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Abstract

Masonry structures subjected to aggressive environment may suffer degradation during their
service life; the decay strongly depends on type of the component materials and the technique
of construction. This can lead the structure to high states of damage even if not failure. The
great randomness connected with the occurrence of critical attacks suggests approaching the
deterioration process of masonry under a probabilistic point of view. Following this way, the
deterioration process L(t) of stone masonries has been carried out. It has been approached
as:

1) L(t) time dependent stochastic process of the random variable (v.v.) /.

2) L(t) time dependent stochastic process of the r.v. T.

The approaches 1) and 2) are able to model the reliability of masonry materials over time and
predict, in probabilistic terms, the occurrence time of the expected damage.

The procedures have been applied to full-scale models built in Milan in 1990. To measure the
masonry decay in time a non-destructive technique has been adopted and the data collected
have been elaborated using the approaches 1) and 2). The results obtained allow the good
convergence of both the procedures as well as their different possible applications. On the
base of these results a discussion on the possible use of these procedures in the maintenance
strategies planning is introduced.
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Résumé

Les structures en magonnerie soumises a un environnement agressif peuvent subir des
dégradations pendant leur temps de vie. Ce dégradations dépendent beaucoup des types de
composant utilisés et de la technique de construction. Cela peut amener la structure a de
grave dommage jusqu'au collapsus total. La multiplicité et la causalité des parameétres
impliqués au cours de ces événements critiques, suggerent de aborder le processos de
dégradation de la magonnerie avec une approche probabiliste. Le processos de dégradation
L(t) de magonneries en pierre a donc été étudié selon cette approche. Les dommages ont été
considéré comme:

1) L(t) stochastique dépendant du temps selon la variable aléatoire (r.v.) ¢

2) L(t) stochastique dépendant de la variable (v.v) T.

Cette approchs nous permettent de modéliser la fiabilité des composants de la magonnerie
dans le temps et de prévoir probabilistiquement, le moment ou surgiront les dommages. Les
procédures ont été appliquées sur des modéles grandeur nature construits a Milan en 1990.
Pour mesurer l'état de dégradation de la magonnerie dans le temps, une technique de
monitorage non destructive a été employées et les données obtenues ont été élaboré selon les
approches 1) et 2). Les résultats montrent et une possible convergence des deux procédures et
leurs différentes applications. Sur la base des résultats on propose une discussion sur un

possible usage de ces procédures dans la planification des interventions de maintenance.



1. Introduction
Masonries subjected to aggressive environment may suffer degradation during their service
life. The knowledge of the deterioration processes and of their causes is needed in order to
choose the most appropriate types of repair and protection. The experience shows that, in the
Mediterranean countries where the freezing and thawing action is not present or not severe,
the most important cause of damage is salt crystallisation. The moisture present in the wall,
due to capillary rise and/or rain penetration, is the vehicle through which soluble salts are
distributed inside the material. The evaporation process takes place towards the external
surface of the walls; salts crystallising behind the surface cause delamination and crumbling
of the masonry components.
In order to investigate the effects of the aggressive environments on masonry, some full-scale
stone models were built in a polluted area of Milan. Since 1990 they were subjected to
capillary rise and salt attacks and the surface damage was monitored through a non-
destructive laser device [1, 2]. The characteristics of the outdoor model and of the decay test
procedure are described in Section 2.
The great randomness connected to the occurrence of critical environment suggests studying
the deterioration of the masonry and of the building materials under a probabilistic point of
view [3, 4 and 5].
Following this way, the analysis of the deterioration process, occurring in a real wall when
subjected to aggressive environment, has been carried out applying two different stochastic
approaches:
1. The deterioration process L(z,¢) over time defined as a stochastic process of the random
variable (r.v.) /, where ¢ is the loss of surface material [6]

2. The deterioration process L(f) over time defined as a stochastic process of the r.v. 7, where

ris the “lifetime” of the system [7].



