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The interest in the measurement of the elastic properties of thin films is witnessed by a number of new
techniques being proposed. However, the precision of results is seldom assessed in detail. Brillouin
spectroscopy (BS) is an established optical, contactless, non-destructive technique, which provides a
full elastic characterization of bulk materials and thin films. In the present work, the whole process of
measurement of the elastic moduli by BS is critically analyzed: experimental setup, data recording,
calibration, and calculation of the elastic moduli. It is shown that combining BS with ellipsometry a
fully optical characterization can be obtained. The key factors affecting uncertainty of the results are
identified and discussed. A procedure is proposed to discriminate factors affecting the precision from
those affecting the accuracy. By the characterization of a model transparent material, silica in bulk
and film form, it is demonstrated that both precision and accuracy of the elastic moduli measured
by BS can reach 1% range, qualifying BS as a reference technique. © 2011 American Institute of
Physics. [doi:10.1063/1.3585980]

I. INTRODUCTION

The stiffness of films depends on the film microstruc-
ture and its precise characterization is crucial when thin lay-
ers have structural functions, as in micro-electro-mechanical
systems. The interest in its measurement is witnessed by
the number of new techniques being proposed. In the most
widespread method to measure the mechanical properties of
films, nano-indentation, both elastic and inelastic deforma-
tions occur, and are characterized. Nevertheless, the informa-
tion must be disentangled from a complex strain history, and
a single parameter, the reduced modulus, is obtained to rep-
resent stiffness. Furthermore, in the indentation of supported
films the effects of substrate and tip properties have to be
avoided or deconvoluted.2

The interest in a direct and complete elastic character-
ization leads to measurement methods involving only elas-
tic strains; they exploit either propagating acoustic waves or
standing oscillations, excitation being monochromatic (e.g.,
resonance techniques3–5) or broadband, with spectral analysis
of the response (laser acoustic techniques, where excitation
is impulsive.6–10). The direct outcome is the propagation ve-
locity of the vibrational modes; the latter being determined
by stiffness and inertia, the elastic moduli are obtained if the
mass density is known.

Recently proposed methods exploit relatively sophisti-
cated optical techniques such as pump and probe with fem-
tosecond laser pulses7–10 or laser-Doppler interferometry5 and
can require specimen manipulations such as the deposition
of a metallic layer7–10 or a pattern definition by microlithog-
raphy techniques.10 The so-called picosecond ultrasonics7–10

is an evolution of the laser ultrasonics technique.6 Brillouin
spectroscopy (BS) (Refs. 11 and 12) and surface Brillouin
spectroscopy (SBS) are well known and relatively simpler

optical techniques which measure ultrasonic excitations at
sub-micrometric wavelengths. Without requiring sample ma-
nipulations, they only need surfaces of reasonable quality and
are applicable down to sub-millimetric sample sizes. Having
been exploited for a long time for the measurement of the
elastic properties of bulk materials12–14 and of films,12, 15–17

they are finding new applications.18–27

The accuracy of the elastic characterization achievable
by SBS was somehow puzzling since the pioneering work of
Sandercock.28 Although significant insight has been gained
on the precision of spectra,13, 29 a comprehensive assessment
of the whole measurement process, down to the final results
in terms of elastic moduli, does not seem to have been per-
formed. Such an assessment is the objective of this work. The
usefulness of combining BS and SBS with ellipsometry, ob-
taining a fully optical technique, naturally emerges. A data
analysis procedure is obtained, which evaluates the uncertain-
ties, discriminating precision from accuracy. This procedure
is tested on a model system, a silica film, in comparison with
bulk silica; it is found that the precision achievable by this
optical technique can exceed that of other methods.

II. INELASTIC LIGHT SCATTERING BY BULK
AND SURFACE ELASTIC WAVES

The elastic continuum model characterizes a medium
by the mass density ρ and the matrix of the elastic con-
stants Cij, which, in the isotropic case, is fully determined
by any two quantities among C11, C44 (which coincides
with the shear modulus), Young’s modulus E, Poisson’s ra-
tio ν, and bulk modulus B. A homogeneous isotropic con-
tinuum supports elastic waves, both bulk longitudinal (BL)
and bulk transversal (BT) waves, whose velocities are,
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FIG. 1. The main Brillouin scattering geometries (thin arrows: optical
wavevectors; thick arrows: acoustic wavevectors). (a) backscattering, at inci-
dence angle θ, direct backscattering by a surface acoustic wave of wavevec-
tor ks or a bulk acoustic wave of wavevector kb

(1); for a transparent film
on a reflecting substrate, indirect backscattering by a bulk acoustic wave of
wavevector kb

(2). (b) Forward scattering, with incidence angle θi and light
collection at angle θs and (c) transmission scattering, with incidence angle θi

and light collection at angle θs.

respectively,30

vl =
√

C11

ρ
, vt =

√
C44

ρ
, (1)

and, at a free surface, the Rayleigh wave, the paradigm of
surface waves, having velocity vR. The basic relations among
the moduli and the velocities are summarized in Part A of the
Supplementary material.1

In BS and SBS, the sample is illuminated by a laser
beam and the spectrum of scattered light is measured. The
spectrum contains the Stokes/anti-Stokes doublets due to in-
elastic scattering by thermally excited vibrations, which are
probed at the wavevector selected by the scattering geome-
try; the main configurations are summarized in Fig. 1. The
incident beam, of angular frequency �i and wavelength λ0,
impinging on the sample with wavevector qi , is refracted (in
sufficiently transparent materials) into wavevector q′

i . Scat-
tered light, of wavevector q′

s , emerges with wavevector qs .
The probed wavevector, k = ±(q′

s − q′
i ), is determined by λ0,

the directions of qi and qs , and, possibly, the refractive index
n. Light inelastically scattered by a vibrational excitation of

angular frequency ω(k) has frequency �s and allows to mea-
sure ω = |�s – �i| and the excitation velocity v = ω/k; a pre-
cise knowledge of |k| = k is therefore crucial. The wavevec-
tors k for the geometries of Fig. 1 are discussed in Part B of
the Supplementary material;1 the “geometrical wavelength”
λ′ can be introduced, which only depends on λ0 and on ge-
ometrical factors (Eqs. (B.1)–(B.5)). It is the acoustic wave-
length that would be probed if n was unity such that

k =
(

2π

λ′

)
n. (2)

The actually probed wavelength 2π /k coincides with λ′

when k does not depend on n (Eqs. (B.2) and (B.5)), oth-
erwise it is λ′/n, either exactly (Eq. (B.1)) or approximately
(Eqs. (B.3) and (B.4)).

