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Abstract: In this study we have theoretically and experimentally
investigated the behavior of first order approximation contrast function
when purely scattering inhomogeneities located at different depths inside
a turbid thick slab are considered. Results of model predictions have been
compared with Finite element method simulations and tested on phantoms.
To this aim, we have developed for the first time to our knowledge a fitting
algorithm for estimating both the scattering perturbation parameter and the
shift of the inhomogeneity from the middle plane, allowing one to reduce
the uncertainties due to depth. This is important for optical mammography
because effects of the depth can cause uncertainties in the derived tumor
optical properties that are above 20% and the scattering properties of tumors
differ from those of the sourrounding healthy tissue by a comparable extent.
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1. Introduction

Imaging with near-infrared radiation (NIR) is currently investigated for medical diagnosis ap-
plications [1, 2, 3]. The complexity of NIR propagation through biological tissues is the main
difficulty to realize a noninvasive diagnostic tool for detecting tumors and other abnormalities
hidden in thick biological tissues. Particularly, the strong scattering of light by biological tis-
sues dramatically deteriorates image quality and produces images with poor structural details.
Although contrast and spatial resolution of optical imaging in turbid media can be improved
by time-resolved or frequency-domain techniques, the performance of optical imaging systems
are still lower than the x-rays ones [4, 5, 6]. Nevertheless, the optical images contain exquisite
functional information that complements those obtained by other imaging modalities. Particu-
larly, the measurements of diffusely reflected or transmitted NIR light allow the detection of
local changes in scattering and absorption properties of tissue, that can be related to composi-
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tion, vascularization, blood oxygen saturation, and structural properties of normal breast tissue,
benign lesions and tumors as well [7, 8, 9, 10].

For mammography, NIR light is used to screen for breast cancer within diffusion approxi-
mation theory. Images are generally obtained by means of two approaches: optical tomography
and single two-dimensional image projection. The former recovers the spatial distribution of
the optical parameters of the breast by using multiple input and output locations on the sur-
face of the sample [11, 12, 13]. Results are related to the physiological parameters of tissue
and are presented as three-dimensional images to clinicians. However, the algorithms used to
generate images from measurements are generally expensive due to the large amount of data
to handle [14, 15]. Also, the measurement set-up is complex with the need to exploit different
source-detector combinations.

Alternatively, breast images can be obtained by the simpler approach of two-dimensional im-
age projection. In this case, a source-detector pair synchronously scans the surface of the organ
that is slightly compressed between two parallel planes and the infinitely extended slab is usu-
ally adopted to model breast [16, 17, 18]. This approach has the advantage to produce projection
images of the compressed breast that can be straightforwardly compared to the standard x-ray
mammograms. Since analytical expressions that describe heterogeneous structures cannot be
obtained in a closed-form, perturbation techniques are considered. Approximated expressions
have been obtained for the time-resolved transmittance and reflectance through a turbid slab
and are currently employed for a clinical study on 2-D optical mammography [19, 20, 21, 22].
In this case the optical breast images are constructed by using a priori knowledge of tumor geo-
metrical parameters because the measurements recorded with on-axis geometry do not allow
one to separately derive the tumor optical coefficients together with the tumor size and its loca-
tion along the compression direction. Tumor size is generally inferred from histopathological
findings or x-ray mammograms, MR mammograms or ultrasound examinations. On the con-
trary, the location of a tumor along the compression direction is estimated from transmittance
recorded at various projection angles when such measurements are available. Preliminary re-
sults of clinical investigations have shown that tumor absorption always exceeds absorption by
healthy tissue, on average by about 150%. Tumours may scatter light less or more strongly
than the surrounding healthy breast tissue, yet in the majority of cases scattering by tumours is
stronger by about 25% [23].

When a priori knowledge of the geometry is not available, the estimates of the optical prop-
erties of tumors are affected by uncertainties in tumor shape and location. Inspections on phan-
toms have evidenced that the influence of shape can be partly compensated by averaging the
optical properties of the same tumor derived for mediolateral and craniocaudal projections. On
the contrary, the influence of the depth on contrast image is not yet understood at present, al-
though clinical studies have shown that the uncertainty in the depth may causes uncertainties in
tumor optical properties derived that are above 20%. Since the scattering differences between
anomalous region and sourrounding healthy tissue are comparable with that uncertainties, the
dependence of those estimates on the depth must be reduced in order to generate useful scatte-
ring images.