The theoretical aspect of these approaches is presented in Section 3.

In Section 4 the results obtained by the application of the two approaches are reported;
furthermore a comparison between these two approaches is presented and a discussion on the
possible use of these procedures in the maintenance strategies planning is introduced.

A summary of results is given in Section 5, which includes some closing remarks.

2. Experimental tests

2.1 Full-scale models description

The on-site research was carried out on three full-scale models built, in a polluted area of
Milan, in 1990 by L. Binda and G. Baronio in collaboration with ICITE-CNR, S. Giuliano M.
and ESEM, Milan. Some panels of the models were treated in 1992, others in 1996.

The geometry and exposure of the model were designed to obtain the fastest decay in a
natural environment in both the treated and untreated cases. Therefore, a continuous capillary
rise of water inside the walls was realised together with the possibility of producing an
accelerated decay due to salt crystallisation [1 and 2].

Two types of materials were chosen: (1) soft mud facing bricks used for restoration of historic
buildings; (2) sandstone called “Pietra Serena” coming from Toscana, and largely used in the
central part of Italy. Putty lime and siliceous sand in the proportion of 1:3 composed the
mortar chosen for all the masonries.

The models are one-storey constructions with the facades divided into modular orthogonal
panels exposed south and west (Fig.la and 1b). Two models: one with sandstone (named
model A) and one with soft mud facing brick (named B) have five pairs of orthogonal panels
each (named respectively Al to A5 and B1 to BS) (Fig. 1a). The third model (named C), with
mixed stone and brick (C1 to C4), has only four pairs of orthogonal panels (Fig. 1a). The
construction of the models ended on September 1990.

In order to study the effect of salt crystallisation, an artificial decay is caused in some areas of



bottom of the walls. The subsoil of the structures was excavated to a certain level and the

foundation soil was coated with a layer of bentonite in order to avoid drenage of the soil.

2.2 Environmental monitoring system

The continuous monitoring of environmental data (temperature and R.H. of the air,

temperature of the surface of the walls, water level in sub soil) began in 1990.

The main aim of this survey is to find a correlation between the environmental data and the

other variables that are involved in the damage process, i.e. presence of water in the masonry

and consequently salt crystallisation and freezing and thawing action.

The presence of water in the subsoil is controlled by five piezometers. The monitoring system

of the environmental data (Fig. 2a) is composed by:

- 8 hygrothermometers for the measure of the temperature and R.H. of the air, inside and
outside the models;

- 1 cupped tacho-anemometer that collects data on the wind speed;

- 1 pyranometer that measure sun radiation;

- 36 thermocouples that survey the temperature on the internal and external, upper and
lower, surface of the walls.

All the data are collected and recorded by a data-logger.

2.3 Recording and elaboration of the data

The effect of decay due to salt crystallisation in masonry walls is a continuous crumbling and

delamination of the external surface of the wall while the inside is left unaltered. For this

reason the variation in roughness of the surface can be considered a measure of the damage

occurred to the masonry.

The authors in [8] proposed for the first time a measurement procedure of the surface decay.

The device used is a laser profilometer described by the authors in [2] and [9] (Fig.2b).

The device, of which the schema is shown in Figure 2c¢, allows to draw vertical profiles of the



wall in the chosen positions (Fig. 3).

Subsequent measurements show how the profile is changing in time due to any superficial
decay caused by freeze-thaw, salt crystallisation, air pollution, etc.

In this way it is possible to measure the material loss in time and to assume it as a parameter of
damage for the wall. The Fig. 4a shows an example of profiles corresponding to the six
different measurements carried out from 1993 to 1998.

On the basis of the laser profilographer plots, the difference between the co-ordinates of the
same points, detected within subsequent measurements, allows the loss of material to be
calculated. Bulging of the profile at a certain measurement indicates the initial detachment of a
surface layer, which in turn is followed by a sudden reduction in profile when the layer drops off
(Fig. 4b). The presence of swelling phenomena could compromise the damage measurements.
Nevertheless since bulging is a first step before detachment, it is possible to consider it as the
starting point of damage. Under this consideration a simple computer code has been studied to
convert the experimental diagrams (Fig. 4) into modified diagrams where bulging has been
removed (Fig. 5) [6].

