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Abstract 
Model based methods are often used along with least squares to estimate (or to identify in 

equivalent but in more engineering terms) dynamic forces, parameters and malfunctions in 
mechanical systems, starting from experimental vibrations.  
The effectiveness of these methods, broadly proven and documented by several cases of study, can 
be reduced if the model of the system is not accurate or if the experimental data are corrupted by 
noise, especially if the mean value of the noise is not null or if biases are present. 
A possible solution is the use of robust estimation techniques instead of traditional least squares in 
the ambit of model based identification. The author proposes the application of the M-estimators 
and discusses the problems related to their application to excitation identification in mechanical 
systems.  
In this paper the necessary theory is presented in detail, introducing several concepts of Statistics, in 
order to properly introduce the concept of robust estimation and the required algorithms (based on 
iterative re-weighted least squares) are described. Then the different types of M-estimators 
proposed in literature are introduced. Their performances with regard to mechanical applications are 
evaluated by means of a theoretical analysis and a couple of simple numerical examples: a single 
input – single output and a multiple inputs – multiple outputs systems. Moreover the problem of the 
scale parameter, which is not discussed in literature for complex numbers, as the vibrations are, is 
analyzed and a solution is proposed using a concept related to the data depth. 
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1. Introduction 
The least squares estimate is widely used in mechanical systems to solve identification 

problems. These can be for instance the estimate of the excitations starting from the dynamical 
response and from the knowledge of the system parameters. Conversely also the system parameters 
can be evaluated by identifying the experimental frequency response function (FRF). A 
comprehensive overview is given for instance in [1], by limiting to the mechanical field only, where 
also some remarks are given about the sensitivity of least squares to bias. The sensitivity of least 
squares to data corruption is the main drawback of this method and several improvements have 
been proposed in literature. One of the simplest is the introduction of weighted least squares and 
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some successful applications in model based identification of faults in rotor-dynamics are presented 
for instance in [2][3]. In these applications the faults are represented by means of equivalent 
excitations.  

Another recent proposal [4] to improve the method of least squares method is focused on the 
application of suitable regularization filters, namely the truncated singular value decomposition 
filter and the Tikhonov’s filter, along with total least squares. Another approach proposed in [5] uses 
non-linear least squares to estimate parameters of a multi-frequency signal from discrete-time 
observations corrupted by additive noise.  

Some of the proposed techniques in literature have the general task to obtain the maximum 
efficiency in the estimate. In [6] a maximum likelihood estimator is used to generalize total least 
squares and it is shown that this estimate has the maximum efficiency. Anyhow, under a statistical 
point of view, the maximum efficiency is antithetic to the robustness of the estimate, as it will be 
shown later on in the paper.  

In any case practically everyone agrees about the fact that an estimator should be robust, but 
also the concept of robustness is somewhat vague. In some cases the robustness is intended as 
something that makes the estimator less sensitive to noise, both on system input and output. Some 
algorithms that have the task of reducing this sensitivity, both introducing the noise model in the 
parametric identification (the generalized total least squares [7]) and maintaining the nearly 
maximum likelihood property (the bootstrapped total least squares [8]), have been proposed and 
compared in [9] when they are applied to modal analysis. In other cases the introduction of a 
rigorous concept of robustness is avoided and the term immunity, similar to that of living bodies, is 
used, along with the developing of a modified least squares algorithm [10]. Anyhow the problem of 
the robust estimation is not new in Statistics and useful references can be found in [11][12][13][14].  

The aim of the author is to give a precise definition of the robustness and to apply robust 
estimate to mechanical problems, trying to preserve a high level of efficiency. A suitable trade-off 
between robustness and efficiency is represented by the class of M-estimators. Their application to 
excitation identification of the in mechanical system is discussed in the paper. M-estimate has never 
been applied to mechanical systems, to the author’s knowledge. In Statistics the data sets are 
generally composed of real numbers. In Mechanics vibrations are conveniently represented by 
complex numbers and the M-estimate application to complex data sets has never been presented 
before. Therefore its implementation is fully discussed, by first reviewing the related theory and 
then introducing the different types of M-estimators proposed in statistical literature. Since it is not 
possible to define a priori which one of the M-estimators is more suitable to mechanical 
applications, their performances are evaluated by means of a theoretical analysis and two simple 
numerical examples of a single input – single output (SISO) and a multiple inputs – multiple 
outputs (MIMO) systems, in which the knowledge of the model is perfect and noise affects only the 
output(s).  

The use of M-estimate implies the evaluation of a scale parameter for the data sample. This 
problem is not discussed in statistical literature because normally data are real numbers. Since 
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vibrations are conveniently represented by complex numbers, data samples are complex and the 
evaluation of the scale parameter is not trivial. Also this problem is analyzed and a solution is 
proposed by using a concept related to the data depth. 

 
 

2. Estimation, least squares, robustness and influence function 
Not only in the mechanical field, there are many cases in which two or more variables are 

related by themselves and the relationship is made explicit by means of a model. The estimate of 
model parameters is often made using the least squares method (described in appendix A). 

Anyhow, the estimators in the least squares sense rely on some fundamental hypotheses on the 
distribution of errors between the variable of interest and the data. In fact the noise that corrupts the 
data is assumed to have null mean value and this implies the estimate of a not distorted parameter. 
If the variance of the noise is known, a minimal variance estimate of the parameters, can be 
obtained by using suitable weights for the data. 

Several studies have shown that least squares estimators are vulnerable to the violation of these 
hypotheses. For example the distribution of the errors could be asymmetric or prone to extreme 
outliers. Sometimes even a “bad” observation only can completely perturb the least squares 
estimate. Therefore many robust techniques have been proposed, but the robustness is a vague 
property of statistical procedures and is well outlined by Bickel [12]: “A robust procedure, like a 
robust individual, performs well not only under ideal conditions, the model assumptions that have 
been postulated, but also under departures from the ideal. The notion is vague insofar as the type of 
departure and the meaning of “good performance” need to be specified”. In the following, the 
robustness concept that the author intends is focused. 