For these reasons we have theoretically and experimentally investigated the behavior of the
reduced scattering coefficient derived for a defect embedded at different depths in a uniform
background by considering a perturbation approach to diffusion equation. On one hand the
paper complements the analysis of the perturbation models for 2D imaging reconstruction re-
ported in Refs. [24, 25], and on the other it extends it because, the first time to our knowledge
we present a fitting algorithm for estimating both the scattering perturbation parameter and the
shift of the inhomogeneity from the middle plane in order to reduce uncertainties due to the
depth of the defect. Finally, all these results have been experimentally validated by performing

#98536 - $15.00 USD Received 10 Jul 2008; revised 6 Sep 2008; accepted 12 Sep 2008; published 17 Oct 2008

(C) 2008 OSA 27 October 2008 / Vol. 16,  No. 22 / OPTICS EXPRESS  17669



z
pc

R

h

z =1/
s s

�

z
pc

Fig. 1. Geometric scheme assumed for a Gaussian scattering inclusion of cylindrical shape
geometry with radius R and height h located at different depths z = zpc inside a turbid
slab of thickness d. A pulsed light beam illuminates the front surface of the scattering
slab at plane z = 0. The photons are assumed to be initially isotropically scattered at a
depth zs = 1/μ ′

s below the front surface. The time-resolved transmittance is measured by a
detector at plane z = d coaxial with the source and with the inclusion.

measurements on phantoms containing scattering inclusion located at different depths.
In Sec. 2 we will summarize and discuss the basic results of the first order perturbation

approach to determine the analytical expression for the time-resolved transmittance through a
turbid slab with a Gaussian scattering inclusion in the coaxial detection scheme. In Sec. 3 we an-
alyze the dependence of the perturbation model contrast function on the depth of the inclusion.
Particularly, finite-element method (Fem) simulations will be used to validate the perturbation
approach for a case of practical interest, that is representative of a slightly compressed breast.
In Sec. 4 we describe the novel fitting algorithm that will be used to investigate the accuracy
of the perturbation model as different depths and sizes of the inclusion are considered. Results
are compared with those obtained with the algorithm that assumes the inclusion fixed at the
center of the slab. Furthermore, the accuracy for retrieving the shift of the inclusion from the
middle plane of the slab will be discussed. The experimental set up and the phantoms optical
characteristics are described in Sec. 5.1, whereas experimental results are discussed in Sec. 5.2.

2. Theoretical model

Figure 1 shows a scattering inhomogeneity located at depth z pc inside an infinitely extended
homogeneous slab with thickness d. This anomalous region is shaped like a cylinder with a top
hat profile that extends from z pc − h/2 to zpc + h/2 along the imaging direction. The scatte-
ring changes along the radial direction are assumed to be described by the following Gaussian
profile:

δ μ ′
s(ρ) = Δμ ′

s exp

(
− f
(ρ

R

)2
)

, (1)

where Δμ ′
s is the maximum deviation, observed on the cylinder axis, of the reduced scattering

coefficient of the inclusion from the unperturbed value μ ′
s of the host medium. The radial size

of the inhomogeneity is determined by the radius R and the factor f . For f = ln2 the quantity
R is the distance at which the perturbation intensity decreases to Δμ ′

s/2; this is a value that is
halved by doubling f .

Let us consider a pencil pulsed beam that hits normally the surface z = 0 of the slab at time
ts = 0 and at position (xs = 0,ys = 0) (see Fig. 1); this is a configuration that can be always real-
ized through an appropriate choice of the system coordinate. The light that crosses the surface
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propagates in the medium undergoing many scattering events and, according to diffusion ap-
proximation, photon migration takes place as if photons were initially isotropically scattered at
a depth zs = 1/μ ′

s below the front surface. Particularly, the density photon fluence rate ϕ(r,t;r s)
at position r and time t is described by the following parabolic differential equation:[

∇D(r)∇− 1
v

∂
∂ t

− μa

]
ϕ(r,t;rs,ts = 0) = − 1

4π
δ (r− rs)δ (t), (2)

where rs ≡ (xs = 0,ys = 0,zs = 1/μ ′
s), v is the speed of light in the medium, μa is the absorption

coefficient of the slab and D = 1/3(μ ′
s +δ μ ′

s) is the diffusion coefficient that takes into account
for the presence of the scattering inclusion at depth z pc. Within the extrapolated boundary con-
ditions, the fluence rate has to vanish at extrapolated flat surfaces outside the turbid slab at a dis-
tance ze = 2AD0 from the physical boundaries, with D0 = 1/3μ ′

s and A = (1+Re f f )/(1−Re f f )
[26]. Consequently, the physical quantity of interest, that is the time-resolved transmittance
T (t,zpc), can be written in the following way:

T (t,zpc) =
2π
A

ϕ(rm,t;rs,ts = 0), (3)

where the position rm is a measurement point on the back z = d surface of the slab. Henceforth,
we will consider a coaxial configuration for the source-detector system, that is we will always
refer to a measurement point rm ≡ (0,0,d).