The procedure carries out the comparison between the horizontal co-ordinates of two
subsequent diagrams: the current plot n and the previous plot (n —1). Usually the co-ordinates
of the diagram n are smaller than the ones of the diagram (n—1), except for the points
affected by swelling. In these points the computer code continues the procedure comparing
the co-ordinates of the plot » with the ones of the successive plots (n+1), (n+2), (n+3)...
until a plot m=(n+i) having smaller horizontal values than the ones of the profile » is found.
The co-ordinates of the diagram m, corresponding to the points affected by bulging, become
the new reference co-ordinates of profile n when it will be remade. As a result, a clean plot of
the evolution of the surface damage as a function of time and space has been obtained (Fig.5).

In order to quantify the damage of the wall as “the loss of the cross section of the wall with



time”, the area A4; between two consecutive diagrams of Figure 5 (A4; = the dashed area in

Figure 5) has been assumed as a parameter. This area is automatically calculated within the
assumed computer code [6].
In order to quantify the evolution of the loss of the cross section over time, for each profile

shown in Figure 3, the areas AAi’ with i=1,...,5, have been evaluated. The measurements
were made at times: #,=6, t,=18, 1;=22, t4=44, =60 months. Starting by the AAI. evaluated

and through a simple “data by data” linear of the loss interpolation, a first evolution over time

process has been obtained as shown in Fig.6.

2.4 First observations and results

At this phase of the research, the following conclusions can be drawn:

e The stone panel shows a similar damage in the first and second courses; very low damages

occur at the upper courses (Fig. 7).

e The damage corresponds to the highest level of the capillary rise surveyed by visual

inspection.

* The damage is characterised, in the first and the second course, by: (i) a first phase of
relatively fast loss of material (between 0 and 22 months); (i7) a steady state (between 22
and 44 months); (iii) a renewal of the decay process which started in July 1998, after 44
months.

* The damage is not deep but extended over a large surface.

* The damage is influenced by the bonding technique of the stones in the wall (stretchers or
headers) (Fig. 8).

Since in fact the capillary rise in a stone — masonry takes place mostly through the joints due

to the very different capillary rise coefficient of the two materials (in the case studied the

coefficient has the values 0.27 (kg/m®)/s™ for the mortar and 0.006-0.007 (kg/m*)/s*® for the

stone). Consequently, the most damaged areas are the ones adjacent to the joints; in fact the



header stones show an apparent larger damage than the stretcher stones, referred in % to their
area.

3. Theoretical approaches

The experimental data recorded have been the base on which the material deterioration was

modelled in a probabilistic way.

3.1 The deterioration process as a stochastic process in the r.v. /

The deterioration process of the stone masonry can be described through the parameter ¢
defined as the loss of material reached by the system at the time #* of measurement. At every
time ¢*, the high randomness connected with the occurrence of the material decay in the
natural environment brings to consider / as a r.v. with a certain distribution of values (Fig. 9).
Following this way, the deterioration process can be interpreted as a stochastic process of the
r.v. (. But the wall surface decay also depends on the time instant #* in which the deterioration
is recorded. Therefore, at each time #* the loss ¢ (measured in mm?) can be modelled with a
probability density function (p.d.f.) L(#*,¢) that results dependent on the time #* = constant
value (e.g.: £;=6 months, ,=18months and so on) and the r.v. /. In order to model L(¢*,/), at
every time ¢* a family of theoretical distributions has to be chosen. No doubt that, the choice
of a distribution modelling a given phenomenon has to be connected to the physical aspects of
the phenomenon itself and to the characteristics of the distribution function in its tail, where
often no experimental data can be collected. This last aspect of the question can be
investigated by analysing the behaviour of the immediate occurrence rate function ¢ (*,/)
connected with the chosen distribution function:

@, (t*,0dL =Pr{L </ < L+dL| ¢ 2L} (1)
On this subject more details are described in [7] and [10].