 
 

2.1. Evaluation of the influence function, of the robustness and of the efficiency 
One of the causes of the inaccuracy of the probabilistic model assumed for the data is the 

presence of errors due to outliers, i.e. anomalous values, defined as observations far away from the 
majority of the data. 

The analytical tool that allows the evaluation of the robustness of an estimator in presence of 
outliers and gross errors is the influence function, introduced by Hampel [15][16]. In order to allow 
a more intuitive interpretation of its definition (as suggested in [17] and [18]), it is introduced as the 
limit of the sensitivity curve, proposed by Tukey [19] to evaluate the stability of an estimator. Let 

1 2( , , , )nX X X  be a random sample extracted from ( ; )X F x θ  and the parameter θ  is going to 
be estimated by means of the estimator 1 2( , , , )n nT T X X X=  . Estimator nT  can be defined using 
the empirical distribution function: 

( )1( )n iF u I X u
n

= ≤∑ , (1) 

which attributes to every observation equal probability 1/ n . The operator ( )I ⋅  indicates the number 
of i  that satisfy the condition ⋅  inside the parentheses. Obviously, the knowledge of the random 
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sample or of the empirical distribution function is equivalent, because the random sample is 
immediately inferred from ( )nF x  and, vice versa, the sample is immediately inferred from the 
empirical distribution function because ( )nF x  introduces some jumps in correspondence of the 
sample values. This justifies denoting the estimator as a functional of the empirical distribution 
function: [ ]n nT T F= . 

Now, if an arbitrary observation x  is added to the random sample 1 2( , , , )nX X X , a new 
sample 1 2( , , , , )nX X X x  is obtained, the empirical distribution function of which is 1( ; )nF u x+ . It 
is easy to show that: 

( ) ( ) ( )1
1

1 1 1( ; ) ( )
1 1 1 1

n

n i n
i

nF u x I X u I x u F u I x u
n n n n+

=

= ≤ + ≤ = + ≤
+ + + +∑ . (2) 

If ( )x uδ  indicates the distribution function of a random anomalous variable in x  and 1
1n+=ε , 

then: 

1( ; ) (1 ) ( ) ( ) (1 )n n x n xF u x F u u F+ = − + = − +ε ε δ ε ε δ . (3) 

Similarly, when the estimator [ ]n nT T F= , defined on 1 2( , , , )nX X X , shifts on the extended 
sample 1 2( , , , , )nX X X x , the functional becomes: 

[ ] [ ]1 1( ) ( ; ) (1 )n n n xT x T F u x T F+ += = − +ε ε δ . (4) 

The condition that makes nT  an acceptable estimate for θ  is that the addition of an observation 
x  to the random sample does not strongly modify its value. The most straightforward way to 
measure the effect of this addition is to consider the difference between 1( )nT x+  and nT  and to 
compare it to the weight of the added observation (measured by ε ), that obviously is inversely 
proportional to the sample number. This defines the sensitivity curve SC of the estimator nT  [19]: 

[ ]1 (1 ) [ ]( )( , ) n x nn n
n

T F T FT x TSC x T + − + −−
= =

ε ε δ
ε ε

. (5) 

The sensitivity curve can be studied as a function of x  for an estimator nT . If the observation x  
is far away from the majority of the data, the curve of sensitivity shows what happens to the 
estimator when this outlier is present in the sample. Therefore it is necessary that ( , )nSC x T  is 
limited, so that the effect of an outlier on the estimator is always restricted within defined limits. 

If n →∞ , the Glivenko-Cantelli’s theorem states that ( )nF x  converges uniformly and in 
distribution to ( )F x . Moreover for Fisher’s consistent estimators [ ] [ ]nT F T F→ =θ  and [ ]nT F  can 
be replaced asymptotically by [ ]T F . The influence function IF of the estimator nT  with respect to 

( ; )F x θ  is: 

[ ]
0

(1 ) [ ]
( , , ) lim xT F T F

IF x T F
→

− + −
=

ε

ε ε δ
ε

. (6) 

The influence function shows the asymptotic variation of [ ]T F  due to an infinitesimal 
contamination of the distribution ( )F x , related to the contamination entity. The influence function 
depends on x , as the sensitivity curve, but also on ( )F x , that is on the parametric model supposed 
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for the data. Therefore it represents a parametric tool that can be used to verify the behaviour of an 
estimator in the cases in which the “actual” distribution is similar to the hypothesized distribution 

( )F x . The influence function will be used in paragraph 3.1.2 to discuss the robustness of the least 
squares. It allows also a robustness measure to be introduced and the robustness concept to be 
finally pointed out. The gross error sensitivity γ [12][16] is defined as: 

( , ) sup ( , , )
x

T F IF x T F=γ . (7) 

If ( , )T F < +∞γ , the estimator is robust with respect to outliers, i.e. to anomalous values. 
The robustness requires instead that the influence function is superiorly limited, but this 

requirement is in contrast to the estimator efficiency, which is often the target of the identification 
methods in mechanical systems [6]. In fact a theorem presented in [16] states: let ( , )X F x θ  and 

1 2( , , , )n nT T X X X=   be an estimator for θ  and let ( )nV ′ θ  be the related score function; if nT  is 
Fisher’s consistent, under regularity conditions valid for Cramér-Rao’s inequality [20], then nT  is 
efficient for θ  if ( , , ) ( )nIF x T F V ′∝ θ . The score function ( )nV ′ θ  is defined as: 

( ; )( ; ) log ( ; )
( ; )

f xV x f x
f x
′∂′ = =

∂
θθ θ

θ θ
, (8) 

where f  is the probability density function. The score function is normally unbounded, so that the 
influence function has to be both limited and unlimited (proportional to the score function) to 
achieve respectively estimator robustness and efficiency. To solve this paradox, the M-estimator 
class has been introduced [21] [22] [23]. 
 
 
2.2. Definition of M-estimate 

Instead of estimate parameter θ̂  by means of the minimization of the quadratic error: 

( )2 2

1 1

n n

i i
i i

x r
= =

− =∑ ∑θ , (9) 

as it is done in the standard least squares, the following quantity is minimized: 

( )
1 1

( )
n n

i i
i i

x r
= =

− =∑ ∑ρ θ ρ , (10) 

where the type of function ρ  will be discussed in section 3. To obtain the minimum, eq. (10) is 
derived with respect to ir  and put equal to zero. Let 1[ , , ]m= θ θ θ  be the vector of the parameters 
to be estimated.  