Spectral doublets are expected for each probed wavevec-
tor, at frequency shifts

f = ω

2π
= |�s − �i |

2π
= vk

2π
= v

λ′ n, (3)

one doublet for surface waves, where k stands for |ks| and v
for vR, and two doublets for bulk waves, where k stands for
|kb| and v stands, respectively, for vl and vt, for the BL and BT
waves. Only in direct backscattering (q′

s = −q′
i ) the scatter-

ing cross section for the BT wave is null, and the correspond-
ing doublet is not expected;13 otherwise both doublets can be
measured.

III. EXPERIMENTS

The present investigation is performed on two types of
amorphous silica (SiO2): a fused silica platelet, several mil-
limeters wide and ∼2 mm thick; supplied by a producer of
indentation instrumentation (Micro Materials Ltd.) as a refer-
ence sample for the indenter calibration, with nominal values
E = 72 GPa and ν = 0.18 and a silica film, slightly thicker
than 2 μm, thermally grown at the surface of a Si (001) wafer,
in a step of an industrial process.31

The experimental setup of Fig. 2 realizes all the geome-
tries of Fig. 1. If the beam splitter BeS is removed, the external
scattering angle is 90◦, in either the forward scattering or the
transmission configuration, with any value of incidence an-
gle. If the mirror M1 replaces BeS, backscattering is achieved
alone. When both BeS and M1 are in place, the spectrum

FIG. 2. Experimental setup for Brillouin spectroscopy. BeS: beam splitter;
M1, M2: mirrors; Sp: sample; L1–L5: lenses; P: entrance pinhole of the
spectrometer; FP: Fabry-Perot interferometer; D: light detector. With BeS
in place the backscattering and the 90o scattering geometries are superposed;
90o scattering alone is obtained removing BeS, backscattering alone is ob-
tained substituting BeS by M1. Additional details, such as the mirrors which
steer the scattered beam, are not shown.
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contains the doublets due to both geometries, allowing more
precise measurements of the ratios of doublet frequencies.
Typically, in this configuration BeS reflects only a weak “wit-
ness beam,” useful to achieve the required coincidence of the
focal points of the focusing and the light collecting lenses (L1
and L2 of Fig. 2). In the symmetric forward scattering geom-
etry (Fig. 1(b)), the mirror which steers the witness beam also
suppresses, as needed, the specularly reflected beam.

The light source is an Ar+ laser (Innova 300, Coher-
ent Inc.), operating at power of 200 mW and wavelength λ0

= 514.5 nm. The incident beam is polarized either parallel or
orthogonal to the plane of incidence. Light is collected with-
out polarization analysis, except for tests of peak attributions;
the incident polarization is preserved in scattering by BL and
Rayleigh waves and rotated in scattering by BT waves.13 The
spectra of the scattered light are analyzed by a 3 + 3 pass tan-
dem Fabry-Perot interferometer of the Sandercock type.32–34

Measurements are performed, for the bulk sample, in all
the geometries of Fig. 1. For the silica film, the geometry
of Fig. 1(c) is precluded; that of Fig. 1(b) is viable, but did
not give clear enough spectral doublets. Acoustic modes with
wavevector normal to the surface were indeed measured in
micrometric films, but from polymer films,22 which typically
have large scattering cross sections or in direct backscattering
with normal incidence.35 Backscattering from a film probes
the acoustic wavevectors ks, kb

(2), and kb
(1). The first two co-

incide, do not depend on n, are parallel to the surface and
correspond to wavelengths λ′ = λ0/(2 sin θ) (see Eq. (A.6))
which, for θ ≥ 30o, do not exceed 0.51 μm; the latter cor-
respond to wavelength λ′/n = λ0/(2n) (see Eq. (A.5)) which,
with n above 1.45, does not exceed 0.18 μm. Since the layer
thickness exceeds 2 μm, the vibrational excitations, it sup-
ports, at these wavelengths are indistinguishable from those
in a semi-infinite solid.

If a same acoustic mode is observed in different ge-
ometries, the ratio of the frequency shifts coincides with
the ratio of the wavevector magnitudes, which in turn de-
pends on the scattering geometries and the refractive index
(Eqs. (A.5)–(A.9)). From these ratios of frequency shifts, the
refractive index can be derived. The resulting values are in
agreement with those obtained by ellipsometry, but more scat-
tered, mainly because of the relatively weak dependence of
the modulus k on n. In order to obtain the best precision and
accuracy, the values of the refractive index obtained by vari-
able angle spectroscopic ellipsometry (VASE) (Ref. 36) are
adopted.

Measurements are performed by a WVASE32 ellipsome-
ter (Woollam Co., Inc.), with incidence angles of 65◦, 70◦, and
75◦, and wavelength spanning the 500–1600 nm interval. The
raw results, the polarization resolved complex coefficients of
reflection, are analyzed by a fitting procedure which crucially
depends on the choice of the model for the sample itself. The
model includes the structure of the sample and its optical con-
stants, by either their initial values or the functional form of
their dispersion. The accuracy of the measurement is ruled by
the precision in the alignment of the polarizing components,
while the accuracy for the parameter derivation depends on
the choice of the model. In case of hardware operating at best

nominal performance, the achievable uncertainty is estimated
in the range of σ n = (2 ÷ 3) × 10−3.37, 38

The two silica samples are modeled by, respectively, ho-
mogeneous amorphous silica, and a single layer of homoge-
neous amorphous silica over a Si substrate. The substrate is
modeled by tabulated values for the refractive index,39 and the
initial guess for silica includes the n(λ) values from Ref. 40,
and a null absorption. The fitting procedure is performed on
the silica optical constants and, for the film, the silica thick-
ness. In the latter case the results are consistent with a ho-
mogeneous and amorphous dielectric film, 2292.4 nm thick,
of negligible surface roughness. The level of depolarization
on the signal is compatible with a 1.83% degree of thickness
non-uniformity. The resulting values of refractive index at the
wavelength λ0 = 514.5 nm are, respectively, nb = 1.467 for
the bulk silica, which is in good agreement with Ref. 39, and,
for the film, nf = 1.488, which is measurably higher than that
of other forms of silica. In both cases, due to the simplicity
of the measured systems, the uncertainties can be estimated
in the lower band achievable by ellipsometry: σ n ≈ 0.003,
meaning σ n/n ≈ 2 × 10−3.

The different refractive indexes indicate different mass
densities. The Lorentz-Lorenz relation41 states that, for
molecules of given polarizability, the number of molecules
per unit volume is proportional to (n2 − 1)/(n2 + 2). The val-
ues nb and nf, therefore, allow to estimate the film mass den-
sity ρ f and its uncertainty σρ f from the bulk values ρb and σρb

(see Part D of the Supplementary material1). For bulk silica
the value ρb = 2200 kg/m3 is widely accepted, whose uncer-
tainty is not easily assessed; an estimate of σρ,b ≈ 5 kg/m3,
meaning σρ,b/ρb ≈ 0.23%, seems reasonable.