Under the condition |Δμ ′
s|/μ ′

s � 1, a first order perturbation approach to diffusion equa-
tion (2) can be applied. It results that small changes in scattering properties affect the fluence
rate linearly and the time-resolved transmittance can be approximated by a sum of two terms,
namely:

T
(
t,zpc

)
= T0 (t)+ δTμ ′

s

(
t;zpc

)
. (4)

The quantity T0 (t) describes the temporal behavior of the time-resolved transmittance through
the homogeneous slab and it is given by:

T0 (t) =
exp(−μavt)
4πAD0det

∞

∑
m=1

exp

(
−π2m2D0vt

d2
e

)
sin

(
mπ (zs + ze)

de

)
sin

(
mπ (d+ze)

de

)
, (5)

where de = d +2ze is the extrapolated thickness of the slab.
The second term δTμ ′

s

(
t;zpc

)
on the right-hand side of Eq. (4) is the change, at first-order

approximation, in the time-resolved transmittance due to the presence of the scattering inclu-
sion at depth zpc inside the homogeneous turbid slab. When the source, the detector and the
Gaussian scattering inclusion, that is modeled by (1), are collinear the scattering time-resolved
perturbation δTμ ′

s

(
t;zpc

)
can be written as follows:

δTμ ′
s

(
t;zpc

)
= Δμ ′

s
3bexp(−μavt)

64π2Ad3
e D2

0(1+b)t
×

×
∞

∑
k,l=1

exp(−π2Dv
2d2

e
(k2 + l2)t)

[
R−

k,l(R,t)Z −
k,l(zpc,h)+R+

k,l(R,t)Z +
k,l(zpc,h)

]
, (6)

where b = R2/( f Dvt). The terms R±
k,l(R,t) in Eq. (6) are functions of the width R of the

inclusion and the time t, namely:

R+
k,l(R,t) =

4d2
e bt(t− t0)cosh(c(1/2− t0/t))

bt2 +4(t− t0)t0
+

bd2
e (α+E+ + α−E−)

(1+b)1/2
,

R−
k,l(R,t) = 4π2klDv(1+b)

1
2 (E+ +E−)t, (7)
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with

c =
π2Dv

d2
e

(l− k + ε)(l + k)t, α± = 2± c(1+b)1/2, (8a)

E± = exp

(
∓c (1+b)1/2

2

)
[Ei(±β+)−Ei(∓β−)] , β± =

c
{
t
[
1± (1+b)1/2

]
−2t0

}
2t

, (8b)

Ei(x) = −
∫ ∞

−x

exp(−y)
y

dy. (8c)

The functions Z ±
k,l(zpc,h) in Eq. (6) depend on the depth of the inclusion z pc and on its axial

extent h, and can be written in the following form:

Z ±
k,l(zpc,h) = sin

(
kπ (ze +d)

de

)
sin

(
lπ (ze + zs)

de

)
(γ+ ± γ−) , (9)

where the quantities γ± are given by

γ± =
1

l∓ k + ε

[
sin

(
(l∓ k + ε)π(ze + zpc + h

2 )
de

)
− sin

(
(l∓ k + ε)π(ze + zpc − h

2 )
de

)]
(10)

The analytical expression (6) for the scattering perturbation is slightly different from that re-
ported in Ref. [25], although both formulas are obtained from the same perturbation integral
(Eq. (8) of Ref. [25]). Differences arise from a few manipulations that have been performed on
this integral in order to make the perturbation formula computationally more efficient. Partic-
ularly, the time t0 = min[tb1,tb2] in Eqs. (7, 8b) is deduced by considering that no light can be
present in the region of the inclusion before the time of flight source-lower side of the defect,
tb1 = (zpc −h/2− zs)/v. Moreover, no light can be received by the detector from the inclusion
before the transit time tb2 = (d− zpc −h/2)/v. The quantity ε in Eqs. (8a, 10) has been intro-
duced to avoid the discontinuity of the terms of the series for k = l. Its value has been set to
10−6 for computational purposes.

3. Depth dependence of contrast functions

Equation (6) gives the change in the time-resolved transmittance due to a Gaussian scattering
inclusion of radius R and height h that is hidden inside a turbid slab at depth z pc from the
front surface. The analytical expression has been obtained in the framework of the first order
perturbation approach to the diffusion equation. It is expected to give accurate results only for
local changes of the reduced scattering coefficient that are negligible with respect to the value
of the reduced scattering coefficient of the surrounding medium.

According to the procedure adopted in Ref. [27], the accuracy of the perturbation model
is now investigated by solving numerically the diffusion equation (2) under the extrapolated
boundary conditions for a turbid slab with Fem. Particularly, the numerical time-resolved trans-
mittance Tnum