In the case proposed here, the recorded experimental data show a large dispersion around the



average value of /. This is probably due to the randomness connected to the decay mechanism
in a real environment. However, the loss seems to be included in a certain range of values.
Therefore, it seems correct to assume that, at a given time ¢* the probability of having a loss
(L</?¢<L+dL) decreases as the value L (magnitude of the loss) increases. The assumed
hypothesis as a satisfied (but not unique) physical interpretation of the decay process leads to

model the loss ¢ at the time ¢* with a Lognormal distribution (Fig. 9) as follows:

ey | _{log(p0)}*
L(¢ ,E)—gmexpl: . }

The estimation of the shape parameters o and p have been made through a computer code

(2)

involving the maximum likelihood method. This modelling can be obtaining also through the
function FMIN present in the MATLAB code.

This family of distributions presents an immediate occurrence rate function (1) decreasing as
the value of L increases; this fact seems to respect the physical interpretation of the decay
process previously proposed.

It is furthermore interesting to evaluate the probability for the system of reaching or

exceeding a given damage threshold L over time. This probability can be seen as the dashed
area over L as shown in Figure 10.

This area can be calculated by using the survive function [, (#*,/) =1-F,(t*,/) where
F, (t*,0) is the cumulative distribution function of the p.d.f. (2).

The computation of [, (#*,/) is possible with the use of any kind of computer code for
numerical integration.

For different damage levels L, the survive function has been evaluated for all the times 7. The
calculated values allow to plot an experimental “fragility curve” connected to each chosen

damage level (see Fig. 11 in Section 4).



Following this approach the deterioration process can be treated as a reliability problem [6].
Indeed [11] the reliability R(#) concerns the performance of a system over time and it is

defined as the probability that the system does not fail during the time ¢. Here this definition is

extended and R(?) is assumed as the probability that a system exceeds a given significant

damage threshold L in the time #. The random variable that is used to quantify reliability is
T which is just the time to exceed damage L . Thus, from this point of view, the reliability
function is given by [11 and 12]:

R()=Pr(T >1)=1 —F.(1) (3)
where Ff (¢) is the distribution function for 7 and represent the theoretical modelling of the

experimental fragility curves.

In order to model the experimental fragility curves and to evaluate Ff (z), a Weibull

distribution has been chosen [5 and 10] as follows:

F=(1) =1 —eXpl—(,Ot)”] 4)
In fact this distribution seems to be a good interpretation of the physical phenomenon: the
larger is the waiting time ¢ to lose L, the higher is the probability that the loss L will happen

in the next (#+df) time interval. Therefore distributions with the function qz)TL(t) increasing

with ¢ and tending to o as ¢t — o are needed. The Weibull distributions satisfy this
requirement.
The fitting of the experimental fragility curves with the distribution (4) has been made

through a computer code involving the least squares method.

3.2 The deterioration process as a stochastic process in the r.v. T

The deterioration process can be seen as a material loss of performance. Each time the
deterioration reaches a given level the material suffers a “failure”; therefore a loss of

performance occurs [4]. The loss of performance can be defined as a change of service-state
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for the system; namely when the system suffers a failure it passes from the current service-
state i to another state & characterised by a lower level of performance. Thus the deterioration
process (failure process) may be defined as a franmsition process of the system through
different service-states due to a discrete number of attacks in the time continuum, 7 [3].

Every transition depends on [4]:

e The magnitude of the attack (stress cycle);

e The system capacity to withstand this attack.

Both these parameters depend on a large number of time dependent r.v.; therefore it is correct
to interpret the transition process as a stochastic process. In [7] it has been shown that a
possible r.v. which can be assumed to describe a transition process is the service lifetime 7;
defined as: "the waiting time spent by the material in the performance state i".