The M-estimator of θ  based on function ( )irρ  is the vector θ  solution of the m  equations: 

1
( ) 0 for 1,...,

n
i

i
i j

rr j m
=

∂
= =

∂∑ψ
θ

, (11) 

where the derivate:  
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d ( )( )
d

i
i

i

rr
r

ρψ = , (12) 

is proportional to the influence function of ρ . This is shown in appendix B. 
If the estimator is robust, the influence of a single observation is insufficient to cause a 

significant error. A weight function is then defined as: 

( )( ) i
i

i

rw r
r

=
ψ , (13) 

so that eq. (11) is rewritten as: 

1
( ) 0 for 1,...,

n
i

i i
i j

rw r r j m
=

∂
= =

∂∑ θ
. (14) 

The equation system (14) is corresponding to that obtained when the iterated re-weighted least 
squares (IRLS) problem [24][25] is solved: 

( )( 1) 2

1
min

n
t

i i
i

w r r−

=
∑ , (15) 

where t  is the number of iteration index and the weights ( )( 1)t
iw r −  have to be calculated per each 

iteration. The detailed description of the IRLS algorithm is presented in paragraph 4.1. 
 
 
2.3. Conditions on the ρ  functions  

In order to be robust and to have good computational characteristics, an M-estimator should 
comply with some conditions that are reflected on its ρ  function: 

1) The influence function eq. (12) has to be bounded, as shown in paragraph 2.1 [18].  
2) ρ  function must have these properties [24]: 

• ( ) 0r ≥ρ ; 
• (0) 0=ρ ; 
• ( ) ( )r r= −ρ ρ ; 
• ( ) ( ),i i i ir r r r′ ′≥ >ρ ρ ; 
• ρ  is less increasing than a quadratic function. 

In practice it is required that the ρ  function has the same “good” properties of the least 
squares with the additionally obvious condition that ρ  is less increasing than a quadratic 
function in order to limit the influence of the outliers. 

3) The robust estimator should be unique, i.e. the objective function eq. (10) should have a 
unique minimum. This requires that the individual ρ  function is convex in the variable θ , 
which is equivalent to impose that 22∂ ∂ρ θ  is non-negative definite [26]. 

4) A practical requirement is that whenever 22∂ ∂ρ θ  is singular, the objective function should 
have a gradient, that is 0∂ ∂ ≠ρ θ . This avoids having to search for a minimum through the 
complete parameter space. 
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Not all the M-estimators proposed in literature actually comply with all of these conditions. In 
the following section 3, the types proposed are analyzed in detail and some performance 
characteristics can be forecasted, while the applications in sections 4 and 5 make explicit the 
advantages and the drawbacks in mechanical applications. 

 
 

3. Scale estimate and types of M-estimators 
Before considering the possible types of M-estimators, it is necessary to introduce a discussion 

about the scale of the sample. In paragraph 2.2 it has been implicitly assumed a unitary scale, while 
in general the scale of the sample is not unitary and it should also be estimated. The problem of eq. 
(11) should be stated as: 

1
0

ˆ

n
i j i

i j

x rθ
ψ

σ θ=

−  ∂
=  ∂ 

∑ . (16) 

Obviously the same scale estimate σ̂  has to be robust. Since in the cases commonly analyzed in 
Statistics, the observed data are real values, x∈ , the estimates of scale are real values too and 
normally the MAD (median absolute deviation) is used [21][24][26].  

Anyhow, parameter estimate in mechanical systems uses vibration data that are complex 
numbers, x∈ . No studies exist regarding the application of M-estimate to complex quantities to 
the author’s knowledge. Nevertheless a rich literature exists about the non-parametric estimate of 
robust location parameters in multidimensional distributions [27][28][29][30][31] and many of 
them are based on the concept of data depth [32]. These studies can be extended to the present case, 
in which the residues are complex numbers, r∈ , and a scale estimate for bivariate data should be 
employed. A proposal, which will be adopted in following by the author, is based on the extension 
of the MAD to the complex field using the Tukey’s median instead of the conventional median. Let 

{ }1 2, , , nx x x=X  , ix ∈ , be the bivariate data vector composed by the complex vibration 
measures and *( )T ⋅  the Tukey’s median operator. The extension of the MAD is here defined as 
TMAD (Tukey’s median absolute deviation): 

( )*( ) Med ( )TMAD T= −X X X . (17) 

Details on Tukey’s median calculation are presented in [33][34]. 
 
 

3.1. Least Powers 
This is a wide class of ρ  functions that does not depend on the pre-emptive knowledge of a 

measure of scale. The general definition is: 

( ) ( )x x r r− = − ↔ =ν νρ θ θ ρ . (18) 

Depending on the value of the exponent ν , several estimators are defined. Note that the 
conditions expressed in point 2 of paragraph 2.3 are satisfied also if r∈ . 
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3.1.1 1L  - Least Absolute or Absolute Value 
In this case 1=ν  and: 

1( ) ; ( ) sgn( ); ( )r r r r w r
r

= = =ρ ψ . (19) 

This estimator has a bounded influence function ( )rψ , thus reduces the influence of large 
errors, but has the disadvantage of possible numerical instability, because the ρ  function r  is not 
strictly convex in r , since second derivative is unbounded in 0 and an indeterminate solution may 
result.  

 
 
3.1.2 2L  - Least Squares 
The classical least squares are obtained for 2=ν  and results: 

2

( ) ; ( ) ; ( ) 1
2
rr r r w r= = =ρ ψ . (20) 

Although this estimator is convex, the influence function ( )xψ  is a straight line in r , insofar 
( )xψ  is not bounded and this estimator is not robust, as well-known. 

 
 
3.1.3 1 2L L−   
This estimator does not derive directly from eq. (18), but is intended to maintain the advantages 

of both 1L  to reduce the influence of large errors and 2L  to be convex. It behaves like 2L  for small 
residues r  and like 1L  otherwise. 