(
t,zpc

)
is obtained from the solution ϕnum(r,t;rs,ts = 0) of the photon fluence rate

by using the relation (3). Results refer to an homogeneous slab of thickness d = 40 mm with
absorption coefficient μa = 0.01 mm−1 and reduced scattering coefficient μ ′

s = 1.0 mm−1. The
mismatch of the refractive index at medium-air interface has been set to the value n = 1.4. These
values are of practical interest because they are representative of breast tissues. Moreover, the
Gaussian scattering inhomogeneity has been shaped with height h equals to the diameter 2R
and has been shifted along the probe beam-detector z axis from the front z = 0 to the rear z = d
surface of the slab. The relative perturbation parameter Δμ ′

s/μ ′
s has been ranged from −60%

to 60% for inclusions that extend in size from R = 2.5 mm to R = 10 mm. The factor f in Eq.
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Fig. 2. (a) The temporal behavior of contrast functions C(t,zpc,Δμ ′
s) and Cnum(t,zpc,Δμ ′

s)
for an inclusion with radius R = 2.5 mm at normalized depths zpcn = 1/2,3/4,1. The solid
curves refer to Fem simulations, whereas the dashed curves are the perturbation model
predictions. The relative scattering perturbation parameter Δμ′

s/μ ′
s ranges between −20%

and +20%. (b) The ratio Cnum(t,zpc)/Cnum(t,1/2) of the numerical contrast for different
depths of an inclusion with radius R = 2.5 mm and perturbation intensity Δμ′

s/μ ′
s = 0.2.

1 has been set to f = 2ln2, thus the perturbation intensity δ μ ′
s(ρ) reduces to a quarter of its

maximum value Δμ ′
s at the radial distance ρ = R.

The first-order-perturbation time-resolved transmittance T (t,z pc), that is given by Eqs. (4, 5,
6), is compared with Fem simulations by introducing the following contrast functions

C(t,zpc,Δμ ′
s) =

T (t,zpc)−T0(t)
T0(t)

, (11a)

Cnum(t,zpc,Δμ ′
s) =

Tnum(t,zpc)−T0(t)
T0(t)

. (11b)

The contrast C(t,zpc,Δμ ′
s) (11a) is the change of transmittance with respect to the homogeneous

case when the perturbation model is considered, whereas the Eq. (11b) is the relative change
of the transmitted signal as predicted by numerical simulations. For facilitating the comparison
between different inclusions a normalized depth z pcn has been defined, as follows:

zpcn =
zpc − zmin

zmax − zmin
, (12)

where zmin = zs +h/2 is the minimum distance of the center z pc of the inclusion from the front
surface and zmax = d − zs − h/2 is the maximum depth of the inclusion, that is the minimum
distance from the rear surface. In such a way the normalized depth ranges from 0 to 1 whichever
the size of the inclusion.

The temporal behavior of contrast functions (11a) and (11b) is shown in Fig. 2(a) for a
Gaussian inclusion with radius R = 2.5 mm. It results from comparisons with Fem simulations
(solid curves) that the perturbation model (dashed curves) underestimates the contrast function.
The discrepancies increase as the time-of-flight of transmitted photons tends to the ballistic
time d/v and as the inclusion is moved away from the middle plane. Particularly, the differ-
ences are less than 16% for a relative perturbation parameter ranging from Δμ ′

s/μ ′
s = −20%
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to Δμ ′
s/μ ′

s = 20%. It can be also seen that the module of contrast functions increases as the
centre of the inclusion is displaced from the central plane, z pcn = 1/2, to a position near to the
rear boundary, zpcn = 1. Thus inclusions located close to the medium-air interface affect the
migration of detected photons more significantly, which enhances the difference between the
perturbed transmitted signal and the unperturbed one.

In order to better investigate the dependence of the time-resolved contrast on the depth z pc,
the ratio Cnum(t,zpc,Δμ ′

s)/Cnum(t,1/2,Δμ ′
s) must be considered because it allows for monitor-

ing the change of the contrast when the inclusion moves from the central plane toward the
boundary surface. In Fig. 2(b), it is considered the case of an inclusion with radius R = 2.5 mm
and relative perturbation intensity Δμ ′

s/μ ′
s = 0.2 whose depth is changed from the normalized

value zpcn = 0.5 to zpcn = 1 with step equal to 0.1. Accordingly to results of Fig. 2(a) the relative
change of the contrast increases more and more as the inclusion approaches to the boundary.
The curves reported in a semi-logarithmic scale evidence that there is not a merely proportional-
ity between the contrast assessed at depth zpcn and that observed at the middle plane z pcn = 1/2.
This behavior is also observed for inclusions with different sizes and perturbation intensities as
it follows by further investigations that are not reported here for brevity. It is worth noting that
the shift along the z axis of the perturbation significantly alter the shape of the contrast function
causing an offset and a deviation at early times (Fig. 2(a)). Thus, the fact that upon z pcn, the
contrast is progressively modified in time (see Fig. 2(b)) is an important pre-requisite for the
capability to extract information on z pc out of experimental data.

4. Simulations

From results of the previous section one can demonstrate that each value of the contrast is
observed at two different depths symmetrically placed with respect to the central plane of the
scattering slab. Then, the depth z pc of the inclusion cannot be retrieved unambiguously through
comparisons of the perturbation model contrast with Fem simulations (or experimental data) at
least in the framework of a coaxial source-detector configuration. However, results of Fig. 2(b)
suggest that the contrast function analysis can be used for estimating the shift Δz pc =

∣∣zpc −d/2
∣∣

of the inclusion from the middle plane as well as its scattering perturbation parameter Δμ ′
s. For

achieving this aim we have developed a procedure of comparison between contrast functions
that is described in the following.