Under this point of view the reliability function R can be defined as:
R, (1)) =Prz, >} =1-F, (1,1,) (5)
where 7 represents the age of the material when the material enters the state i and F7, the

cumulative distribution function of the r.v., 7.

When FT[, is known, a stochastic dynamic process can be assumed to represent the material

failure process. In [13] and [14] it has been shown that the semi-Markov Processes (s-MP)
seem to suitably describe the material failure process. They allow to distinguish different
states of the system with different waiting times and to take into account the age #, of the
material when it is subjected to failure processes.

3.2.1 The semi-Markov approach: general remarks

The semi-Markov Processes (s-MP) are processes describing the behaviour of a dynamic
system that changes its state at every transition; they appear to be suitable models to represent

the failure process of a building material [3]. A s-MP is defined when the following quantities

11



are known [15]:
a. Initial conditions: initial state, i.e. the state occupied by the system at the origin of time

=0, and the time lys the time spent in the initial state at the time =0.
b. Probability density function (p.d.f.) f,(?) of the waiting time 7, i.e., the time spent in the

state i if the next state is k: f;, (¢)dt = Pr{t <7, <t+ dt}, where ¢ = the time measured

from the entrance in the state i.

c. Transition probability matrix, pj, defined as: p; = Pr{next state k, present state i}.

Once the points a, b and ¢, are determined, the waiting time 7, introduced in 3.2, can be

defined by the p.d.f.:

f 0=xf Op 6)
r. ko ik ik

i
The probability that, at the time ¢, the system will occupy the state &, can be evaluated if the
present state is i.

By these assumptions it is evident that in the semi-Markov hypothesis the failure prediction
only depends on the transition probability pi, on the waiting time p.d.f. f,(¢), and on the
initial conditions. The problem of the suitable choice of £, (¢), must now be solved.

As already said, in choosing f, () attention is paid to the failure-rate function ¢ (?) (fun. 1)

and to the physical knowledge of the material deterioration phenomenon [7].

Since the deterioration is a renewal process, the larger is the waiting time 7, spent by the
system in the state i, the higher is the probability that the transition in the next state & can
happen in the next (t+df) time interval [5, 13]. Therefore, also in this case distributions with

the function @, (7) increasing with ¢ and tending to o as ¢ — oo are needed; the Weibull

distributions present this behaviour.

3.3.2 The deterioration process as a renewal process

12



The experimental data collected show that the material failure process seems to renew itself

each time the loss of surface material reaches a given level L.

This suggests to model the material process of failure as a renewal process, [16] the simplest
type of s-MP.

A renewal process is defined if:

¢ The service-states are defined;

e The waiting time 7; spent by the system in each service-state i before moving to the

following service-state k is modelled through appropriate p.d.f. f; (7).
In a renewal process f7(¢) is the same for each 7. Only for the waiting time spent in the
initial state the renewal process can present a different p.d.f.
Assuming the deterioration process to be a renewal process, from the experimental data it is

possible to comment as follows:

1. For the service-states 0 of amplitude L mm’.

= Since the first transition occurs at 400mm? of damage, then ZO =400mm”.
® The initial szate 0 is characterised by a 7,=0, because the wall was a new wall when the

test has begun.

2. For the service-states i (with >0) of amplitude L mm’.

= Each transition after the first, occurs at every 200 mm? of material loss; therefore
L, =200mm’.
On the base of the experimental data and of the previous points 1. and 2., it is possible to
define:
e The transition probability p; ;.
The intervals chosen has guaranteed a sure transition between the different states; in
this case £ =i + 1 and the transition probability is: p; = 1.

e The waiting time 7. Precisely:
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* The waiting time 7p; = 7; considered as the waiting time spent by the system in the
initial state 0 before passing to the state 1.
» The waiting times representative of the successive transitions 7;; = 7,
withi>0and k=i+ 1.
4. Results and comments
The application of the two approaches proposed in 3.1 and 3.2 has shown some differences
that will be pointed out in the following:
4.1 Fragility curves