2

2 2

1( ) 2 1 1 ; ( ) ; ( )
2

1 1
2 2

r rr r w r
r r

 
= + − = =  

  + +

ρ ψ . 
(21) 

 
 
3.1.4 pL  - Least power 

From the consideration of 1L  and 2L , it appears that as smaller the exponent ν  of eq. (18) is, as 
smaller the incidence of great residues is on the estimate of θ ; that is ν  has to be enough small to 
give robust estimators or, in other words, to give an estimator poorly perturbed by the outliers. The 
functions are: 

1 2( ) ; ( ) sgn( ) ; ( )
r

r r r r w r r− −= = =
ν

ν νρ ψ
ν

. (22) 

The investigations about the selection of an optimal ν  have indicated that 1.2 is a suitable value 
[13][18][35]. 
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3.2. Huber’s function 
The aim of this estimator is to find the simplest imaginable function that is consistent with the 

conditions of robustness. Huber introduced it [13][12][21] to give the min-max solution to eq. (16) 
for normal distributions of data affected by noise, under the hypothesis of known scale parameter σ̂  
and then extended its use to general distributions. He started from the maximum likelihood 
estimator (MLE) and reduced its sensitivity to the outliers. For a data sample with distribution 
density f , the MLE maximizes: 

log ( )f x −∑ θ . (23) 

It can be defined by considering that, if the sample distribution is unknown, the most reasonable 
assumption is to suppose the symmetry: 

( ) ( )f x f x− ≈ −θ θ . (24) 

The Taylor’s expansion in proximity of the centre of the symmetric distribution is: 

( )2( ) ( ) 2f x f x≈ − −θ θ . (25) 

In the proximity of the centre can be written that: 
2( )log ( )

2
xf x −

− ≈
θθ , (26) 

plus a constant. Therefore the parabola: 
2( )( )

2
xx −

− =
θρ θ , (27) 

is the optimal choice in the proximities of the centre. This notwithstanding eq. (27) coincides to the 
least squares, which are not robust. A possibility is to limit the influence function if the residue r  
exceeds a certain value c , called tuning parameter [25]. The resulting functions are: 

2

1 ifif if2( ) ; ( ) ; ( )
ifsgn( ) ifif

2

r r cr c r r c
r r w r c r cc r r ccc r r c r

  ≤≤  ≤  = = =   >>   − >    

ρ ψ . (28) 

This ρ  function is so satisfactory that has been recommended for any situation. However 
depending on the value of the tuning parameter, different estimators can be obtained. Since the 
estimator has been developed originally for normal distributions, the optimal tuning parameter c  is 
calculated in order to have the 95% of asymptotic efficiency with respect to a normal distribution 
and results ˆ1.3450c = σ , where σ̂  is the scale parameter. This value and the calculation of the 
tuning parameters of the other functions can be found by starting from the score function of eq. (8) 
as shown in [23][26]. 
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3.3. Modified Huber’s function 
Even if Huber’s estimator has outstanding performances, it could cause calculation problems 

related to lack of stability of the gradient values (as noted in [18]) due to the discontinuity of the 
second derivative of the ρ  function. In fact: 

2

2

1 if( )
0 if

r cd r
r cdr

 ≤=  >

ρ . (29) 

The modification proposed in [18] is: 

2

2

sin if1 cos if sin if 22 2( ) ; ( ) ; ( )
if1 if sgn( ) if 22 2 2

rr c rr rrc c r c cc c c cr r w r
rcr r

c r c c r r cc c

         ≤− ≤ ≤                 = = =  
    >+ − > >     

ππ π

ρ ψ
ππ π π

. (30) 

The 95% of asymptotic efficiency with respect to a normal distribution is obtained in this case 
results ˆ1.2107c = σ , where σ̂  is the scale parameter.  

Anyhow the modified Huber’s function in this form is not suitable in case of complex data and 
residuals, since the trigonometric functions in eq. (30) have complex arguments and this determines 
the weights ( )w r  to be complex and ( )rρ  is not compliant with the conditions of point 2 of 
paragraph 2.3. For the mechanical systems presented in the paper we use a “corrected” modified 
Huber’s function that avoids the problem of complex weights: 

2

2

1 cos if sgn( )sin if
2 2( ) ; ( ) ;

1 if sgn( ) if
2 2 2

sin if
2

( ) .
if

2

r r r rc c r
c c c cr r

r r
c r c c r

c c

r rc
r c c

w r
rc

r c

π π

ρ ψ
π π π

π

π

      
− ≤ ≤           = = 

  + − > >   
  

≤  
  = 
 >


 (31) 

 
 

3.4. Fair function 
It has been already pointed out that also the scale parameter σ̂  should be estimated and that in 

many cases, like in Huber’s estimator definition, an “average” scale factor is used. The Fair 
function has been defined in [18] with the aim to have low sensitivity to the scale factor, so that the 
estimator has low sensitivity to the tuning parameter. It is defined as: 

2 1( ) log 1 ; ( ) ; ( )
1 1

r r rr c r w r
r rc c
c c

  
= − + = =      + +

ρ ψ . (32) 
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This ρ  function is robust as well as yields to a unique solution (since it has everywhere defined 
continuous derivatives up to the third order). The 95% asymptotic efficiency with respect to a 
normal distribution is obtained with a tuning parameter ˆ1.3998c = σ . 

 
 

3.5. Cauchy’s function 
The name of this function derives from the fact that it is optimal for data having a Cauchy’s 

distribution. Anyhow it does not guarantee a unique minimum. The decreasing first order derivative 
can yield to erroneous solution that cannot be observed and the influence of large errors only 
decreases linearly with their size. The definition is: 

22

2 2
1( ) log 1 ; ( ) ; ( )

2
1 1

rc rr r w r
c r r

c c

  
 = + = =         + +   

   

ρ ψ . 
(33) 

The 95% of asymptotic efficiency on a normal distribution is obtained for ˆ2.3849c = σ , where 
σ̂  is the scale parameter. By studying the relationships between tuning constant and efficiency, this 
function appears to be the best among the functions proposed in literature that does not comply with 
the satisfaction of the property 3 of paragraph 2.3 (the best among the worse ones). 