The approximated time-resolved contrast (11a) is calculated by considering a scattering in-
clusion hidden inside an homogeneous slab with thickness d = 40 mm and refractive index
mismatch n = 1.4. The optical parameters of the slab used for calculating the contrast are ob-
tained by fitting the T0(t) function (5) to the Fem simulation of the transmittance through the
homogeneous slab. The inclusions have radius R = 2.5,5,7.5,10 mm and height h = 2R. For
each value of the radius, a set of time-resolved contrasts is calculated by locating the cylin-
drical inclusion at different depths along the source-detector axis. The array of the calculated
contrast functions for each size R is numerically interpolated to obtain the interpolating func-
tion C(t,zpc) |interp of time t and depth zpc. This function is implemented in a fitting procedure
(Proc(ΔzpcΔμ ′

s)) that determines the best estimates of the depth, z pc, f it , and the perturbation
intensity, Δμ ′

s, f it , by minimizing the chi-squared function defined as:

χ2 (zpc,Δμ ′
s

)
=
∫ tmax

tmin

(
C
(
t,zpc,Δμ ′

s

)⏐⏐⏐⏐
interp

−Cnum
(
t,zpc,Δμ ′

s

))2

dt. (13)

The range of integration [tmin,tmax] in Eq. (13) identifies the points of the homogeneous trans-
mittance with intensity higher than 30% of the peak on the leading edge of the curve and 1% on
the trailing edge. The estimation Δz pc, f it for the shift of the inclusion with respect to the middle

#98536 - $15.00 USD Received 10 Jul 2008; revised 6 Sep 2008; accepted 12 Sep 2008; published 17 Oct 2008

(C) 2008 OSA 27 October 2008 / Vol. 16,  No. 22 / OPTICS EXPRESS  17674



0.1 0.20.3
0.3

0.4

0.4
0.5

0.6
0.6

0.7

0.7

0.8

0.8

0.9

0.9

0 5 10 15
�1.0

�0.5

0.0

0.5

1.0

�zpc �mm�

�
Μ� s
�m

m
�

1 �

�a�

0.20.3
0.4

0.4

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1

0 5 10 15
�1.0

�0.5

0.0

0.5

1.0

�zpc �mm�

�
Μ� s
�m

m
�

1 �

�b�

0

1

Fig. 3. Contour plots of the chi-squared function (13) versus the Δzpc −Δμ ′
s plane for an

inclusion with size R = 2.5 mm and perturbation intensity Δμ′
s/μ ′

s = 0.2. (a) the inclusion
is at the center of the slab (Δzpc = 0 mm). (b) the inclusion is shifted from the center to
Δzpc = 10 mm.

plane is given by using the relationship Δz pc, f it =
∣∣zpc, f it −d/2

∣∣. The uniqueness of the derived
values of Δμ ′

s, f it and Δzpc, f it is assured by the uniqueness of the minimum of the chi-squared
function (13) in its domain as it is shown, for example, by contour plots of Fig.3 that consider
the case of an inclusion with radius R = 2.5 mm and perturbation intensity Δμ ′

s/μ ′
s = 0.2. The

panel (a) represents the behaviour of the chi-squared function when the inclusion is at the center
of the slab (Δzpc = 0 mm), whereas the panel (b) is obtained by shifting the inclusion from the
center to Δzpc = 10 mm.

So far, the fitting procedure for retrieving the perturbation intensity has been performed by
assuming that the position of the inclusion was fixed at midway between the source and the
detector (Proc(Δμ ′

s)), whichever is the depth [22]. In such a way, the fitting procedure generate
an estimate for the scattering perturbation parameter that is affected by that constraint on the
depth.

It is evident that the difference between the estimates of the perturbation intensity given by
the two procedures Proc(ΔzpcΔμ ′

s) and Proc(Δμ ′
s) enhances with increasing the shift of the

inclusion from the centre of the slab. For investigating how the assessment of the perturbation
intensity is affected by the shift of the defect, the relative difference between the fitted value
Δμ ′

s, f it and the expected one Δμ ′
s, namely:

εΔμ ′
s
=

Δμ ′
s −Δμ ′

s, f it

Δμ ′
s

, (14)

has been calculated for each fitting procedure.
Figure 4 shows the relative error (14) as a function of the normalized depth z pcn for inclusions

with a relative perturbation parameter Δμ ′
s/μ ′

s ranging between −60% and 60%. Also in this
case the use of the normalised depth z pcn facilitates the comparison between inclusions with
different sizes. Particularly, black curves of Fig. 4(a) refer to an inclusion with radius R = 2.5
mm that is moved from zpcn = 0 to zpcn = 1, whereas the green curves of Fig. 4(b) are the
results for R = 10 mm. The solid curves describe the relative error ε Δμ ′

s
calculated with the

fitting procedure Proc(ΔzpcΔμ ′
s) that estimates both the shift and the perturbation intensity

of the inclusion. The dashed curves are the relative error ε Δμ ′
s

calculated by considering the
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Fig. 4. The relative error as a function of the normalized depth zpcn. The solid curves are
obtained with the fitting procedure Proc(ΔzpcΔμ ′

s), whereas the dashed curves are given
by the procedure Proc(Δμ′

s). (a) The inclusion has size R = 2.5 mm. (b) The inclusion has
size R = 10 mm.

procedure Proc(Δμ ′
s). From inspection of the curves it results that the relative error calculated

with the procedure Proc(ΔzpcΔμ ′
s) does not appreciably change as the axial position of the

inhomogeneity is moved from the front to the rear boundary of the slab for fixed values of the
radius R of the inclusion. As expected, the accuracy worsens with increasing the radius R and
the worst case is observed for R = 10 mm with | εΔμ ′

s
|	 100% and Δμ ′

s/μ ′
s = −0.6. On the

contrary, the minimum value of the relative error is | ε Δμ ′
s
|	 20% and is attained for R = 2.5

mm and Δμ ′
s/μ ′

s = 0.6. As far as it concerns results given by Proc(Δμ ′
s), it can be noticed

that the discrepancies with Proc(ΔzpcΔμ ′
s) curves enhance as the inclusion moves toward the

lateral surfaces of the slab and decrease as the size R of the inclusion increases. Particularly,
the maximum values of the relative error are observed at normalized depths z pcn = 0,1 with
| εΔμ ′

s
|	 600% for R = 2.5 mm and | εΔμ ′

s
|	 150% for R = 10 mm with Δμ ′

s/μ ′
s = −0.6. This

behaviour can be explained by considering that Proc(Δμ ′
s) assumes the location of the inclusion

is fixed at middle plane of the slab. Hence, the accuracy for retrieving the perturbation intensity
worsens when the shift of the inclusion increases. Obviously, this effect reduces as the size of
the inclusion increases and vanishes in the limit of a size equal to the thickness of the slab.
On the whole, the worst accuracy is obtained when negative inclusions are considered. This
behaviour arises from the fact that the discrepancies between Fem simulations and perturbation
model contrast functions observed for negative values of the perturbation intensity are more
marked than those corresponding to positive values.

As far as it concerns the accuracy in retrieving the shift Δz pc with Proc(ΔzpcΔμ ′
s), it has been

investigated by considering the following quantity:

εΔzpc =<
| Δzpc, f it −Δzpc |

2R
>, (15)

Specifically, the deviation from the expected value Δz pc is calculated at different depths for
each inclusion radius and each perturbation intensity. The average value of each set is calcu-
lated and then it is normalized with respect to the diameter 2R of the inclusion. Figure 5 shows
the normalized average error εΔzpc and its standard deviation as a function of the relative per-
turbation parameter Δμ ′

s/μ ′
s for four values of the radius R ranging between R = 2.5 mm to
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Fig. 5. The error for retrieving the shift Δzpc of the inclusion normalized with respect to the
diameter 2R as a function of the relative perturbation intensity Δμ′

s/μ ′
s. Four values of the

radius of the Gaussian inclusion have been considered: R = 2.5 mm (black curves), R = 5
mm (red curves), R = 7.5 mm (blue curves), R = 10 mm (green curves).

R = 10 mm. As it can be seen, the normalized error εΔzpc is less than ∼ 5% as the relative per-
turbation intensity Δμ ′

s/μ ′
s ranges from −60% to 60% in the considered range of values for the

radius R. Hence, the shift of the inclusions, that have diameter 2R between 5 mm and 20 mm,
is retrieved by means of Proc(Δz pcΔμ ′

s) with a maximum error that goes from 0.2 mm to 1.0
mm, respectively.

5. Experimental measurements

5.1. Phantoms and Experimental Setup

The measurements were carried out by using a d = 40 mm thick cell made of black polyvinyl
chloride with two small transparent apertures for reducing the inner boundary reflections. The
media were prepared using an aqueous solution of Intralipid and black ink with optical proper-
ties μa = (8.7± 0.2)× 10−3 mm −1 and μ ′

s = 1.17± 0.01 mm −1. As for the inclusions, they
were made of 2% agar, Intralipid, and black ink in distilled water. Two cylindrical samples
were prepared with radius R = 3 mm and R = 7.5 mm, respectively, whereas the thickness h
were equal to the diameter 2R. The reduced scattering coefficient of the inclusion were the only
optical parameter changed with respect to the background and corresponded to a perturbation
intensity Δμ ′

s = 0.46±0.4 mm −1.
The experimental data were recorded with a setup for time-resolved transmittance based