The probabilistic approach proposed in 3.1 is able to model the deterioration in terms of

probability to reach or exceed a given damage threshold L over time (Fig. 9 and 10). The
assumption of the Lognormal distributions to model the experimental data has pointed out
that the deterioration can change its behaviour over time with an increasing scattering (Fig. 9).
This behaviour is probably due to the randomness connected with the realisation of the decay
process in the real environment and of the characteristic of the panel (i.e.: presence of mortar
joints, prevailing of headers along the profile, profile position close to the mortar-stone
interface, etc). The modelling has been obtained through a computer code involving the
maximum likelihood method. The logarithm of the maximum likelihood function and the
values of the other statistical test performed, associated to the physical knowledge on the
deterioration, seem to well support the choice made.

The experimental fragility curves, obtained by computing the equation (3), are plotted in
Figure 11. The fitting is obtained through a computer code involving the least square method.
Also in this case the values given by the least square method and the values of the other
statistical test performed, associated to the physical knowledge on the deterioration and the

statistical knowledge, support the choice made.

From Figure 11 it is evident that the probability of exceeding a given damage L in a short
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time is lower if L >600mm’ and higher if L <400mm® In fact, the plot shows a high
probability that a small delamination (L =200-400mm?) happens in /=20months from the
initial time. Instead the probability to have a higher loss (L =800mm?) increases only for
>>120months after the initial time.

The approach proposed in 3.1 can point out the failures with higher or lower probability of
occurrence in the given time ¢. The fitting shown by Fig. 11 is satisfactory; nevertheless a
small sample was used. Therefore, in order to interpret these results much caution is needed.
This means that, when the application of this approach is simple, in order to have significant
results the time of monitoring and the data recorded have to be very long.

4.2 The semi-Markov approach

The probabilistic approach proposed in 3.2 is able to model the deterioration process as a
transition process. The application of the s-MP needs the definition of some service-states
through which the system passes during its deterioration process (each state is characteristic
of a given damage level). The choice of the service-states is not simple. Being arbitrary it can
compromise the interpretation of the analysed process. In fact this choice on the type of
failure, on the physical aspect of the investigated phenomenon, but also on which loss is
defined as damage: a very thin delamination or a thick one. In [13 and 14] the authors have
shown that the salt decay process of the masonry components (stones, bricks, and mortars)
can be modelled as a renewal process. Here the choice of the state had the aim of verifying
whether the decay process of the masonry as a composite material is still a renewal processor
not. The choice has not been so difficult.

If the experimental data are considered, the deterioration process shows a bi-modal behaviour.
Since the masonry has been assumed as a composite material, the bi-modal behaviour could
be connected with the two different deterioration process of stone and mortar.

To capture the bi-modality of the process a mixture of two Weibull densities of the type:
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fr. 0 =ap(e) " exp|- (o) (with7, =7, or7, =7) (7)

have been adopted in (8):

SO =pfi@O)+1A=p)f, (1) (8)
where: f;(t) is representative of a short term damage; f>(2) is representative of a long term
damage; while p and (/-p), are, respectively the probability of a close transition (short term
damage) and of a delay transition (long term damage).

The results obtained by the application of the semi-Markov approach shows a different

behaviour of the waiting time 7; describing the first transition (reaching the 1% threshold

Zl =400mm®), from the behaviour of the waiting times 7, describing the following transitions.

Through a computer code, involving the maximum likelihood method, the modelling of the
experimental data has been made and the shape parameters, describing the Weibull
distributions, have been estimated. Through significance test included in the code, the
reliability of the fitting has been proved. The fitting of the experimental data is plotted in
Figure 12 and 13.

The computer code used was implemented to study each probabilistic problem modelling
through classic distributions (LogNormal, Weibull, Gamma, etc.) and mixture of them. The
frame of it consists in a Fortran code re-calling different functions of IMSL Libraries for
UNIX [16].