 
 

3.6. Welsch’s function 
This function has been introduced in order to further reduce the effect of large errors, but has 

not a unique minimum. It is defined as: 
2 2 22

( ) 1 exp ; ( ) exp ; ( ) exp
2

r r rcr r r w r
c c c

                 = − − = − = −                      
ρ ψ . (34) 

The tuning parameter for 95% asymptotic efficiency with respect to a normal distribution is 
ˆ2.9846c = σ . 

 
 

3.7. Tukey’s function 
This function has been proposed by Tukey and is also called biweight function [36]. Its aim is to 

suppress the outliers as shown by the definition of ( )w r : 



 12 

322 22

2

22

1 1 if
1 if6( ) ; ( ) ;

0 ifif
6

1 if
( ) .

0 if

c r r c rr r ccr r c
c r cr c

r r c
w r c

r c

ρ ψ

         − − ≤       − ≤          = =     
 

> > 


   − ≤    =    


>

 (35) 

It is misleading due to the lack of a unique minimum and the 95% asymptotic efficiency with 
respect to a normal distribution is obtained with a tuning parameter ˆ4.6851c = σ . 

 
 

3.8. German-McClure’s function 
The aim of this function is reduce the effect of large errors without introducing a tuning 

parameter, but it has not a unique minimum. It is defined as: 

( ) ( )
2

2 22 2 2

2 1( ) ; ( ) ; ( )
1 1 1

r rr r w r
r r r

= = =
+ + +

ρ ψ . (36) 

Due to the not compliance with condition 3) of paragraph 2.3, the performances of this function 
will not be good a priori. It is included only for completeness, since it has been used in some 
applications related to image recognition [37][38]. 

 
 

4. Numerical application to a SISO system 
The simplest mechanical dynamical system is represented by a single degree of freedom (d.o.f.) 

system shown in figure 1. The parameters of the system are the mass m , the damping c  and the 
stiffness k . The system d.o.f. is described by means of the system displacement ( )x t . An external 
harmonic excitation F  causes the forced vibration of the system. 

The equation of motion of the considered system is simply: 

( )m x c x k x F t+ + =  . (37) 

By considering that the forcing system is harmonic: 
i i i

0 0( ) e e et tF t F F ϕΩ Ω= = , (38) 

also the solution of eq. (38) has to be harmonic: 
i i i( ) e e et tx t X X φΩ Ω= = . (39) 

Replacing eq. (39) in eq. (37), the well-known steady-state solution can be obtained as: 

( )2 i
0i em c k X F ϕ−Ω + Ω + =  (40) 

and finally: 
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i
i0

02

e ( ) e
i

FX H F
m c k

ϕ
ϕ= = Ω

−Ω + Ω +
. (41) 

 

 
Figure 1. Single degree of freedom system. 

Note that the solutions given by eq. (41) as function of the frequency Ω  of the forcing system 
are complex. Since eq. (41) gives the response of the SISO system to the external force, in a 
deterministic context, in which the mass, the damping and the stiffness of the system are exactly 
know, the knowledge of the system displacement amplitude and phase at a single frequency only 
allows to determine the amplitude and the phase of the forcing system. 

Now, let us consider a stochastic environment, in which the displacements of the mass are 
measured for a given set of frequencies, once the system has reached the steady-state. Measures 
could be corrupted by noise, biases, systematic errors and so on. 

For each measure ix  of the displacement (in amplitude and phase) at the frequency iΩ , it is 
possible to write the equation: 

i
0( ) e 1,...,i i ix h F i nϕ= Ω = . (42) 

The system of all the n  equations (42) has the only unknown represented by the force (in 
amplitude and phase) and therefore it is over-determined. Normally this system is solved by means 
of least squares. If the measures are perturbed by white-noise, usually quite accurate results are 
obtained in any case. Conversely if a systematic error affect the measures, 2L  estimate does not 
produce any more accurate results.  

This fact can be shown simply by means of a simulated case. Let us consider a system in which 
m  = 10 kg, k  = 1000 N/m and c  = 60 Ns/m (the damping is equal to 30% of the critical damping). 
If the forcing system has the amplitude 0F  equal to 100 N and the phase ϕ  of 45°, the nominal, i.e. 
non-corrupted, system response calculated in the frequency range from 0 to 30 rad/s with a step of 
0.1 rad/s is shown as Bode plot in figure 2. Now a systematic error is applied on the system 
response.  

Systematic errors can be chosen in infinite ways. To test the robustness, the criterion selected is 
to use a fixed step in the frequency. This reproduces the presence of electromagnetic disturbance on 
the experimental signals, at a certain frequency and its multiples. A constant magnification of 
amplitude and phase shift is used to increase the systematic characteristic of the error:  



 14 

• Each value, in the ordered vector of the measures, starting from 0 rad/s with a step of 
1 rad/s, has the amplitude increased of 500% and the phase rotated of +45°. This 
corresponds to the kx  in which 01 10 ,k j j= + ∈ . 

• Each value starting from 0.4 rad/s with a step of 1 rad/s has the amplitude reduced of 
50% and the phase rotated of −20°. This corresponds to the kx  in which 

05 10 ,k j j= + ∈ . 
The resulting corrupted system response is shown in figure 3. 
If 2L  estimate is used, the amplitude and the phase of the external force results: 

0 125.2641[N], 60.8731F ϕ= = ° . (43) 

The error is considerable on both amplitude and phase. 
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Figure 2. Nominal response of the system: (a) amplitude, (b) phase. 
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Figure 3. Corrupted response of the system: (a) amplitude, (b) phase. 