With the above values, Eqs. (D.1) and (D.3) give
ρ f = 2284 kg/m3, with σρ,f/ρf ≈ 8 × 10−3, i.e., σρ,f

≈ 18 kg/m3. The ranges of variability can also be assessed
in a more “deterministic” way, considering all the variations
dρb = ±σρ,b, dnb = ±σnb , dnf = ±σn f . and computing ρ f

from all the possible combinations. Equation (D.2) gives for
ρ f values in the range 2284 ± 30 kg/m3. However, a simul-
taneous significant underestimation of nb and overestimation
of nf (or the reverse) is deemed unlikely. A more credible
range of variation is obtained considering only the variations
of nf and ρb. Equation (D.2) shows that the largest variations
are found for dρb and dnf of the same sign: (dρb/ρb, dnf/nf)
= ±(0.23%, 0.2%), giving dρf/ρf = ± 0.75%, i.e., ρf = 2284
± 18 kg/m3.

The Fabry-Perot interferometer, operated as a tunable
band-pass filter (see Part C of the Supplementary material1),
supplies the raw spectrum as photon count number vs. chan-
nel number. A common procedure to perform frequency cal-
ibration exploits the spectral “ghosts;” more sophisticated
calibration schemes, by reference spectral lines, have been
exploited,42 but seem justified only by special requirements.
The, generally non-integer, “channel numbers” np

+ and np
−

of the Stokes/anti-Stokes peaks of a spectral doublet are iden-
tified by a best fit procedure, as well as the “channel numbers”
ng

+ and ng
− of the spectral “ghosts” (see Part C of the Sup-

plementary material). The frequency shifts ± FSR being at-
tributed to the “channel numbers” ng

+ and ng
−, the frequency
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FIG. 3. Brillouin spectra from the bulk silica sample. Bottom to top (see also Fig. 2): backscattering alone; 90o forward scattering (Fig. 1(b)) together with
backscattering; 90o transmission scattering (Fig. 1(c)) together with backscattering. Incident light polarized normal to the incidence plane. For clarity, the second
and third spectra are shifted by two and four decades, and the strong peak at null frequency shift, due to elastically scattered light, is removed. Peak labels: Gh:
instrumental “ghosts” due to elastically scattered light; R: Rayleigh wave of probed wavevector ks; BL and BT: bulk longitudinal and bulk transversal waves, of
probed wavevectors kb

(1), kb
(3), and kb

(4) (see Fig. 1). Lines with square marker connect some Stokes/anti-Stokes doublets; lines with a circle marker connect
the peaks due to the BL and BT waves probed by the same wavevector.

shift f of a doublet is

f = FSR
n+

p − n−
p

n+
g − n−

g
. (4)

Spectra obtained from the bulk sample are shown in
Fig. 3. The mirror spacing is 4 mm, giving FSR ≈ 37.5
GHz. In all the spectra, an intense doublet is due to direct
backscattering (wavevector kb

(1)), by the BL wave, of at
least a “witness beam.” If the main beam is in this geometry
(lowest spectrum), the doublet due to the Rayleigh wave is
also visible, otherwise (upper spectra) it is too weak. The
peaks in the upper spectra, recorded in different 90o scattering
geometries, have a different shape, showing the different
consequences of the same light collection angle, discussed
in Part C of the Supplementary material. In these geometries,
both doublets due to the BL and the BT waves are evident.
This attribution is confirmed by the identical value of the
BL/BT frequency ratio, which also leads to assign the further
weak doublet in the intermediate spectrum to backscattering
by the BT wave. The cross section for this wave, null in direct
backscattering, is not null in its neighborhood, giving some
scattering, collected by the finite collection angle.

Spectra obtained from the transparent silica film are
shown in Fig. 4. At higher frequencies, the doublets due to
scattering by bulk waves of silicon become visible. The dou-
blets observed in backscattering have lower intensity than
those from the bulk sample due to the smaller depth of the
scattering volume; the uncertainties in the identification of
the “channel numbers” np

+ and np
− are larger, those of ng

+

and ng
− remaining instead comparable. Direct backscattering

(wavevector kb
(1)) only gives the doublet due to the BL wave,

while indirect backscattering (wavevector kb
(2)) also gives the

doublet due to the BT wave. The reflections at the surfaces
depending on the polarization of light, the intensities of the
doublets due to indirect backscattering and to scattering by

the Rayleigh wave strongly depend on polarization, as shown
by Fig. 4; the upper two spectra differ only for the switch of
the incident polarization by a λ/2 plate.

IV. ASSESSMENT OF THE UNCERTAINTIES

From each measured frequency shift f the acoustic veloc-
ity v is given by (Eqs. (2) and (3))

v = 2π f

k
= λ′ f

n
= v ′

n
, (5)

where, similarly to Eq. (2), the velocity v′ = λ′f is the value
that would be obtained if the refractive index n was unity, and
the presence or not of the inverse proportionality on n depends
on the exchanged wavevector. The uncertainty σ v of velocity
depends on the uncertainties σ f, σ k, σλ′ , and σ n of the respec-
tive quantities; from Eq. (5), the error propagation formula
gives

(σv

v

)2
=

(
σ f

f

)2

+
(σk

k

)2
=

(
σ f

f

)2

+
(σλ′

λ′
)2

+
(σn

n

)2

=
(σv ′

v ′
)2

+
(σn

n

)2
. (6)

The contribution σ k/k is split into the terms σλ′/λ′ and
σ n/n, and the first of them is grouped with σ f/f to give σ v’/v′,
following the different nature of the uncertainties. Both σ f

and σλ′ are due to intrinsically random errors, respectively,
in the identification of the doublet frequency and in setting
the scattering geometry, which tend to be averaged out by re-
peated measurements. They tend to scatter the results, with-
out affecting their mean value. As well as σv ′ , which groups
them, they characterize a lack of precision, not of accuracy.
Instead, the value of n, a parameter known to a finite accu-
racy, is identical in repeated measurements. Its uncertainty af-
fects the mean value of results, not their scatter; thus affecting
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FIG. 4. Brillouin spectra measured in backscattering from the film silica sample. Bottom to top: 45◦ and 60◦ incidence angles, with incident light polarized
normal to the incidence plane; 60◦ incidence angle, with incident light polarized in the incidence plane. Scattered light collected without polarization analysis.
For clarity, the second and third spectra are shifted, and the peak due to elastically scattered light is removed. Peak labels and markers: same of Fig. 3.

accuracy, but not precision. If the wavevector k does not de-
pend on n, v coincides with v′ and σ v with σ v′ . For the ex-
changed wavevectors proportional to n (see Eqs. (2) and (5))
v = v′/n and the further uncertainty σ ′

v = σ v′ /n is usefully in-
troduced, such that σ ′

v/v = σ v′ /v′. The uncertainties are thus
compared to the same velocity v, σ ′

v characterizes the scatter
of results, while σ v also includes the possible inaccuracy due
to n.

