Symp. Methodologies for Intelligent
Systems, pp. 111-120, 2008.

[17] D. Katsaros, A. Nanopoulos, and Y. Manolopoulos, “Fast Mining
of Frequent Tree Structures by Hashing and Indexing,” Informa-
tion and Software Technology, vol. 47, no. 2, pp. 129-140, 2005.

[18] M. Kuramochi and G. Karypis, “An Efficient Algorithm for
Discovering Frequent Subgraphs,” IEEE Trans. Knowledge and Data
Eng., vol. 16, no. 9, pp. 1038-1051, Sept. 2004.

[19] H.C. Liu and J. Zeleznikow, “Relational Computation for Mining
Association Rules from XML Data,” Proc. 14th ACM Conf.
Information and Knowledge Management, pp. 253-254, 2005.

[20] G. Marchionini, “Exploratory Search: From Finding to Under-
standing,” Comm. ACM, vol. 49, no. 4, pp. 41-46, 2006.

[21] M. Mazuran, E. Quintarelli, and L. Tanca, “Mining Tree-Based
Association Rules from XML Documents,” technical report,
Politecnico di Milano, http://home.dei.polimi.it/quintare/
Papers/MQT09-RR.pdf, 2009.

[22] M. Mazuran, E. Quintarelli, and L. Tanca, “Mining Tree-Based
Frequent Patterns from XML,” Proc. Eighth Int’l Conf. Flexible
Query Answering Systems, pp. 287-299, 2009.

[23] S. Nijssen and J.N. Kok, “Efficient Discovery of Frequent
Unordered Trees,” Proc. First Int’l Workshop Mining Graphs, Trees
and Sequences, 2003.

[24] J. Paik, H.Y. Youn, and U.M. Kim, “A New Method for Mining
Association Rules from a Collection of XML Documents,” Proc.
Int’l Conf. Computational Science and Its Applications, pp. 936-945,
2005.

[25] A. Termier, M. Rousset, and M. Sebag, “Dryade: A New Approach
for Discovering Closed Frequent Trees in Heterogeneous Tree
Databases,” Proc. IEEE Fourth Int’l Conf. Data Mining, pp. 543-546,
2004.

[26] A. Termier, M. Rousset, M. Sebag, K. Ohara, T. Washio, and H.
Motoda, “DryadeParent, an Efficient and Robust Closed Attribute
Tree Mining Algorithm,” IEEE Trans. Knowledge and Data Eng.,
vol. 20, no. 3, pp. 300-320, Mar. 2008.

[27] World Wide Web Consortium, XML Schema, http://
www.w3C.org/TR/xmlschema-1/, 2001.

[28] World Wide Web Consortium, XML Information Set, http://
www.w3C.org/xml-infoset/, 2001.

[29] World Wide Web Consortium, XQuery 1.0: An XML Query
Language, http://www.w3C.org/TR/xquery, 2007.

[30] World Wide Web Consortium, Extensible Markup Language
(XML) 1.0, http://www.w3C.org/TR/REC-xml/, 1998.

[31] J.W.W. Wan and G. Dobbie, “Extracting Association Rules from
XML Documents Using XQuery,” Proc. Fifth ACM Int’l Workshop
Web Information and Data Management, pp. 94-97, 2003.

[32] K. Wang and H. Liu, “Discovering Typical Structures of
Documents: A Road Map Approach,” Proc. 21st Int’l Conf. Research
and Development in Information Retrieval, pp. 146-154, 1998.

[33] K. Wang and H. Liu, “Discovering Structural Association of
Semistructured Data,” IEEE Trans. Knowledge and Data Eng.,
vol. 12, no. 3, pp. 353-371, May/June 2000.

[34] K. Wong, J.X. Yu, and N. Tang, “Answering XML Queries Using
Path-Based Indexes: A Survey,” World Wide Web, vol. 9, no. 3,
pp. 277-299, 2006.

[35] Y. Xiao, J.F. Yao, Z. Li, and M.H. Dunham, “Efficient Data Mining
for Maximal Frequent Subtrees,” Proc. IEEE Third Int’l Conf. Data
Mining, pp. 379-386, 2003.

[36] X. Yan and J. Han, “CloseGraph: Mining Closed Frequent Graph
Patterns,” Proc. Ninth ACM Int’l Conf. Knowledge Discovery and
Data Mining, pp. 286-295, 2003.

[37] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications,” IEEE Trans. Knowledge and Data
Eng., vol. 17, no. 8, pp. 1021-1035, Aug. 2005.

Mirjana Mazuran received the MSc degree in
computer science engineering from Politecnico
di Milano. She spent six months as a research
assistant in Information Technology at Politecni-
co di Milano, working on a project for the
extraction of relevant information from XML
documents. Since January 2009 she is working
toward the PhD degree in computer science at
Politecnico di Milano. In particular, she is
currently working on mining and querying tree-

based patterns from XML documents and on mining violations to relax
relational database constraints. Her main topic of research include the
application of data mining techniques to support advanced database
functionalities.

Elisa Quintarelli received the master’s degree
in computer science from the University of
Verona, Italy. On January 2002, she completed
the PhD degree in computer and automation
engineering at Politecnico di Milano and is now
working as an assistant professor at the Diparti-
mento di Elettronica e Informazione, Politecnico
di Milano. Her main research interests concern
the study of efficient and flexible techniques for
specifying and querying semistructured and

temporal data, the application of data-mining techniques to provide
intensional query answering. More recently, her research has been
concentrated on context aware data management.

Letizia Tanca received the PhD degree in
computer science in 1988. She worked for four
years as a software engineer. Currently, she is
working as a full professor at Politecnico di
Milano, where she has held the chair of the
degree and master courses in computer science
and engineering at the Leonardo campus, from
2000 to 2006. She has taught and teaches
mainly courses on Databases and Information
System Technologies. She is the author of more

than 100 papers on databases and database theory, published in
international journals and conferences, and coauthor of the book “Logic
Programming and Databases.” Recently, she has edited the book
“Semantic Web Information Management.” Her research interests range
over deductive and active databases, graph-based languages for
databases, semantic-web information management, and semistructured
information. Her most recent research interests concern context-aware
knowledge management. She is a member of the board of the
Informatics Europe association.

MAZURAN ET AL.: DATA MINING FOR XML QUERY-ANSWERING SUPPORT 1407

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