4.1. Calculation of the M-estimate by the implementation of the ILRS algorithm 
The excitation, the external force, is now estimated using M-estimate. The objective function to 

be minimized is: 
i

0

1 1

( ) e( )
ˆ

n n
i i i

i
i i

x h Fr
ϕ

ρ ρ
σ= =

 − Ω
=  

 
∑ ∑ , (44) 

where σ̂  is the scale estimate calculated using eq. (17). 
The solution of the minimization of eq. (44) follows the theoretical arguments presented in 

paragraph 2.2. Let ψ  be the first derivative of ρ  with respect to the unknown force: 

i
0

( )( )
e
rr

F ϕ

ρψ ∂
=
∂

. (45) 

The minimization of eq. (44) is obtained by differentiating the objective function with respect to 
the unknown force and setting the partial derivatives to 0: 

i
0

1

( ) e ( ) 0
ˆ

n
i i i

i i
i

x h F h
ϕ

ψ
σ=

 − Ω
Ω = 

 
∑ . (46) 

If the weight function ( )w r  is defined as: 

( )( ) rw r
r

ψ
= , (47) 

then the equations in (46) can be written as: 
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i
0

1

( ) e 0
ˆ

n
i i i

i

x h Fw
ϕ

σ=

 − Ω
= 

 
∑ , (48) 

which is equivalent to minimize the least squares problem: 

2 2

1

n

i i
i

w r
=
∑ . (49) 

Anyhow, the weights ( )w r  depend upon the residuals r , the residuals depend upon the 
estimated excitation 0F  and the estimated excitation depends upon the weights ( )w r . To solve this 
loop, an iterative solution, called IRLS, is used. The algorithm is the following: 

1. The initial estimate of the force amplitude and phase is selected using the results of least 
squares calculation, thus is that of eq. (43). 

2. At each iteration t , the residuals ( )t
ir  and the associated weights ( )t

iw  are calculated from 
the previous iteration.  

3. The new weighted least squares estimate is: 

( )( 1) 1i T ( ) T ( )
0 e

t t tF ϕ + −
 =  H W H H W X , (50) 

where: 
( ) ( )diagt t

iw =  W . (51) 

Steps 2 and 3 are repeated until the estimated coefficients converge. 
The main advantage of the ILRS algorithm is its simplicity, practically standard numerical 

methods to calculate weighted least squares are iteratively used. 
The first drawback is that, once a ρ  function is chosen, the weight function w  descends 

automatically. Therefore ρ  function should be “good” (see paragraph 2.3). The second is the 
iteration stop condition. In this case, being the estimated coefficient complex, the algorithm is 
repeated until the maximum normalized difference between the real and the imaginary parts of the 
coefficient value in the present iteration and those of the previous iteration is less than 1e−4, i.e: 

( )
( )

( 1) ( ) ( 1)
0 0 0

( 1) ( ) ( 1)
0 0 0

Re( ) Re( ) Re( )
max 1e 4

Im( ) Im( ) Im( )

t t t

t t t

F F F

F F F

− −

− −

 −
  < −
  − 

. (52) 

If this convergence is not reached, the algorithm stops after 100 iterations. Similar stopping rule 
is also used in [39]. 

The results with different types of M-estimators are reported in table 1. As predicted by the 
theoretical analysis (section 3), some of the M-estimators (Cauchy, German-McClure, Welsch and 
Tukey) give bad results. In all of these four cases, the algorithm has stopped having reached the 
maximum number of iteration without satisfying the convergence condition. Actually the trends of 
the estimated amplitude and phase of the force presented an oscillating behaviour as function of the 
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iteration number, with average values close to the correct ones. This fact will be discussed in detail 
in the next section. 

The algorithm, using the other M-estimators, does not presented numerical oscillations, stops in 
few iterations and gives remarkable good results. In two cases the results are definitely exact even 
with the corrupted data.  

Table 1. Results of the excitation estimate. 

Estimator 0F  [N] ϕ  

L1 (absolute value) 100 45° 

L1-L2 (absolute value and least 
squares) 100 45.0001° 

Lp, ν=1.2 100 45.0002° 

Fair 99.9999 45.0002° 

Huber 100 45° 

Cauchy 123.4596 58.548° 

German-McClure 135.5781 62.5372° 

Welsch 140.8528 64.1209° 

Tukey 142.6836 64.642° 
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Figure 4. Weights attributed per iteration for the Huber’s estimator. 

The explanation of these surprisingly results can be given by considering the weights iw  that 
the algorithm attributes to each measure ix . For example, figure 4 shows the weights as a function 
of the measure order number and of the iteration for the Huber’s estimator: after few iterations the 
weights given to the corrupted measures become near 0 and the algorithm practically discard them. 
In this case, the algorithm stops in 5 steps. 
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5. Numerical application to a MIMO system 
In this example, not only the performances of the different types of M-estimators are now 

evaluated for a MIMO system, but also the convergence to a stable solution for the IRLS is 
analyzed depending on the type of the M-estimator. The considered MIMO system is a simple 
linear mechanical system with 2 d.o.f.s, shown in figure 5. The physical parameters of the system 
are known, i.e. the model of the system is known and reliable, and are grouped in the mass M , in 
the damping C  and in the stiffness K  matrices. The system d.o.f.s are described by means of the 
vector of the mass displacements x . The unknown external force system F , acting on the masses, 
causes the forced vibration of the system. 

The equations of motion of the considered linear system are simply: 

1 2 2 1 2 21 1 1 1

2 2 3 2 2 32 2 2 2

1

2

0
0

( )
( ) .

( )

c c c k k km x x x
c c c k k km x x x

F t
t

F t

+ − + −          
+ + = + + =          − + − +          

 
= = 
 

Mx Cx Kx

F

 
 

 
 (53) 

By considering a harmonic forcing system: 
1

2

i
01 i i01

i
02 02

e
( ) e e

e
t tF F

t
F F

ϕ

ϕ
Ω Ω  

= =   
   

F , (54) 

also the steady-solution of (53) has to be harmonic: 
1

2

i
i i i1 1

i
2 2

e
( ) e e e

e
t t tX X

t
X X

φ

φ
Ω Ω Ω  

= = =   
   

x X . (55) 

Replacing eq. (55) in eq. (53), the steady-state solution can be obtained as: 

( )2
0i−Ω + Ω + =M C K X F , (56) 

and finally: 

( ) 12
0 0i ( )

−
= −Ω + Ω + = ΩX M C K F H F . (57) 

m

x t( ) x  t( )

m
k kk

F ( )t F ( )t

c cc
1

1 2

2

2 31
1 2

2 31
 

Figure 5. System with 2 degrees of freedom. 