For σ f/f, Eq. (4) gives

(
σ f

f

)2

=
(σFSR

FSR

)2
+

σ 2
n+

p
+ σ 2

n−
p

(n+
p − n−

p )2
+

σ 2
n+

g
+ σ 2

n−
g

(n+
g − n−

g )2

=
(σFSR

FSR

)2
+

(
σp

n p

)2

+
(

σg

ng

)2

, (7)

where the last two terms are the relative uncertainties remain-
ing from the best fit procedures. The first term on the rhs
is due to the spacing d, inversely proportional to FSR. An
optical calibration34 can achieve a relative uncertainty σ d/d
= σ FSR/FSR below a micrometer over a few millimeters:
the value σ d/d = 2 × 10−4 is considered here, but it must
be remembered that this value rises to 10−3 if a spacing
below 1 mm, i.e., FSR above 150 GHz, is needed. The
term σ p/np in Eq. (7), due to the doublet, mainly depends
on the signal-to-noise ratio. For strong peaks (BL(kb

(1)) in
Fig. 3), it turns out to be below 10−3, down to 10−4, while
for the weakest ones (R(ks) in Figs. 3 and 4) it can rise
to 10−2. The term σ g/ng, due to the spectral ghosts, turns
out to be always below 10−3, but remains above 10−4, de-
spite the high intensity, due to the difficulty of adequately de-
scribing the peculiar shape of the double peaked ghosts (see
Part C of the Supplementary material).

Despite this difficulty, the separate calibration of each
spectrum is confirmed as best choice. The single “channel
numbers” ng

+ and ng
− from spectra recorded in nominally

identical conditions turn out to differ by even more than one
part in a thousand, probably due to either minor differences in

the measurement setup or to thermal drifts. Therefore, a cal-
ibration performed, once in a while, against a sharp doublet,
would give larger uncertainties.

For σλ′/λ′, in Part B of the Supplementary material it is
shown that it is null for direct backscattering, in which the
wavevector kb

(1) is proportional to n (Eq. (B.1)), while it is
σλ′/λ′ = σθ/ tan θ in backscattering (Eq. (B.6)), for the ex-
changed wavevectors kb

(2) = ks, parallel to the surface and
independent from n, (Eq. (B.2)). The error σθ is mainly con-
nected to the identification of a reference position like normal
incidence. For σθ ≈ 0.2◦ ≈ 3.5 mrad (Ref. 29) the relative
uncertainty σλ′ /λ′ is up to 10−2 at θ = 20◦, decreasing to 1.3
× 10−3 at θ = 70◦. By optimizing the detection of misalign-
ments, this uncertainty can be reduced below σθ ≈ 1 mrad,
leading to values of σλ′ /λ′ still almost 3 × 10−3 at θ = 20◦,
but below 2 × 10−3 at θ = 30◦ and below 4 × 10−4 at θ = 70◦.

The assessment of σλ′/λ′ is more elaborate for the 90o

geometries (Eq. (B.3) and its homologous for the transmis-
sion geometry), in which the external scattering angle δ, with
its uncertainty σδ, also has a role. As discussed in Part B of
the Supplementary material, in our setup procedure only the
uncertainties in θi and in δ are uncorrelated, and therefore
allow to exploit the usual error propagation formula. Table
B.I in Part B of the Supplementary material presents numer-
ical evaluations for σθ ≈ 1 mrad, mentioned above, and for a
conservative estimation, in our present setup, of σδ ≈ 4 mrad.

Ellipsometry gives, as noted above, σ n/n ≈ 2 × 10−3.
The various uncertainties, including σλ′ /λ′ of Table B.I., are
summarized in Table I. In each of its lines at least one con-
tribution is of the order of 10−3, showing that, although by
different limiting factors, this is a lower bound for the rela-
tive uncertainty achievable in a single measurement of veloc-
ity by BS and SBS. Below that level, further contributions,
neglected in Eqs. (B.3), (B.4), (B.7), (6), and (7), become
non-negligible, non-perfect linearity between mirror spac-
ing and channel number,34 non-linearity of the spacing vs.
frequency relationship (exact linearity is between spacing and
wavelength).
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TABLE I. For the velocities vl, vt, and vR measured in the various geometries, contributions to the relative uncertainties σ v/v due to the various causes discussed
in the text. Null contributions are indicated by zero when they are null only in the specified conditions, and by a dash when they are intrinsically null. The values
of σ p/np report the ranges of values found for the various cases. For σ g/ng the range of observed value is ≈(1 ÷ 8) × 10−4, for all the cases. The reported
typical value results from the combination (Eq. (7)) with σFSR/FSR ≈ 2 × 10−4, which also is same for all the cases.

Primary uncertainty

σδ ≈ 4mrad σn/n ≈ 2 × 10−3

Velocity, geometry σ p/np σ g/ng σθi ≈ 1mrad (δ= 90◦, θi = 45◦) (δ= 90◦, θi = 45◦)

vl(kb
(1)), (bulk) (1 ÷ 4) × 10−4 typ. 5 × 10−4 — — 2 × 10−3

vt(kb
(1)), (bulk) (2 ÷ 10) × 10−3

vl(kb
(1)), (film) (6 ÷ 25) × 10−4

vl(kb
(2)), (film) (1 ÷ 4) × 10−3 typ. 5 × 10−4 2 × 10−3 → 4 × 10−4 for θi = 30◦ → 70◦ — —

vt(kb
(2)), (film) (4 ÷15) × 10−3

vl(kb
(3)), vt(kb

(3)), (bulk) (1 ÷ 9) × 10−3 typ. 5 × 10−4 0 6 × 10−4 ∼ 2 × 10−3

vl(kb
(4)),

vt(kb
(4)), (bulk) (1 ÷ 7) × 10−3 typ. 5 × 10−4 0 2 × 10−3 0

vR(ks), (bulk) (7 ÷ 20) × 10−3 typ. 5 × 10−4 2 × 10−3 ÷ 4 × 10−4 for θi = 30◦ ÷ 70◦ — —
vR(ks), (film) (4 ÷ 25) × 10−3

Concerning frequency alone, it can also be noted that
in the evaluation of the ratio f1/f2 of the frequencies of two
doublets of the same spectrum the denominator of Eq. (4)
cancels; the ratio is not affected by uncertainties due to cal-
ibration or to the FSR value (it can be measured without cal-
ibrating the spectrum). If furthermore the doublets are due
to different modes probed in the same geometry, as the dou-
blets in Figs. 3 and 4 connected with a circle marker, the ratio
f1/f2 supplies a value of the ratio v1/v2 of the velocities of the
two modes which is also insensitive to any uncertainty of the
wavevector and to the broadening caused by the collection
angle.