on a picosecond solid state laser at 785 nm (mod. PDL 800, PicoQuant GmbH, Germany)
and an electronic chain for time-correlated single photon counting (mod. SPC-300, Becker &
Hickl GmbH, Germany). The instrument response function of the setup is about 140 ps. Point
measurements were performed by moving the inclusion inside the host medium along the x
direction from x =−40 mm to x = 40 mm every 1 mm, transversally to the source-detector axis
that is fixed at position x = 0.0±0.5 mm (see Fig. 1). The acquisition time for each point has
been chosen so as to obtain an homogeneous transmittance with peak value of∼ 3×10 5 counts.
In this way the 1% limit considered to calculate the chi-squared function of Eq. 13 identifies
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Fig. 6. Contrast functions calculated at different depths from experimental time-resolved
transmittances concerning two cylindrical scattering inclusions with perturbation parameter
Δμ ′

s/μ ′
s = 39%. The background is a turbid slab with thickness d = 40 mm, absorption and

reduced scattering coefficient equal to μa = (8.7±0.2)×10−3 mm−1 and μ ′
s = 1.17±0.01

mm−1, respectively. (a) The inclusion with radius R = 3 mm is located at depths zpc = 20
mm (black curve) and zpc = 28 mm (red curve). (b) The inclusion with radius R = 7.5 mm
is located at depths zpc = 20 mm (black curve) and zpc = 28 mm (red curve)

points at the trailing edge whose intensity has a 2% relative error about and consequently are
not affected by fluctuations of the baseline level.

5.2. Results and discussions

Figure 6(a) shows the experimental time-resolved contrast meas k curve refers to the inclusion
located at center of the slab, that is zpc = 20 mm, whereas the red curve is obtained when the
depth zpc = 28 mm is considered. Similarly, Fig. 6(b) reports plots obtained by considering
the inclusion with radius R = 7.5 mm. In agreement with results discussed in section 3, the
experimental contrast enhances by decreasing the time of flight and by shifting the defect away
from the center of the slab. Particularly, the displacement of the inclusion causes a rise in
contrast of roughly 30% for R = 3 mm and of 50% when R is equal to 7.5 mm.

For all the phantoms, the time-resolved contrast function has been calculated for each point
of the linear scan in order to reconstruct the profile of the inclusion. To this purpose, the per-
turbed contrast function (11a) has been fitted to the experimental data by using both procedures
Proc(Δμ ′

s) and Proc(ΔzpcΔμ ′
s). The former admits only the perturbation intensity as fitting pa-

rameter, whereas the depth is fixed to the value of the center of the cell. The latter, instead,
considers both the perturbation intensity and the depth of the inclusion as fitting parameters.
To eliminate the system response, the fitting has been performed by adopting the model (11a)
with expressions (5) and (6) convolved with system response. According to these procedures,
we expect the fitted value Δμ ′

s, f it(x) obtained at the scan position x corresponds to the scatte-
ring perturbation Δμ ′

s of the inclusion only when it is actually located on the source-detector
axis. Otherwise, the fitting detects an effective inclusion located on the axis with a perturbation
intensity value between zero and Δμ ′

s. For these reasons, a maximum should be observed in the
map of the optical perturbation at position of the center of the inclusion. The ratio between this
maximum and the background intensity, Δμ ′

s, f it(0)/μ ′
s, is called contrast image and it is usually

estimated by fitting the image of the perturbation with a Gaussian curve [22].
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Fig. 7. The relative perturbation intensity (Δμ′
s/μ ′

s) f it as a function of the scan position for
the inclusions. Black points refer to the inclusion at depth zpc = 20 mm whereas red ones
to the case zpc = 28 mm. Solid curves represent the Gaussian fits. Plots (a) and (c) have
been generated by using the fitting procedure Proc(Δμ′

s), wheres plots (b) and (d) have
been constructed with the fitting procedure Proc(ΔzpcΔμ ′

s).
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Table 1. The relative perturbation intensity Δμ′
s/μ ′

s estimated by means of the Gaussian fits
reported in Fig. 7 by using both the procedures Proc(Δμ′

s) and Proc(ΔzpcΔμ ′
s).

zpc = 20 mm zpc = 28 mm zpc = 20 mm zpc = 28 mm
R = 3 mm R = 3 mm R = 7.5 mm R = 7.5 mm

Proc(Δμ ′
s) 0.39±0.06 0.55±0.06 0.231±0.008 0.26±0.01

Proc(ΔzpcΔμ ′
s) 0.39±0.06 0.43±0.04 0.230±0.007 0.24±0.01

In Fig. 7 we have plotted the estimated values of the relative perturbation intensity
Δμ ′

s, f it(x)/μ ′
s versus the position x for the inclusions with radius R = 3 mm and R = 7.5 mm.