Precisely, the parameter estimation has been made using the function minimisation with
Rosenbrock’s method. But, as said before, problems of non-linear minimisation can be solved
also through the function FMIN present in MATLAB code.

The results obtained seem to confirm the hypothesis that the material failure process is a
renewal process. Since the p.d.f. describing the waiting times of the first transition: 7; has a
different shape with respect to the p.d.f. modelling the waiting times at the successive

transitions: 7, the material failure process seems to follow a modified renewal process [17].
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As commented in 3.2 the s-M approach is able to take into account the time ¢, elapsed from
the construction of the building (or the surface treatment) and the precise time when the
analysis of its deterioration starts. Therefore, no information is lost.

Besides, if the process modelled is a renewal process the time of monitoring can be reduced

because the process renews itself at every L of material lost and only the knowledge of the
waiting times concerning the first two transitions is needed.
4.3 Maintenance planning using the probabilistic approaches proposed: some remarks

The approaches proposed to model the deterioration process are able to give information, in

probabilistic terms, on the occurrence time of a given damage level L to the studied system.

In fact, with the computing of the fragility curves the probability to exceed a given damage

level L at every time ¢ is defined, so that the probability of occurrence of different damage
levels at the time *, can be easily evaluated.

In the case of a renewal process the prediction, in probabilistic terms, can refer to the
prediction of:

- The occurrence time of the " renewal;

- The number of renewals in a certain time #*.

Since a renewal happens every time the damage threshold L is reached, this approach allows
to make predictions also on:
- The occurrence time of the damage level L, connected with the #h renewal;

- The damage level reached with the renewals occurred in the time #*.

The knowledge of the probability of occurrence of a given damage level L at the time ¢,
means that it is possible to plan maintenance strategies known in terms of execution,

durability and effectiveness. As an example, the time #*, connected with the probability of

exceeding L, can be assumed as the right moment to operate a maintenance action on the

system. This action will lead the system to a better service-state than the one corresponding to
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the time #*, thought it is usually unable to lead the system to the original (first) service-state.

Therefore, it is possible that a certain damage remains. The analysis carried at the further level

has to take into account this damage, so the probability to exceed L would be reached in a
time 7 <¢* and the time interval between the maintenance actions could not be constant.

The use of the proposed approach allows the investigation of this eventuality.

Following the same way, questions concerning the durability and the effectiveness of
maintenance and repair actions, as the surface treatment effectiveness, can be dealt with.

5. Conclusions

During their service life, masonry subjected to an aggressive environment may suffer
degradation. The great randomness connected with the occurrence of critical attacks by salt
crystallisation suggests approaching the deterioration process of these materials from a
probabilistic point of view. The material deterioration process has been approached as a

reliability problem where:

1)  The reliability function R; has been defined as a function of the r.v. / = loss of surface

material. The failure process is seen as the probability of the system to exceed a given
damage level L . The fragility curves obtained allow defining the exceedence probability

over time connected with each L chosen.
i1) The failure process is assumed to be a transition process. To model it the s-MP have been

proposed. In order to describe the time dependent reliability function R, the r.v. 7 has

been defined, where 7. = waiting time spent by the system in a given service-state i before

passing in a successive service-state.

From the experimental investigation the failure process seems to renew itself at every L .
By modelling the deterioration process as a renewal process it is possible to make

prevision: on the time 7 needed at the system to reach a given damage level L and on the
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damage level L* reached by the system in a given time z.

A comparison between the two approaches has been made. It has been pointed out how the

success depends on the type of the studied problem and how is important to have the

knowledge of the physical aspects of the analysed phenomenon, in order to correctly model it.

The comparison has shown how both the approaches are able to predict, in probabilistic

terms, the magnitude of the expected damage over time and the occurrence time for a given

damage level. This important information allows to appropriately plan of the maintenance and

repair of the wall surface.
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