If repeated measurements are performed, weighted aver-
ages can be computed, the above estimates of the uncertain-
ties being available for each doublet. In the assignment of the
weights, only the values of σ v′ , which characterize the lack of
precision, must be considered. Therefore, for each spectrum
and then for the average values, the uncertainties connected
to each doublet are considered in successive steps. Firstly, the
channel numbers of the peaks are considered, obtaining for
each doublet the value (see Eqs. (4) and (7)) n p = n+

p − n−
p ,

with its uncertainty σ p. For doublets due to different modes
probed in the same geometry, the ratio of the frequencies f1/f2
is immediately evaluated, with its uncertainty σ f1/f2, since it
gives a value of the ratio v1/v2, which is insensitive to other
uncertainties. The weighted average f1/ f2 is then computed.

Secondly, for each doublet, the velocity v′ and its uncer-
tainty σ v′ are obtained from the value of f and the geome-
try. With weights determined by the σ v′ values, the average
v ′ is computed, with its uncertainty σv ′ . For the exchanged
wavevectors independent from n, they coincide with v and
σv . Otherwise, v = v ′/n, σ ′

v = σv ′/n , and σv , obtained as in
Eq. (6), includes the lack of precision and the inaccuracy.
Then, in the derivation of the elastic constants, the uncertainty
σρ of the mass density must also be considered, such as σ n, it
affects accuracy but not precision.

Several spectra were recorded, to test different geome-
tries and to assess the reproducibility of results. The results

are summarized in the tables of Part E of the Supplementary
material.1 For each of the velocities vl, vt, and vR, and for each
of the geometries, the tables report the number of measured
doublets, the ranges of the values of velocity v and of uncer-
tainty σ v, and the weighted averages v with the variances σv

and σ ′
v . Also for the ratios vl/vt, and (in Table E.II) vR/vt, the

ranges of the values of f1/f2 and of σ f1/f2 are given, with the
weighted average v1/v2 and its variance σv1/v2

.
In Part E of the Supplementary material, it is argued

that the effects of the finite light collection angle, briefly dis-
cussed in Part C of the Supplementary material, can be non-
negligible in some geometries. In particular, for the bulk spec-
imen, it is noted that the average velocities measured in the
same direct backscattering geometry (exchanged wavevec-
tor kb

(1)), but in different overall configurations, are in strict
agreement, while those obtained in other geometries (ex-
changed wavevectors kb

(3) and kb
(4)) differ from the first ones

by up to above 2%, several times the variances of the weighted
averages. These discrepancies are in qualitative agreement
with the discussion in Part C of the Supplementary material of
the effects of the collection angle. Instead, when the ratio of
velocities vl/vt is measured by the BL and BT modes probed
at a same wavevector, the ratios turn out to be in strict agree-
ment for all the geometries. The two modes being probed at
the same wavevector, any effect of inaccuracy or broadening
of that wavevector is canceled in the ratio. On the other hand,
for the film specimen, the vl values measured in the direct
and indirect backscattering geometries (exchanged wavevec-
tors kb

(1) and kb
(2)) are in strict agreement; this is probably

connected to the detailed computation of the effects of the
finite collection angle for these geometries,29, 43 that was ex-
ploited in the fitting procedure. Since a similar detailed anal-
ysis of the collection angle for the kb

(3) and kb
(4) exchanged

wavevectors is not yet available, in this work the values of the
ratio fl/ft measured in these scattering geometries are consid-
ered on the same ground of those obtained in other geome-
tries, while the absolute values of velocities are not further
considered.
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FIG. 5. (Color online) The two analysis procedures for one of the subsets
of 15 doublets from the bulk sample. For the measured value vl , the central
curve corresponds to the value C11 = ρbvl

2, while couples of curves delimit
three nested bands, which correspond to the three terms of Eq. (D.6). The
inner band is determined by the precision of vl , the next band includes the
inaccuracy due to nb, the outer band also includes the inaccuracy due to ρb .
Analogous curves are drawn for vR (for which the third band coincides with
the second) and vl/vt (for which the two outer bands coincide with the in-
ner one). The approximately elliptical curves are the isolevel curves of the
normalized estimator S’, at the 68%, 90%, 95%, 99%, and 99.9% confidence
level. The thicker curve is the 95% confidence region and the two translated
replicas are the 95% confidence regions obtained by modified values of nb

and ρb . The nominal values E = 72 GPa, ν = 0.17, supplied with the speci-
men to calibrate the indenters, are also shown.

V. RESULTS AND DISCUSSION

From the measured velocities, summarized in the tables
of Part E of the Supplementary material, the elastic mod-
uli can be derived in different ways. This step is basically
independent from the technique by which the velocities are
measured, either BS or others. It must be remembered that
the stiffness of an isotropic solid is a two-dimensional quan-
tity which can be represented in a two-dimensional “stiffness
space.” In Figs. 5 and 6, this space is represented by the (E, ν)
couple, but, by a (non-linear) transformation of coordinates,
it can be represented by any couple of independent moduli
(see Eqs. (A.1)–(A.3)). Two procedures are considered here
to derive the stiffness.

In the first one, the weighted averages v̄l , v̄t , v̄ R , and vl/vt

are computed; each of them puts a constraint on the position
of the representative point in the “stiffness space,” a condition
such as C11 = ρvl

2 identifies a curve in the (E, ν) plane or
a line in the (C11, C44) plane. All the constraints, which are
consistent only to a finite degree, should be simultaneously
considered.