Note that the solution given by eq. (57) as function of the frequency Ω  of the forcing system is 
complex, i.e. 1,2X ∈ . Similarly to previous section 4, a stochastic environment is considered. The 
displacements of the masses are measured for a given set of excitations/frequencies, once the 
system has reached the steady-state and we want to estimate (identify) the forcing system. The 
measures, repeated for n  different excitations/frequencies, could be corrupted by noise, biases, 
systematic errors and so on. 



 19 

For each measure { }T
1 2i i ix x=x  of the displacements (in amplitude and phase) at the frequency 

iΩ , it is possible to write the equation: 

0( )i i i= Ωx h F , (58) 

If a systematic error affects the measures, 2L  estimate does not produce any more accurate 
results, as analytically proven in the previous sections and as exemplified by means of this 
simulated case.  

Let consider a system like that of figure 5 and eq. (53) in which, for simplicity, 1 2 10kgm m= = , 

1 2 3 1000N/mk k k= = =  and 1 2 3 60Ns/mc c c= = = . If the forcing system has amplitudes equal to 

01 100NF =  and 02 50NF =  and phases 1 45= °ϕ  and 2 60= − °ϕ , the nominal, i.e. non-corrupted, 
system response calculated in the frequency range from 0 to 30 rad/s with a step of 0.1 rad/s is 
shown as Bode plot in figure 6. Now a systematic error is applied to the system response: every 
value of the system response in the range starting from 0 rad/s with a step of 0.5 rad/s has the 
amplitude increased of 500% and the phase rotated of +45°, i.e. for 1,2 0: 1 10 ,kx k j j= + ∈ . 
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Figure 6. Nominal response of the system: (a) amplitude of x1, (b) amplitude of x2,  
(c) phase of x1, (d) phase of x2. 
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Figure 7. Corrupted response of the system: (a) amplitude of x1, (b) amplitude of x2,  
(c) phase of x1, (d) phase of x2. 

The resulting corrupted system response is shown in Figure 7. 
If 2L  estimate is used to identify the amplitude and the phase of the external forces using the 

corrupted measures, the objective function is: 

( ) ( )
2

2
0

1 1 1,2
( )

n n

i i i i
i i

r
= =

 
= − Ω 

 
∑ ∑ ∑ x h F  (59) 

and it results: 

01 1

02 2

167.1089N, 70.2677
70.2677N, 34.7705

F
F

= = °
= = − °

ϕ
ϕ

. (60) 

The errors are considerable on both the amplitude and the phase. If M-estimate is used, ir  is the 
residue of the i-th observation corresponding to the frequency iΩ  and the objective ρ  function to 
be minimized is: 

( ) 0

1 1 1,2

( )
ˆ

n n
i i i

i
i i

rρ ρ
σ= =

 − Ω =   
  

∑ ∑ ∑ x h F . (61) 

The IRLS algorithm is practically the same, with the necessary adjusts to take into consideration 
the d.o.f.s of the system. Therefore eq. (50) becomes:  

1( 1) T T ( )
0

ˆ t t−+  =  F A A A W Y . (62) 

where: 
( )t=A W H v , (63) 
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( ) ( )diagt t
iw =  W , (64) 

( )diag i= Ω  H H , (65) 

T
1 0
0 1

  
=   

  
v   , (66) 

{ }T
1 2i ix x=Y   . (67) 

Matrix W  is a diagonal matrix, the elements of which are the weights, calculated per each 
iteration, of the measures of the d.o.f.s, H  is a band matrix with the elements along the main and 
secondary diagonals represented by the transfer function H  corresponding to the frequency at 
which the measures are acquired and vector v  is a “localization vector” that indicate the d.o.f.s on 
which the excitations are acting. The stop condition is similar to that of previous paragraph 4.1: 

( )
( )

( 1) ( ) ( 1)
0 0 01,2

( 1) ( ) ( 1)
0 0 01,2

max Re( ) Re( ) Re( )
max 1e 4

max Im( ) Im( ) Im( )

t t t
i i i

t t t
i i i

F F F

F F F

− −

− −

 −
  < − − 
 

. (68) 

The results obtained by the different types of M-estimators, described in section 3, are reported 
in table 2, while the calculated values during the iterations are shown in figure 8 to figure 17. 
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Table 2. Identification results 

M-estimator Type 01 [N]F  1 [ ]°ϕ  02 [N]F  2 [ ]ϕ °  Iterations 

1L  (least absolute) 100.0001 45.0001 50 −59.9999 6 

1 2L L−   100.0007 45.0007 50.0006 −59.9996 8 

, 1.2pL =ν  (least powers) 100.0047 45.0038 50.0024 −59.9962 10 

Fair 100.0005 45.0004 50.0003 −59.9997 11 

Huber 100.0002 45.0002 50.0002 −59.9999 8 

Modified Huber 100.0001 45.0001 50.0001 −60 8 

Cauchy 136.8991 62.5361 65.8223 −37.9421 100 

German-McClure 167.8775 69.749 83.7188 −40.6262 100 

Welsch 174.7285 72.1534 87.9188 −26.2993 100 

Tukey 169.3348 69.54 80.0968 −32.0012 100 

 

The results of table 2 confirm what stated about the M-estimator functions that do not have 
unique solution. Cauchy’s, German-McClure’s, Welsch’s and Tukey’s estimators can be badly 
deemed, and in all the four cases the algorithm has stopped having reached the maximum number of 
iteration without satisfying the convergence condition. As anticipated Cauchy’s estimator behaves 
better than German-McClure’s, Welsch’s and Tukey’s one. 

Actually the trends of the estimated amplitude and phase of the force presented an oscillating 
behaviour as function of the iteration number, with average values closer to the correct ones 
(dash-dot lines in figure 14 to figure 17) than those of 2L . Therefore they could be dealt less 
severely with a different stop condition of the IRLS algorithm, based for instance on the 
convergence of the average value. 

The other M-estimators do not present numerical oscillations (figure 8 to figure 13), stop in few 
iterations and give good results, being very robust with respect to data corruption. As expected 
Huber’s and modified Huber’s have excellent results while the good performance of 1L  has to be 
carefully considered due to the drawback underlined in paragraph 3.1.1.  