The procedure Proc(Δμ ′
s) produces the plots shown in 7(a) and (c), whereas plots 7(b) and (d)

show results of the procedure Proc(Δz pcΔμ ′
s). Furthermore, in each panel black points refer to

the inclusion at depth zpc = 20 mm, red points to the case z pc = 28 mm, whereas solid curves
represent the Gaussian fits. Moreover, in table 1 they are reported the amplitude values of the
fitted Gaussians in the different cases.

As it can be seen from the first row of the table, the procedure Proc(Δμ ′
s) images the inclu-

sions with a contrast that depends on the depth. Particularly, the shift of the smallest inclusion
from the center of the cell to the depth z pc = 28 mm causes an enhancement in contrast image of
41%, which gives rise to two different images as it is shown in panels (a) and (c) of Fig. 7. Data
reported in row 1, column 3 and 4 of table 1 evidence that the effect of contrast enhancement
is also observed for the inclusion with R = 7.5 mm, although the contrast difference reduces to
13% in this case, in agreement with results of Fig. 4 discussed in section 4. Hence experimen-
tal results confirm investigations on Fem simulations that have evidenced a marked sensitivity
of perturbation intensity to the depth when the fitting procedure Proc(Δμ ′

s) is used. However,
theoretical investigations have also shown that this behavior can be reduced by adopting the
procedure Proc(ΔzpcΔμ ′

s). To this regard, panels (b) and (d) of Fig. 7 show the images of the
two inclusions produced by this procedure. As it can be seen from an inspection of the curves
and from data reported in row 2 of table 1, the contrast image calculated at different depths has
a value that is very close to that observed in the central plane. Particularly, the difference in
contrast reduces to 10% for the smallest inclusion and to 4% for the largest one. These values
are in good agreement with predictions than are deduced from theoretical analysis on the accu-
racy of the first order perturbation model. In fact, it follows from results reported in Fig. 4 that 8
mm shift of the inclusion with R = 3 mm causes a 13% enhancement in contrast that decreases
to 3% when the size of the defect increases to R = 7.5 mm.

6. Conclusions

We have investigated the behavior of time-resolved contrast functions for a scattering inclusion
when its depth inside a turbid slab is shifted from the central plane to a boundary surface. The
theoretical model has been derived by considering a Gaussian first order perturbation model to
the diffusion equation. The accuracy of the predictions of this model has been studied through
comparisons with Fem simulations by developing for the first time to our knowledge a fitting
procedure that retrieves both the perturbation intensity Δμ ′

s and the shift Δzpc of the inclusion
from the center of the slab (Proc(Δz pcΔμ ′

s)). The effectiveness of the proposed procedure has
been tested against the usual fitting algorithm that allows only the perturbation intensity to vary,
whereas the depth of the inclusion is fixed at the center of the slab (Proc(Δμ ′

s)).
The Proc(ΔzpcΔμ ′

s) provides an accuracy in the estimation of the scattering perturbation
intensity that does not change appreciably as the inhomogeneity moves from the front to the
rear boundary. Particularly, the relative error in retrieving the scattering perturbation parameter
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is less than 20% for R ≤ 2.5 mm and |Δμ ′
s/μ ′

s| ≤ 60%. Moreover, the shift of the inclusion is
retrieved with an error less than 8% of the value of the radius R of the inclusion. These figures
must be compared with a maximum relative error of | ε Δμ ′

s
|	 600% for R = 2.5 mm obtained

from an inclusion near the boundary surfaces with the procedure Proc(Δμ ′
s).

We have also test experimentally our perturbation analysis by considering two scattering
inclusions with different radius (R = 3 and 7.5 mm), the same perturbation intensity (Δμ ′

s =
0.46 mm−1), located at different positions inside a tank filled with a scattering solution: one
is at the center and the other is at about a quarter of the tank thickness. To this regard, a Fem
based simulation investigation was preliminarily used to assess the amount of discrepancies in
retrieving the perturbation intensity, when using a theoretical model that refers to a spatially
varying scattering coefficient inside the defect compared to the case of homogeneous objects
employed in the experiments. Discrepancies have been found less than 2%, thus validating the
data analysis.

To conclude, we have observed that the time-resolved contrast functions for an inclusion out
of the center of the slab are not merely proportional to those for the same inclusion located
at the center. This fact allows one to recover both the perturbation intensity and the inclusion
displacement from the center by exploiting transmittance on-axis measurements, that are typ-
ically done in time-resolved 2-D projective optical mammography. In this way we increase
the accuracy of the retrieved scattering properties of inhomogeneities hidden inside a diffusing
medium at an unknown depth. Then, improvements in physiological information on the tumor
and the surrounding tissue will be gained, thus increasing the diagnostic value of optical mam-
mography. However, a closer characterization of the tumor could be achieved by extending our
procedure to the case of objects that differ not only in scattering but also in absorption from
the surrounding tissue. For this reason, we aim in the future to develop such an algorithm, by
paying particular attention to the technique of data analysis. Indeed, it is not clear whether it is
more efficient to retrieve the optical parameters simultaneously or through a separation of the
scattering and the absorptive contribution.
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