The second procedure combines all the single measure-
ment in the least squares estimator S, defined as the weighted
sum over all the doublets; representing stiffness by the (E, ν)
couple,

S (E, ν)=
∑

i

(
vl (E, ν) − vl,i

σ ′
vl,i

)2

+
∑

m

(
vt (E, ν) − vt,m

σ ′
vt,m

)2

+
∑

k

(
vR (E, ν) − vR,k

σvR,k

)2

+
∑

j

(
vl/vt (E, ν) − (vl/vt ) j

σ(vl/vt ) j

)2

, (8)

FIG. 6. (Color online) The two analysis procedures for one of the subsets
of 15 doublets from the film sample. For the measured value vl the central
curve corresponds to the value C11 = ρ f vl

2, then couples of curves delimit
three nested bands, which correspond to the three terms of Eq. (D.8). The
inner band is determined by the precision of vl , the next band includes the
inaccuracy due to nf (also including the indirect effect by the mass density,
see Part D of the Supplementary material in the supplementary material),
the outer band also includes the inaccuracy due to ρb . Analogous curves are
drawn for vt , vR , and vl/vt . For vl/vt , the two outer bands coincide with
the inner one. The approximately elliptical curves are the isolevel curves of
the normalized estimator S′, at the 68%, 90%, 95%, 99%, and 99.9% con-
fidence level. The thicker curve is the 95% confidence region and the two
translated and partially overlapped replicas are the 95% confidence regions
obtained by modified values of nf and ρb .

where vl,i is the ith value of vl, of uncertainty σ ′
vl,i

, and analo-
gous notations are adopted for (vl/vt ) j , vR,k , and vt,m . In both
procedures, the weights are assigned to the single values, such
as vl,i , by the variances σ ′

v which characterize precision alone.
Since BS measurements are time consuming, it is un-

likely that as many spectra are recorded as those gathered in
this work. To assess the precision and accuracy achievable by
a reasonable number of spectra and the robustness of results,
different measurement campaigns are simulated, for each of
the two samples, by picking, among all the measured dou-
blets, several subsets of results. For each of the two samples a
first group is formed by 12 subsets of 8 doublets each, and a
second group by 12 subsets of 15 doublets each. The subsets
are picked at random, but selecting only those which mini-
mizes the overlap, obtaining several subsets which, although
not fully independent, have a minimal overlap. More details
on the composition of the subsets are given in Part F of the
Supplementary material.1 The “stiffness spaces” for one sub-
set of 15 doublets from the bulk specimen and one from the
film specimen are presented in Figs. 5 and 6.

For the bulk specimen, the first procedure works as fol-
lows. Each averaged velocity v , such as, e.g., vl , is associated
to the uncertainties σ ′

v , which characterizes the finite preci-
sion, and σv , which includes the effect of the possible inac-
curacy of nb. Accordingly, in the “stiffness space,” the curve
C11 = ρbvl

2 is drawn, with the three couples of curves C11

= ρb(vl ± σ ′
vl

)2, C11 = ρb(vl ± σvl )
2, and C11 = ρbvl

2

± σC11 ; the overall uncertainty σ C includes the uncertainty
of ρb and is given by Eq. (D.6). The three couples of curves
correspond to the three terms of Eq. (D.6), and identify three
nested bands, showing the effects of the finite precision,
respectively, and the possible inaccuracies of nb and of ρb.
In particular, σ n/n contributes, in some geometries, to σ v/v
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(Eq. (6)), and therefore, only through σ v, to σ C. Figure 5
presents these curves except for C44 = ρbvt

2 which, as
discussed below, is not considered in the evaluation of the
estimator.

For the film sample, the same procedure must take into
account that the mass density ρ f is derived from nf and ρb (see
Sec. III). Therefore, an uncertainty σ n,f gives a twofold contri-
bution to the overall uncertainty σ C. By the first one, as in the
bulk case, σ n/n contributes to σ v/v, and through it to σ C/C,
only when the exchanged wavevector depends on n; by the
second one it contributes to σ C/C indirectly, through the mass
density ρ f, for all the exchanged wavevectors (namely, by
the terms in Eqs. (D.7) and (D.8) coming from the derivative
(D.2.c)). Equations (D.7) and (D.8) also show that the direct
effect through the velocity v, when present, partially compen-
sates the indirect effect. Therefore, the exchanged wavevec-
tors independent from n, in the bulk case imply a null sen-
sitivity to σ n/n and in the film case imply instead a stronger
sensitivity. Accordingly, in Fig. 6 the curve C11 = ρ f vl

2 is
drawn with three nested bands, which correspond here to the
three terms of Eq. (D.8). While the first and last bands have
the same meaning as in the bulk case; the intermediate one
is not given by C11 = ρ f (vl ± σvl )

2, but by the combined in-
direct and (if present) direct effect of σ n/n. The analogous
curves are drawn, in Fig. 6, for C44 = ρ f vt

2, for ρ f vR
2 and

for C11/C44 = (vl/vt )2.
The subset whose results are shown in Fig. 5 gives a good

precision for vl : the inner band is narrow and the refractive
index and mass density give substantial contributions. The
precision for vR is much lower, the lack of precision dom-
inates the uncertainty, the mass density only adding a neg-
ligible contribution. The subset whose results are shown in
Fig. 6 is among those that give a lower precision; accordingly;
for all the velocities, the inner band is dominant, and the con-
tributions from refractive index and mass density are minor.
The various bands intersect in the same region, although not
exactly at the same point, confirming the need of consider-
ing all the indications coming from v̄l , v̄t , v̄ R , and vl/vt . The
smallness of the intersection region is however remarkable,
denoting a high consistency of the results, in particular for the
film sample.

The second procedure exploits the estimator S(E,ν) of
Eq. (8). In its computation, only truly independent results
must be considered. For the bulk specimen, as discussed
above, the results obtained by the exchanged wavevectors
kb

(3) and kb
(4) are considered only for the ratio vl/vt, not

for the separate velocities. Three groups of results are
then considered: firstly, the values of vl measured by the
exchanged wavevector kb

(1); each of them contributes by
a term in the sum of (vl(E,ν) – vl,i). Secondly, the val-
ues of vt, by all the geometries which measure it, each
of them can contribute by either a term in the sum of
(vt(E,ν) – vt,m) or by a term in the sum of (vl/vt(E,ν)
– (vl/vt)j), but not both. The ratio vl/vt is preferred because
it is insensitive to the uncertainties due to the exchanged
wavevector. The third group is formed by the values of
vR. For the film specimen, the velocity vl is measured
by both the wavevectors kb

(1) and kb
(2), and vt by the

wavevector kb
(2). Four independent groups are consid-

ered, again chosen because they are the more precise
ones, vl by kb

(1) alone, vt by kb
(2), vl/vt by kb

(2), and the
values of vR.

A detailed statistical analysis of the results would re-
quire techniques of analysis of variance (ANOVA), which
are beyond the scope of this work. A more heuristic anal-
ysis was instead performed, exploiting the result of estima-
tion theory which identifies the confidence regions for the
estimated parameters by the isolevel curves of the normalized
estimator,44

S′(E, ν) = S (E, ν) − Smin

Smin
. (9)

The normalized estimator S′(E,ν) is computed at the
nodes of a discrete mesh, which is refined until stability upon
a further refinement is reached. For all, the subsets the estima-
tor S′ has the shape of a well defined well, of approximately
elliptical section.