Similarly to the previous SISO example, the explanation of these surprisingly results, which are 
in any case based on the perfect knowledge of the system model, can be given by considering the 
weights iw  that the algorithm attributes to each measure ix  in each iteration. After few iterations, 
the weights given to the corrupted measures become 0 and the algorithm practically and 
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automatically discards them. This is evident if the weights are plotted as a function of the measure 
order number and of the iteration (see figure 18 for the Huber’s estimator). 
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Figure 8. Estimated values vs. iteration for the L1 estimate: (a) force amplitudes, (b) force phases. 
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Figure 9. Estimated values vs. iteration for the L1-L2 estimate: (a) force amplitudes, (b) force phases. 
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Figure 10. Estimated values vs. iteration for the Lp estimate: (a) force amplitudes, (b) force phases. 
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Figure 11. Estimated values vs. iteration for the Fair estimate: (a) force amplitudes, (b) force phases. 
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Figure 12. Estimated values vs. iteration for the Huber’s estimate: (a) force amplitudes, (b) force phases. 
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Figure 13. Estimated values vs. iteration for the Modified Huber’s M-estimate: (a) force amplitudes, (b) force 

phases. 
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Figure 14. Estimated values vs. iteration for the Cauchy’s estimate: (a) force amplitudes, (b) force phases. 
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Figure 15. Estimated values vs. iteration for the German-McClure’s estimate: (a) force amplitudes, (b) force 

phases. 
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Figure 16. Estimated values vs. iteration for the Welsch’s estimate: (a) force amplitudes, (b) force phases. 
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Figure 17. Estimated values vs. iteration for the Tukey’s estimate: (a) force amplitudes, (b) force phases. 
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Figure 18. Weighs attributed per iteration for the Huber’s estimate. 

 
 
6. Conclusions 

The paper presents in detail the theory of the M-estimation and discusses its application to the 
identification of excitations in mechanical systems, instead of the more tradition least squares. The 
rigorous definition of estimator robustness is introduced and it is analytically shown that least 
squares are definitely not robust. The different types of M-estimators proposed in literature are 
discussed and the modifications required to be applied to mechanical systems are presented. Their 
performances are theoretically forecast and verified by means of two applications of excitation 
identification in a SISO and a MIMO mechanical systems. In particular the IRLS algorithm 
necessary for the calculations is presented. It is very simple in its implementation, since it represent 
an iterated application of the standard algorithm used for weighted least squares. 

The results obtained in the numerical applications show that few of the proposed M-estimators 
are suitable for identification problems in mechanical system and that practically only those are 
characterized by unique solution obtain remarkable results, being very robust not only under an 
analytical point of view.  
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Appendix A 

In mathematical terms, considering only the simplest case with two variables (a SISO system), 
the model that relates a variable of interest x  to the observed data z  is called empirical model. It is 
reasonable to assume that the mean value of the random variable x  is related to z  by: 

0 1[ | ]E x z zθ θ= + . (69) 

Although the mean value of x  is a linear function of z , the actual values observed of x  usually 
do not follow exactly a straight line. The appropriate way to generalize this situation is to assume 
that the expected value of x  is a linear function of z , but also that the expected value of x  is given 
by the linear model with the addiction of an error e , for a fixed value of z . This corresponds to a 
simple linear regression with a single predictor z  and a response variable x : 

0 1x z eθ θ= + + . (70) 

The error e  is assumed to have normal distribution (0, )N σ , null mean value and variance 
equal to 2σ . Once z  is known, the mean value and the variance of x  are insofar: 

0 1
2

[ | ]

[ | ]

E x z z
V x z

θ θ

σ

= +

=
. (71) 

The estimate of 0θ  and 1θ  is made by means of the best approximation of the data. The most 
known and more used method was introduced by Gauss, which proposed the estimate of the 
parameters 0θ  and 1θ  by means of the minimization of the sum of the vertical distances between the 
observations (the data) and the line of linear interpolation. This is the method of the least squares. 
The n  observations can be expressed as: 

0 1 , 1, ,i i ix z e i nθ θ= + + =  . (72) 

The sum of the squares of the distances of the observations from the actual regression line is: 

( )22
0 1

1 1

n n

i i i
i i

L e x zθ θ
= =

= = − −∑ ∑ . (73) 

The estimators of 0θ  and 1θ  in the least squares sense are named 0̂θ  and 1̂θ  and have to satisfy 
the so called normal equations of the least squares: 
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. (74) 

The solution of the normal equations (74) gives the least squares estimate of 0̂θ  and 1̂θ . The 
estimated regression line is therefore: 

0 1
ˆ ˆx̂ z= +θ θ . (75) 

Note that whatever couple of observations satisfies the equation: 

0 1i i ix z r= + +θ θ , (76) 

where the quantity ˆi i ir x x= −  is called residue: it evaluates the error in the model approximation of 
the i-th observation ix . 
 
 
Appendix B 
In order to show that ( )irψ  is proportional to the influence function of ρ , let’s start from eq. (11) 
that can be written in general terms as: 

1
( ; ) 0

n

i
i

X Tψ
=

=∑  (77) 

or: 

( ), [ ] d 0x T F Fψ =∫ . (78) 

The effect of the added arbitrary observation (see eq. (3)) is: 

[ ]( ) [ ]
0

, (1 ) d (1 ) 0x xx T F F
ε

ψ ε ε δ ε ε δ
ε =

∂
− + − + =

∂ ∫ , (79) 

which becomes, by changing the order of the integration and differentiation: 
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, (80) 

and simplifying: 

( ) [ ] ( )0
, [ ] d [ ] , [ ] d 0

[ ]xx T F F T F x T F F
T Fε

ψ δ ψ
ε =

∂ ∂
− + × =

∂ ∂∫ ∫ . (81) 

Therefore, ( , , )IF x T F  is also equal to (see eq. (6)): 
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providing that the denominator is non-zero. Therefore the influence function is proportional to 
( ), [ ]x T Fψ : 

( )( , , ) , [ ]IF x T F x T Fψ∝ . (83) 

 