For the estimation of two parameters from eight measure-
ments, the confidence regions at 68%, 90%, 95%, 99%, and
99.9% confidence levels are given by the isolevel curves of
S′ at the values of 0.462, 1.154, 1.714, 3.641, and 8.999, re-
spectively; for the estimation of 2 parameters from 15 mea-
surements the values are 0.1916, 0.4251, 0.5854, 1.031, and
1.894, respectively.44 The confidence regions turn out to be
the most robust result of this analysis. The numerical “noise,”
connected to the discrete mesh over which S′ is computed, is
evaluated by varying the mesh resolution or by slightly shift-
ing it. With the adopted mesh, the boundaries of the confi-
dence regions turn out to always shift by less than 0.08%, and
in most cases by less than 0.04%. The position of the mini-
mum of the estimator S(E,ν) turns out to be more sensitive,
probably due to the smallness of gradients in the neighbor-
hood of the minimum.

The final results are, therefore, based on the confidence
regions; from each of the subsets, the best estimates of E and ν

are picked as the midpoint between the lower and upper limits
of the 95% confidence region, and the estimated uncertainty is
taken as the semi-amplitude of this interval. Representing the
“stiffness space” by other couples of moduli, such as (B,G) or
(C11,C44), the estimates are found for all of them. It has been
checked that the results for any modulus do not depend on the
modulus to which it is coupled. An overview of these results is
given in Part F of the Supplementary material. The estimator
S, defined by Eq. (8), characterizes precision alone; as noted
above, the subset of Fig. 5 gives a good precision and shows
relatively narrow confidence regions, while the subset of
Fig. 6, which gives a lower precision, presents wider confi-
dence regions.

The values of the moduli reported in Part F of the Sup-
plementary material are obtained with the central values of
the refractive indexes and mass densities (see Sec. III): (nb

= 1.467 and ρb = 2200 kg m−3) and (nf = 1.488 and ρ f

= 2284 kg m−3). The possible inaccuracies of these values
are discussed in Sec. III and in Part D of the Supplementary
material, and their effects are shown by the above mentioned
bands in the “stiffness space.” A more quantitative assessment
is now performed, following the two analysis procedures to
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evaluate the consequences of small variations of these param-
eters alone.

For the bulk specimen the primary, uncorrelated, uncer-
tainties are those of ρb and nb; their effects are evaluated by
Eq. (D.5). For this sample, each of the considered subsets of
results includes values of vl from kb

(1), which are very pre-
cise and depend on n, values of vR from ks, which are signifi-
cantly less precise but do not depend on n, and values of vl/vt

which are precise and independent from ρ and n. Equation
(D.5) shows that the largest variations dC are due to vl from
kb

(1), when dρb and dnb have opposite signs: the variations
(see Sec. III) (dρb/ρb, dnb/nb) = ± (+0.23%, –0.2%,) imply
dC/C = ±0.63%. For vR from ks, independent from nb, we
expect instead only the variation dC/C = ±0.23% due to dρb,
and for vl/vt no variation.

For the film specimen, the value of ρ f being derived from
ρb, nb, and nf (Eq. (D.1)), the primary, uncorrelated, uncer-
tainties are those of these three parameters; their effects are
evaluated by Eq. (D.7) ignoring, as discussed in Part D of the
Supplementary material, the variations dnb. For this sample,
each of the considered subsets includes quite precise values of
vl from kb

(1). Since this wavevector depends on nf; the effect
of dnf is partially compensated, as already noted and shown
by Eq. (D.7). The values from the other three groups, namely,
vt from kb

(2), vl/vt from kb
(2), and vR from ks, have compa-

rable relative precision, lower than that of vl from kb
(1). For

these groups, the wavevector does not depend on nf, and the
indirect effect of dnf remains not compensated. In all cases,
we expect larger variations for dρb and dnf of the same sign.
For variations (dρb/ρb, dnf/nf) = ± (+0.23%, +0.2%,), from
Eq. (D.7), we have for vl from kb

(1), the effect of dnf being
partially compensated, dC/C = ±0.35%; for vt from kb

(2) and
vR from ks, the effect of dnf being not compensated, dC/C
= ±0.75%; for vl/vt, independent from ρ and n, dC/C = 0.

An overall assessment is better performed by the second
analysis procedure, re-computing the confidence regions with
modified values of the mass density and refractive index. The
computation is performed for the subsets of 15 doublets each,
with the combinations of possible underestimations and over-
estimations which, according to the above evaluation, cause
the most severe variations of the final results. For the bulk
specimen, they are (dρb/ρb, dnb/nb) = ± (+0.23%, –0.2%,),
meaning (ρb = 2205, nb = 1.464 kg m−3, high stiffness)
and (ρb = 2195, nb = 1.470 kg m−3, low stiffness). For the
film specimen, they are (dρb/ρb, dnf/nf) = ± (0.23%, 0.2%,)
which imply (see Sec. III) dρ f/ρ f = ±0.75%, and lead to (ρ f

= 2301, nf = 1.491 kg m−3, high stiffness) and (ρ f = 2267, nf

= 1.485 kg m−3, low stiffness). Figures 5 and 6 show the re-
computed confidence regions, which are shifted without sig-
nificant modifications of shape and size.

By a procedure analogous to that exploited above to
identify the best estimates, the estimates which include
the possible inaccuracies are taken as the midpoint between
the lowest and highest limits of the ensemble of 95% confi-
dence regions, i.e., the center of the rectangle, with sides par-
allel to the axes, circumscribed to all the shifted confidence re-
gions; the semiamplitude is taken as the estimated uncertainty.
Comparing these new estimates with those obtained with the
nominal values of parameters, the shifts turn out to be not

larger than the numerical noise, the uncertainties being obvi-
ously significantly wider. The main results are summarized in
Table II which, for the narrowest and the widest of the “nom-
inal” confidence regions, and for all the moduli, compares the
uncertainties due to precision alone (i.e., those reported in Ta-
ble F.I) with those which also consider the inaccuracy. The
table also reports the relative difference between the highest
and the lowest of the estimates given by the 12 subsets, and a
“best estimate” for each parameter, computed as the weighted
average among the results supplied by the 12 subsets.

It must be remembered that a non-negligible fraction of
the uncertainty comes from the possible inaccuracy of the
mass density values and that this contribution affects all the
techniques based on vibrations in the same way, since they all
need the value of inertia to derive the stiffness. If a very pre-
cise value of mass density is available, the final uncertainty
is reduced at a level, which remains determined by the other
sources of uncertainty.

The results found in this work can be compared with the
nominal calibration values E = 72 GPa and ν = 0.18 sup-
plied for the bulk specimen and shown in Fig. 5, and with
the values for bulky vitreous silica measured by ultrasonic
techniques:45, 46 vl = 5970 m/s, vt = 3760 m/s, E = 72.9 GPa,
G = 31.2 GPa, B = 36.8 GPa, ν = 0.182. They can also be
compared with the velocities measured at room temperature
by a BS setup which reaches very high temperatures:47 vl

= 5953 m/s and vt = 3743, with uncertainties estimated
(probably in a conservative way) at 300 and 200 m/s, respec-
tively. A value of mass density is not quoted, and the value
B = 36.9 GPa is found. Data are also available from several
suppliers of amorphous silica for technological applications;
the properties declared by several suppliers lie within the in-
tervals: E = 72–74 GPa, G = 30.6–32 GPa, B = 35.4–37.4
GPa (with one supplier declaring 42 GPa), ν = 0.17–0.18,
and refractive index close to 1.462 for wavelengths close to
500 nm.

A similar thermally grown silica film was the object of
earlier measurements, presented with a much simpler data
analysis.48 The procedure presented here achieves not only a
substantial reduction of the uncertainties; but also higher val-
ues of all the elastic moduli by around 5%. This discrepancy,
much larger than the presently estimated uncertainties, is eas-
ily tracked to the mass density value ρ f. In the absence of spe-
cific measurements, the value ρ f = 2200 kg/m3 was exploited
in the former analysis, while the ellipsometric measurements
performed here lead to the value ρ f = 2284 kg/m3. Once this
difference is taken into account, the difference between for-
mer and present results is reduced to about 1%, well within
the uncertainty estimated for the former results. This inter-
pretation is confirmed by the values of Poisson’s ratio, which
is insensitive to ρ f; although affected by a larger uncertainty,
the former value differs from the present one by only 2%. This
comparison confirms the crucial role of mass density, which is
shared by all the techniques, which exploit oscillations. The
present results can also be compared to the values obtained
in Ref. 10 for a 600 nm thick SiO2 film deposited on silicon
by plasma enhanced chemical vapor deposition. Adopting a
mass density of 2180 kg/m3, of unspecified origin, the val-
ues E = 71.6 GPa, ν = 0.16 are found; uncertainties are not
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TABLE II. For the bulk and the film samples, for the moduli E, B, G, and C11 and for Poisson’s ratio ν, for the values obtained from
the 12 subsets of 15 doublets each: the values associated to the narrowest and the widest uncertainty intervals; the uncertainties due to
finite precision alone (these are the same values of Table F.I), and those which also include the possible inaccuracies due to n and ρ; the
relative difference between the highest and the lowest estimates from the 12 subsets, the best estimate, given by the weighted average of
the values given by the 12 subsets.

Narrow Wide

Sample Quantity Value Precis.±% Accur.±% Value Precis.±% Accur.±% hi/lo 	% Best

Bulk E [GPa] 72.25 0.5 1.1 72.07 2.1 2.8 0.3 72.29
ν 0.1678 2.9 3.0 0.1662 13.5 13.6 1.5 0.1659
B [GPa] 36.26 1.0 1.7 36.10 4.6 5.3 0.9 36.16
G = C44 [GPa] 30.94 0.9 1.5 30.93 4.0 4.7 0.4 30.96
C11 [GPa] 77.51 0.1 0.8 77.34 0.3 0.9 0.4 77.44

Film E [GPa] 72.75 0.6 1.1 72.64 1.1 1.6 0.7 72.73
ν 0.1535 4.6 5.7 0.1599 7.4 8.5 6.1 0.1574
B [GPa] 35.00 1.5 1.5 35.63 2.5 2.5 2.7 35.43
G = C44 [GPa] 31.54 1.2 1.8 31.32 2.0 2.7 1.2 31.42
C11 [GPa] 77.05 0.3 0.7 77.31 0.6 1.0 0.8 77.30

quoted, but due to the needed extrapolation to null thickness
of the aluminum interaction layer, they are probably larger
than those found here.

VI. CONCLUSIONS

Brillouin spectroscopy can provide a full characterization
of the elastic behaviour of solids. The whole measurement
process, from the optical setup to the derivation of the elastic
moduli, has been reviewed identifying the various sources of
uncertainty. A detailed procedure to assess the effect of each
of them is developed, discriminating the effects on precision
from those on accuracy. The assessment has been performed
for a model material, silica, in bulk form and as a thermally
grown film. Combining ellipsometry with BS, a fully optical
characterization route is obtained. The following results are
found, for the characterization of isotropic media.

The raw outcome of BS measurements is the frequency
of spectral doublets. The frequency calibration is affected by
a typical uncertainty of a few parts in 10 000 and a doublet
frequency is identified with a precision which depends on the
peak intensity; from a few parts in 10 000 for the most intense
doublets, up to some parts in a hundred for the weaker ones.
By repeated measurements, the uncertainty of the weighted
average can be lowered to the level of one part in a thousand.
This is the intrinsic precision of frequencies measured by BS.

The velocity of the acoustic modes is obtained from the
doublet frequency and the exchanged wavevector, which de-
pends on the scattering geometry and/or the refractive index.
The doublet frequencies and the geometry are affected by ran-
dom errors, which limit the precision, but do not affect accu-
racy. Errors due to geometrical imperfections can be lowered
to the one part in a thousand level. Ellipsometry provides the
refractive index with an uncertainty of few parts in a thou-
sand, which does not affect precision, but limits the accuracy
of velocity.

As in all the methods based on vibrations, elastic moduli
can be derived from the measured velocity exploiting an inde-
pendently measured value of the mass density; the results are
subjected to the possible inaccuracies of density, which, par-

ticularly in the case of films, is not always known to be better
than one part in a thousand.

The precision of the elastic moduli and Poisson’s ratio is
well evaluated by the confidence regions, identified by a least
square estimator. The effect on the confidence regions mea-
sures the accuracy limiting effect of the auxiliary parameters
(refractive index and mass density).

By a comprehensive analysis of the whole measurement
process, this work qualifies the performance of the measure-
ment technique based on Brillouin spectroscopy. It is shown
that for the measurement of the stiffness of an isotropic
transparent medium, including a micrometric film, Brillouin
spectroscopy, exploited in conjunction with ellipsometry, can
achieve precisions and accuracies of the order of 1%, which
are difficultly obtainable by other techniques. Brillouin spec-
troscopy, a contactless light scattering technique, which does
not need a specific sample preparation, is thus qualified as a
high precision technique.
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